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Abstract
The goal in this work is to automatically classify speakers’ level
of cognitive load (low, medium, high) from a standard battery
of reading tasks requiring varying levels of working memory.
This is a challenging machine learning problem because of the
inherent difficulty in defining/measuring cognitive load and due
to intra-/inter-speaker differences in how their effects are man-
ifested in behavioral cues. We experimented with a number of
static and dynamic features extracted directly from the audio
signal (prosodic, spectral, voice quality) and from automatic
speech recognition hypotheses (lexical information, speaking
rate). Our approach to classification addressed the wide vari-
ability and heterogeneity through speaker normalization and by
adopting an i-vector framework that affords a systematic way to
factorize the multiple sources of variability.
Index Terms: computational paralinguistics, behavioral signal
processing (BSP), prosody, ASR, i-vector, cognitive load

1. Introduction
Cognitive load is related to the amount of information working
memory can simultaneously hold and process. Automatically
detecting an individual’s cognitive load has many practical ap-
plications, e.g., in the monitoring of call center operators; these
technologies could enable a reduction in stress, fatigue, and hu-
man error by identifying when there is information overload.

One promising and non-intrusive way to automatically dif-
ferentiate individuals’ level of cognitive load is through speech
analysis. Previous studies have shown that variability and other
statistics of prosodic cues (pitch/f0, intensity, speaking rate) are
correlated with cognitive load [1–4]. Specifically, “flattened”
intonation was found to be a good indicator of high cognitive
load in [2]. Spectral features, such as spectral peak promi-
nence, spectral centroid frequency and amplitude, spectral en-
ergy spread, and formant frequencies (particularly low for-
mants) and their trajectories, contain information regarding the
cognitive load of a speaker [1,2,5,6]. Voice source characteris-
tics, including the variation of primary open quotient, normal-
ized amplitude quotient, and primary speed quotient, are also ef-
fective cues [7]. Voice quality features (creakiness, harmonics-
to-noise ratio), glottal flow shape, speech phase (group delay,
FM parameter), and lexical/linguistic information (e.g., the du-
ration and number of pauses and fillers) were also reported as
important cues for detecting cognitive load level [1, 7, 8].

In this work, we apply emerging behavioral signal process-
ing (BSP) methodologies to robustly classify speakers’ level of
cognitive load from an existing behavioral data corpus. BSP
is centered on modeling societally-significant problems that are

more abstract/subjective in nature, often characterizing (effects
of) a person’s internal state or being [9], e.g., detecting blame
in married couples’ interactions [10] and modeling therapists’
empathy in drug addiction counseling [11]. Signal processing
techniques are first used to extract relevant features from hu-
man behavioral signals (e.g., speech, language). Machine learn-
ing techniques are then used to map these features to the rele-
vant higher-level descriptions. The specific methods employed
in this paper are based on our previous INTERSPEECH Chal-
lenge work [12–14] and adapted to the specific computational
paralinguistics problem of classifying cognitive load level.

Section 2 describes the corpus, and Section 3 discusses the
acoustic features we analyzed in detail. Section 4 explains the
speaker-normalized i-vector framework we implemented to ac-
count for the various sources of variability in modeling the ex-
pression of cognitive load in speech. We report our results and
provide a discussion in Section 5, and we offer our conclusions
and plans for future work in Section 6.

2. Corpus
We used the Cognitive Load with Speech and EGG (CSLE)
database [1], which includes audio recordings of participants
reading prompts with varying levels of cognitive load. As rec-
ommended by the INTERSPEECH 2014 Challenge organiz-
ers [15], we only analyzed the reading span sentence task [16]
and the two variants of the Stroop test [17]: Stroop time pres-
sure task and Stroop dual task. The database was comprised of
3 speaker-disjoint sets: train, development, and test. Speaker
labels were only provided for the train (11 subjects) and de-
velopment (7 subjects) sets. Three-class cognitive load labels
were included as part of the data, representing the load each
prompt was expected to place on the cognitive system (L1: low,
L2: medium, L3: high). Please see [1, 15] for more details.

As part of this work, we manually transcribed a portion of
the train/development utterances at the word-level. Phonetic
spellings of partial words (e.g., due to false starts) were also
transcribed, along with instances of laughter. These enriched
transcriptions were used to design an appropriately constrained
automatic speech recognition (ASR) system.

3. Acoustic Feature Analysis
3.1. Speaker Normalization & Clustering

Our underlying hypothesis, supported by the literature reviewed
in Sec. 1, is that the acoustics of the subjects’ speech will vary
across cognitive load levels. Importantly, cognitive load level
will affect individuals’ speech patterns in different ways. In

Copyright © 2014 ISCA 14-18 September 2014, Singapore

INTERSPEECH 2014

751



order to minimize the effect of inter-speaker variability on clas-
sification performance, speaker normalization techniques were
employed throughout our analysis. As noted in Sec. 2, the test
set did not have speaker labels, so we performed unsupervised
speaker clustering on this data. First, we removed silence re-
gions in each utterance using a statistical model-based voice
activity detector (VAD) [18]. Then, a single Gaussian-based
bottom-up agglomerative hierarchical clustering was performed
in the linear predictive coding feature space [19]. The general-
ized likelihood ratio was used as the inter-cluster distance mea-
sure [20]. We correctly clustered 98.1% and 99.9% of the utter-
ances in the train and development sets, respectively, suggesting
the speaker clustering hypotheses on the test set were accurate.

3.2. Prosodic Features

We first examined the use of prosodic features (silence, f0, in-
tensity) because they are easily interpreted. We used the VAD
(Sec. 3.1) to compute the mean and standard deviation (SD) of
silence region durations for each utterance; we used Praat [21]
to estimate f0 and intensity and calculated the mean, SD, skew-
ness, kurtosis, minimum, and maximum. In addition to these
static features, we also modeled the dynamics of silence trends
by plotting the duration of silence regions as a function of time;
we then found a best fit line and used the slope and the mean
square error (MSE) as additional utterance-level features. Sim-
ilarly, we created a scatter plot of f0 and intensity as a function
of time and computed the slope and MSE of the best fit line.

Table 1 shows average prosodic signal statistics, computed
across all utterances in the train and development sets, for each
task and cognitive load level separately. We see from this ta-
ble that the statistics of prosodic signals analyzed in this section
displayed increasing or decreasing trends across cognitive load
levels in the Stroop tasks more than in the span sentence task.
Specifically, statistics of silence region durations were discrim-
inative of the cognitive load levels for the Stroop dual task: as
cognitive load level increased, silence regions tended to have
shorter and more variable durations, and the MSE of the best fit
line increased. f0 statistics displayed trends across varying cog-
nitive load levels for all three tasks: as the load level increased,
mean f0 increased for both Stroop tasks, and f0 decreased at a
decreasing rate for all three tasks (based on slope statistics). In-
tensity features were relevant for both Stroop tasks: as cognitive
load level increased, subjects spoke louder in the Stroop time
task, and variability in loudness increased in both Stroop tasks.
Intensity decreased at a decreasing rate and MSE increased for
both Stroop tasks as cognitive load level increased.

Sig. Stat. span time dual
L1 L2 L3 L1 L2 L3 L1 L2 L3

# utt. 378 378 594 54 54 54 54 54 54

Sil.

mean .088 .086 .091 .268 .447 .413 .619 .581 .573
SD .067 .065 .076 .156 .310 .273 .216 .297 .376
slope .005 .002 .005 .002 .004 .001 .001 -.001 -.002
MSE .074 .073 .091 .162 .331 .265 .210 .290 .371
mean 138 136 135 125 129 129 127 129 130

f0 SD 25.0 23.5 23.8 17.8 18.0 17.6 17.9 18.9 17.8
(Hz) slope -15.5 -15.1 -15.1 -1.97 -.981 -.306 -.661 -.465 -.461

MSE 21.7 20.6 20.5 19.4 20.4 20.4 20.2 22.0 19.6
mean 72.4 72.2 72.3 70.3 72.7 73.5 70.9 72.5 72.4

Int. SD 5.13 5.06 5.18 4.68 4.84 5.12 4.86 5.16 5.22
(dB) slope -2.48 -2.44 -2.62 -.380 -.110 -.048 -.101 -.055 -.028

MSE 4.61 4.56 4.59 4.47 4.81 5.11 4.83 5.18 5.22

Table 1: Statistics of the prosodic signals, computed across all utter-
ances in the train/development sets for each task and cognitive load
level. Bold triplets highlight increasing or decreasing trends by load.

3.3. Automatic Speech Recognition-Derived Features

To obtain word hypotheses and phone- and word-level bound-
aries, we performed ASR on each utterance. We used the Kaldi
speech recognition toolkit [22] with triphone acoustic models
trained on the Wall Street Journal database. Leveraging the tran-
scriptions from Sec. 2, we trained task-specific language mod-
els by constraining the word hypotheses to those that occurred
in the train/development sets. For the Stroop tasks, we used a
unigram language model consisting of 10 color words (e.g., red,
blue) and observed disfluencies. For the span sentence task, we
trained a bigram language model using the transcribed text (674
words/disfluencies). We used the provided speaker labels for
the train/development sets and the hypothesized speaker clus-
ters from Sec. 3.1 for the test set to decode the utterances us-
ing Speaker Adaptive Training (SAT) [23]. We attained 20.4%,
11.3%, and 11.4% word error rates (WER) for the span sen-
tence, Stroop time, and Stroop dual tasks, respectively. The
disparity in WER between the tasks is most likely due to the
significantly larger lexicon required for the span sentence task.

Initial analysis of the ASR hypotheses showed that the pres-
ence of disfluencies (e.g., fillers, laughter) was not correlated
with cognitive load, so we did not examine these lexical features
further. Instead, we concentrated on extracting speaking rate in-
formation from the ASR hypotheses. Specifically, we devised
two systems that modeled the dynamics of phone-rate statistics
and word durations, described in detail next.

3.3.1. Phone-rate statistics

We defined average phone speaking rate over a window as the
number of non-silence phones in the window normalized by its
duration. For each utterance, we evaluated this average phone
rate measure at various time resolution scales. To evaluate the
measure at scale i, the utterance was chopped into i equal-sized
segments for which each the average phone rate was calculated
and subsequently stacked in an i-dimensional vector. We then
concatenated the vectors for scales 1 to N to obtain the final
feature representation, with dimension N(N+1)

2
. This feature

characterizes the utterance in terms of the progression of phone
rates across time in a multi-resolution fashion. We chose N = 7
for the Stroop tasks, and we chose N = 5 for the span sentence
task, since utterance durations are much shorter. The feature
was then normalized by task and speaker for each utterance. To
obtain baseline results with this feature, we trained a support
vector machine (SVM) on the train set, for each task separately,
and applied it to the development set. See Sec. 5 for results.

3.3.2. Dynamics of word durations

We represented each utterance by the corresponding sequence
of word durations, in seconds, treating inter-word silence as a
word. Since the durations vary by speaker, we normalized the
duration of each word by its corresponding mean and SD for
each speaker. We also replaced non-color words (e.g., fillers)
with a high positive SD of +3. Since the Stroop tasks have such
a small lexicon, there is enough data available for each word
to collect duration statistics for normalization. However, this is
not the case for the span sentence task, where many words are
only spoken once by a speaker. As a result, we only applied this
analysis to the Stroop tasks.

To capture the dynamics of this normalized word-duration
sequence, we trained a Hidden Markov Model (HMM) for each
cognitive load level on the train set. Each HMM had a fully-
connected three-state topology; the state means were initialized
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to -2, 0, and 2, corresponding roughly to word durations much
smaller than, equal to, and much larger than the mean, respec-
tively. We only discuss the learned parameters for the Stroop
dual task because of space constraints and because this method-
ology performed better on this task; please see Sec. 5. The state
means are denoted as µLi and transition matrices as TLi :

µL1 =

[−0.88
0.04
0.75

]
, µL2 =

[−0.98
0.04
1.49

]
, µL3 =

[−1.15
−0.02
1.73

]
(1)

TL1=

[
.03 .13 .84
.08 .89 .03
.65 .32 .03

]
, TL2=

[
.34 .25 .41
.03 .83 .14
.72 .15 .12

]
, TL3=

[
.42 .20 .38
.02 .80 .18
.49 .34 .18

]
(2)

As shown in (1), extreme deviations from the mean were rare for
L1, and the deviations increased proportionally with the cogni-
tive load level. We infer from (2) that there is greater volatil-
ity for the higher load levels, based on the findings that with
increasing cognitive load, there was: decreased probability of
state 2 self-transitions; increased probability of state 1 and 3
self-transitions; and increased probability of transitions into and
out of state 2. We evaluated probabilities of each observation
sequence in the development/test sets for the three HMMs and
classified the utterance to the cognitive load level with the max-
imum probability; please see Sec. 5 for results.

4. i-Vector Modeling Framework
The proposed system for cognitive load level classification ex-
ploits the concept of total variability or i-vector modeling, orig-
inally proposed in [24] and motivated by Joint Factor Analysis
(JFA) [25,26]. Total variability modeling provides an improved
accuracy and reduced computational complexity compared to
factor analysis by estimating a single low dimensional subspace,
named the identity or i-vector space, in which all variability
is modeled together. In this work, we attempt to model the
speaker-specific variability across the cognitive load levels: L1,
L2, and L3. To compensate for the undesired variability due
to utterance- and speaker-dependent factors, further variability
compensation methods are applied within the i-vector space.

4.1. Feature Extraction and Background Modeling

In addition to the features explored in Sec. 3, we also extracted
four diverse acoustic feature sets to train task-specific i-vector
systems:

• PLP: Perceptual Linear Prediction (PLP) coefficients [27]

• GBF: Gabor features which capture the acoustic modulations
patterns in speech [28]

• ISCOMP11: statistics of frame-level openSMILE [29] spec-
tral, voice quality, and prosodic features [30]

• FuSS: Fused Speech Stream features obtained by combining
the four speech streams of [31] into a single feature vector.
Each of these streams models a different aspect of the human
voice: (i) spectral shape, (ii) spectro-temporal modulations,
(iii) periodicity structure due to the presence of pitch harmon-
ics, and (iv) the long-term spectral variability profile.

All the above features are mean- and variance-normalized on a
per speaker basis, deploying the speaker clustering strategy of
Sec. 3.1. For each feature representation, a task-specific Uni-
versal Background Model (UBM) was trained using all avail-
able training and development set data.

4.2. Total Variability Modeling

The application of i-vector modeling for utterance-level classi-
fication of cognitive load implies representing each utterance j
of speaker s as a supervector Ms

j [24]:

Ms
j =m+Tws

j (3)

where m is a load-, speaker-, and utterance-independent super-
vector constructed from stacking the Gaussian mean vectors of
all UBM components. The total variability matrix T is of low
rank and obtained by task-specific factor analysis training. The
i-vector of the speaker’s utterance is then given by a normally
distributed vector ws

j containing the corresponding total factors
[24]. The rank of T defines the dimensionality of the i-vectors
and is tuned for each task (span: 200; time, dual: 75). The
i-vector model of (3) is extended to the simplified framework
of [32,33] to reduce computational complexity and is iteratively
trained by the Expectation Maximization method; see [25, 34]
for more details.

4.3. Speaker-Dependent i-Vector Normalization

We can assume that the extracted i-vectors are highly biased to
the task-specific behavior of speakers, regardless of the cogni-
tive load level of the task, and that the acoustics of the speaker
varies with respect to this bias when exposed to a different load
level. Since the system is trained on multiple speakers, the bias
term acts as a noise factor in the i-vector space and hence needs
to be factored out. Therefore, we assume that ws

j in (3) can be
written as:

ws
j = bs + zsj (4)

where bs and zsj respectively correspond to the speaker-
dependent bias and a term that captures the residual variability
in speaking style due to the task’s load level. The residual term
is obtained by first estimating the bias bs as the i-vector mean
over all load levels per speaker (using the supplied speaker la-
bels for the train/development sets and the Sec. 3.1 speaker clus-
tering results for the test set) and subsequently subtracting this
estimate from ws

j . What remains is a speaker-independent term
that better models the load level variability and hence will serve
as the input features on which a classifier is learned. Classifica-
tion is done by training an SVM with polynomial kernel (fifth
order) on the residual term of all training utterances using the
load levels as class labels. For each feature representation of
Sec. 4.1, a system was trained for the development and test set
(on the training set and training plus development sets, respec-
tively), where the number of UBM components and i-vector di-
mensions are optimized per task using a leave-one-speaker-out
cross-validation strategy.

5. Results & Discussion
As set by the INTERSPEECH 2014 Challenge organizers [15],
we used Unweighted Average Recall (UAR) as the evaluation
metric for all systems, defined as the unweighted (by number of
utterances in each class) mean of the percentage correctly clas-
sified in the diagonal of the confusion matrix. Please see Table 2
for the performance of the various proposed automatic systems;
note that the provided baseline system consists of a linear SVM
classifier trained on 6373 functionals of spectral/prosodic/voice
quality low-level descriptors [15].

The numbers reported for the i-vector systems in Ta-
ble 2 were obtained through mean-variance normalization on
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System Feature(s) span time dual Total
Chance 33.3 33.3 33.3 33.3

SVM Baseline [15] 61.2 74.6 63.5 63.2
SVM Prosody (Sec. 3.2) 41.7 88.9 77.8 49.8
SVM Phone-Rate (Sec. 3.3.1) 48.5 54.0 76.2 52.7
HMM Word Durations (Sec. 3.3.2) — 57.1 77.8 —
i-vector 1: PLP (Sec. 4.1) 62.9 71.4 65.1 63.9
i-vector 2: GBF (Sec. 4.1) 72.0 84.1 73.0 73.3
i-vector 3: ISCOMP11 (Sec. 4.1) 69.9 73.0 71.4 70.3
i-vector 4: FuSS (Sec. 4.1) 75.1 82.5 81.0 76.4
i-vector Fusion: 1+2+3+4 76.0 84.1 82.5 77.5

Table 2: Unweighted Average Recall (%) results on the development set
for each task: reading span sentence, Stroop time pressure, Stroop dual.

a speaker basis. The beneficial effect of speaker compensation
is shown in Table 4 for the i-vector system trained on the FuSS
feature only (because of space constraints). The application of
mean normalization on the i-vector space results in an increase
in performance for all tasks. The addition of variance normal-
ization boosts performance for both Stroop tasks. Results not
reported here show that the benefit of variability compensa-
tion in this task is consistent for all feature representations and
more effective than, e.g., Within-Class Covariance Normaliza-
tion (WCCN), and thus can be considered an original contribu-
tion of this work. These speaker-normalized i-vector systems in
Table 2 (1-4) were also augmented with the prosody (Sec. 3.2)
and phone-rate (Sec. 3.3.1) features. Running the SVM clas-
sifier on these augmented vectors gave us a slight performance
improvement, as shown in Table 4 for the FuSS features.

As can be seen in Table 2, in general, performance was
worse for the span sentence task compared to the Stroop tasks.
This is most likely due to the fact that the utterances in the span
sentence task were significantly shorter in duration and phoneti-
cally more challenging, due to the limited vocabulary size of the
Stroop tasks. Therefore, there is an additional source of lexical
variability present in the span sentence task.

The features analyzed in Sec. 3 performed well for the
Stroop dual task, and the prosodic features analyzed in Sec. 3.2
also excelled in the Stroop time task. However, these systems
did not generalize well to the span sentence task. This disparity
in performance across tasks is likely due to a number of factors:
1) the features explored in Sec. 3 were specifically targeting
prosodic cues (speech/silence, f0, intensity, speaking rate) that
we observed in the train data to be perceptually relevant for the
Stroop tasks; 2) there are fewer utterances in the Stroop tasks
(Table 1), so the Sec. 3 systems, which have significantly lower
dimensional feature spaces compared to the baseline system, are
less susceptible to the curse of dimensionality problem; and 3)
the Stroop tasks do not have continuous speech, so it is easier to
track changes in speech cues within an utterance.

Our best performing system overall (the final row in Ta-
ble 2) was obtained by exploiting the complementary informa-
tion of i-vector systems 1-4 through linear fusion of the output
probabilities. Please see Table 3 for a confusion matrix of the
best proposed automatic system. As was expected, the most dif-
ficult cognitive load level to classify was L2 for all three tasks.
This more ambiguous “middle” level is more easily confused
with L1 and L3 because it is inherently perceptually closer, due

System span time dual
L1 L2 L3 L1 L2 L3 L1 L2 L3

L1 75.5 9.5 6.9 90.5 0.0 0.0 85.7 19.0 0.0
L2 10.9 71.4 12.1 9.5 76.2 14.3 9.5 76.2 14.3
L3 13.6 19.0 81.0 0.0 23.8 85.7 4.8 4.8 85.7

Table 3: Confusion matrices (%) across the 3 cognitive load levels for
the best overall automatic system on the development set for each task.

Feature(s) Normalization span time dual Total
FuSS none 74.7 66.7 63.0 72.8
FuSS mean 75.0 78.7 77.3 75.6
FuSS mean-variance 74.7 81.7 80.3 75.9
FuSS+Prosody+Phone-Rate mean-variance 75.1 82.5 81.0 76.4

Table 4: UAR (%) results for the i-vector system trained with FuSS
features using different speaker normalization methods for each task.

to the ordinal nature of the class labels. Future work will look
to explicitly model this ordinality constraint.

Finally, as part of this work, we tested our best perform-
ing system on the distinct but overlapping problem domain of
detecting physical load, which was also part of the INTER-
SPEECH 2014 Challenge [15]. The purpose of this experi-
ment was to see if the methodologies we developed to distin-
guish varying levels of cognitive load generalized to the simi-
lar problem of separating speech produced under low and high
levels of physical load. We used the Munich Bio-voice Cor-
pus (MBC) [35], which includes recordings of subjects read-
ing a passage in a baseline resting state (low physical load) and
after exercising (high physical load). The corpus was set up
in a similar manner to the reading span sentence task in the
CLSE database (Sec. 2), with speaker-disjoint train, develop-
ment, and test sets. Table 5 shows that our best proposed sys-
tem was able to generalize to new speakers and related machine
learning problems, outperforming the baseline system on the
development and test sets for both INTERSPEECH 2014 Sub-
Challenges: detecting cognitive and physical load. This sug-
gests that the i-vector framework proposed in this work may
be appropriate for other important computational paralinguis-
tics problems, an area of future work.

6. Conclusion & Future Work
We explored the use of multiple acoustic features to classify
the cognitive load level of speakers’ utterances as low, medium,
or high. Through feature-level fusion of these features within
a novel speaker-normalized i-vector framework, we were able
to beat the baseline SVM approach. This work is promising for
real-world applications, such as monitoring of subjects who per-
form cognitively demanding tasks (e.g., call center operators).

Future work will look to improve the classification accu-
racy on the more ambiguous L2 utterances, potentially through
multi-stage hierarchical methodologies or by exploiting the or-
dinal nature of the labels, e.g., by using ordinal logistic regres-
sion techniques [36]. We also plan to experiment with other fu-
sion methodologies at the feature-, score-, and classifier-level.
Finally, we will continue to apply the proposed automatic sys-
tems to related problem domains in behavioral signal processing
(BSP), such as physical load level classification.
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System Cognitive Load Physical Load
Dev Test Dev Test

Chance 33.3 33.3 50.0 50.0
Baseline [15] 63.2 61.6 67.2 71.9
Fusion: 1+2+3+4 77.5 68.9 71.8 73.9

Table 5: Unweighted Average Recall (%) results on the Development
(Dev) and Test sets for both INTERSPEECH 2014 Sub-Challenges [15].
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