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PAPER

Influence of Lombard Effect: Accuracy Analysis of
Simulation-Based Assessments of Noisy Speech Recognition
Systems for Various Recognition Conditions

Tetsuji OGAWA†a) and Tetsunori KOBAYASHI††, Members

SUMMARY The accuracy of simulation-based assessments of speech
recognition systems under noisy conditions is investigated with a focus
on the influence of the Lombard effect on the speech recognition perfor-
mances. This investigation was carried out under various recognition con-
ditions of different sound pressure levels of ambient noise, for different
recognition tasks, such as continuous speech recognition and spoken word
recognition, and using different recognition systems, i.e., systems with and
without adaptation of the acoustic models to ambient noise. Experimen-
tal results showed that accurate simulation was not always achieved when
dry sources with neutral talking style were used, but it could be achieved if
the dry sources that include the influence of the Lombard effect were used;
the simulation in the latter case is accurate, irrespective of the recognition
conditions.
key words: Lombard effect, simulation, assessment, noisy speech recogni-
tion

1. Introduction

It is important to evaluate the performance of speech recog-
nition systems using real speech data recorded in different
situations, which arise from various combinations of room
acoustics, ambient noise, speakers, etc.; these factors af-
fect the speech recognition performance of a system. How-
ever, collection of such data is not practically feasible, be-
cause a large number of combinations of the above factors
must be considered. Therefore, during the evaluation of
speech recognition systems, it is usually assumed that the
effects of these factors are independent of each other and
are treated individually. In this case, test data are obtained
by simulating different speech materials under the influence
of each factor. For example, a room characteristic is simu-
lated by computing the convolution of a dry source, which
is recorded by a close-talking microphone under quiet con-
ditions, with the impulse response of the room. Similarly, a
noisy speech utterance can be simulated by superposing am-
bient noise on a clean speech utterance. However, when a
person speaks in a noisy environment, it is very likely for the
Lombard effect to occur. The Lombard effect is the phenom-
ena in which the volume of the speech increases, the pitch
of the speaker increases, and so on. It is well known that
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the acoustic characteristics of speech utterances under the
Lombard effect are significantly different from those of neu-
tral speech utterances. Therefore, many researchers have at-
tempted to improve the performances of speech recognition
systems during recognition of the speech utterances under
the Lombard effect [1]–[7]. However, it has not been ver-
ified whether the noisy speech data obtained by the above
method precisely simulate the real noisy speech data in the
evaluation of the performances of speech recognition sys-
tems.

In the present study, we attempt to analyze the eval-
uation accuracy of speech recognition systems using noisy
speech data simulated by conventional methods. We em-
phasize the effects of the acoustic changes induced by the
Lombard effect on speech recognition performances. We ex-
perimentally analyzed the accuracy of the simulation-based
assessments of noisy speech recognition systems under the
following different recognition conditions: different sound
pressure levels (SPLs) of the ambient noise, different kinds
of recognition tasks, such as continuous speech recognition
(CSR) and spoken word recognition (SWR), and different
types of recognition systems, i.e., systems with and without
ambient noise adaptation of acoustic models. From the re-
sults of these analyses, we not only determined the accuracy
of the simulation-based assessments but also the require-
ments for achieving accurate simulations in each recognition
condition. The results of this study can be useful in predict-
ing the performances of noisy speech recognition systems.

The rest of this paper is organized as follows. In Sect. 2,
we describe the speech materials and simulation methods
used. In Sect. 3, we describe database analysis from the
viewpoint of elucidating acoustic changes due to the Lom-
bard effect. In Sect. 4, we describe the speech recognition
experiments carried out by us and analyze the accuracy of
the use of simulations in evaluating speech recognition per-
formances. Finally, in Sect. 5, we present the concluding
remarks.

2. Simulation

2.1 Accuracy of Simulation

In simulation-based assessments of noisy speech recogni-
tion, noisy speech utterances recorded by a distant micro-
phone are simulated by computing the convolutions of dry
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sources (clean speech utterances recorded by a close-talking
microphone) with the impulse response of the target envi-
ronment and then superposing the ambient noise in the target
environment on the abovementioned clean speech utterances
in which the room acoustics are simulated using the impulse
response. Here, the dry sources usually exhibit the neutral
talking style and are free from the effects of the Lombard ef-
fect. We attempt to investigate the accuracy of these assess-
ments with the emphasis on the influence of the Lombard ef-
fect on speech recognition performances. For this purpose,
we compared the performance of the system during recog-
nition of real noisy speech utterances, which were uttered in
a real noisy environment, with that during the recognition of
simulated noisy speech utterances. If the recognition perfor-
mance using a simulated noisy speech utterance is found to
be equal to that using the corresponding real noisy speech
utterance, the simulation-based assessment is said to be ac-
curate.

2.2 Speech Recordings

In the rest of this paper, a talking style of speech under the
Lombard effect is defined as “Lombard talking style” and
the speech utterances with Lombard talking style are defined
as “Lombard speech utterances”.

To investigate the effects of the acoustic changes due to
the Lombard effect on speech recognition performances, the
following three kinds of speech materials are recorded in a
general office room, with a subject and recording devices, as
shown in Fig. 1. Here, the recording devices used are listed
in Table 1.

L-NOISY (Lombard noisy speech) denotes the real noisy
speech utterances with the Lombard talking style,
recorded by the distant microphone. The subjects
spoke in a noisy environment, where noise from a sta-
tion concourse [8] of 60 or 70 dB(A) (at the subjects’
ears) was played on four loudspeakers.

N-CLEAN (neutral clean speech) denotes the clean
speech utterances with neutral talking style recorded by
the close-talking microphone, which are free from the
influences of the Lombard effect. The subjects spoke
under quiet conditions with the ambient noise of ap-
proximately 30 dB(A).

L-CLEAN (Lombard clean speech) denotes the clean
speech utterances with the Lombard talking style
recorded by the close-talking microphone. The sub-
jects spoke while listening to the ambient noise that
was played through headphones. Initially, ambient
noise with the same SPL as that used in the L-NOISY
recording was played and recorded by microphones
mounted on a dummy head, which was substituted for
the subject. The subjects spoke while they heard this
ambient noise through open-air headphones.

Each of these speech materials consisted of 50
Japanese newspaper article sentences read as continuous
speech utterances and 100 phonetically balanced word

Fig. 1 Arrangement of a subject and recording devices.

Table 1 Recording devices.

Device Manufacturer /Model number

close-talking microphone SONY / F-710
distant microphone SONY / ECM-77B
analog terminal Thinknet / DF-3000
pre-amplifier Thinknet /MA-2016
loudspeaker BOSE / 1200VI
dummy head NEIMANN / KU-100
headphone (open-air) SENNHEISER / HD650

speech utterances. Ten male subjects uttered the entire
set of these speech materials. These speech utterances
were simultaneously recorded by the directional close-
talking microphone, placed near the subject’s mouth, and
the omni-directional distant microphone placed at a distance
of 100 cm from the subject.

During the recording of L-CLEAN, it was expected
that some problems may arise due to the use of headphones
to play the ambient noise. One problem is that the subjects
may not be able to hear their own utterances at the origi-
nal volume. As a compensation for this effect, it is required
that the utterances are fed back to the subjects through the
headphones so that the subjects can hear their voice at the
original volume. However, the use of open-air headphones
in place of closed ones eliminates the need for such feed-
back. Another problem is that the noise played through
open-air headphones may leak and get recorded at the mi-
crophone. As a compensation for this effect, noise reduc-
tion of the leaked noise would have to be performed. It is
assumed that the noise played through closed headphones
does not leak. To analyze the first problem, we measured the
speech powers recorded at the microphones of the dummy
head with and without the open-air headphones. We found
that the difference in the two speech powers was approxi-
mately 0.25 dB, which is negligible. To analyze the second
problem, we measured the noise signals that leaked from the
open-air headphones at the microphone. We found that this
leaked noise was also negligible because its amplitude to-
ward background noise amplitude was below 0.1 dB. On the
basis of these results, we selected the open-air headphones
for use in our experiments without applying any compensa-
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Table 2 Evaluation items. “*” denotes computing a convolution; x denotes SPLs of ambient noise
played (in dB(A)), which could be 60 or 70 dB(A).

Speech NoiseNotation Recorded sound Talking style
(distant microphone) (distant microphone)

SNR

dry NC N-CLEAN neutral —– —– —–
source LCx L-CLEAN Lombard —– —– —–

NC-D N-CLEAN neutral direct input —– —–
clean NC-DS N-CLEAN neutral dry source * impulse response —– —–

speech LCx-D L-CLEAN Lombard direct input —– —–
LCx-DS L-CLEAN Lombard dry source * impulse response —– —–
LNx-D L-NOISY Lombard direct input direct input ——

noisy NCx-DSN N-CLEAN neutral dry source * impulse response superposition ——
speech LCx-DSN L-CLEAN Lombard dry source * impulse response superposition ——

NCx-DSN-C N-CLEAN neutral dry source * impulse response superposition = LCx-DSN

tion; that is, we did not apply feedback of subjects’ voices
to themselves through the headphone or carry out the noise
reduction of the leaked noise.

2.3 Evaluation Items

Table 2 lists two dry sources, four clean speech data, and
four noisy speech data, which are obtained using the N-
CLEAN, L-CLEAN, and L-NOISY recordings. Here, x
denotes the SPL of the ambient noise heard by the sub-
jects. The utterance notations are represented by three terms
as (X)-(Y)[-(Z)], where (X) is either NC (N-CLEAN), LC
(L-CLEAN), or LN (L-NOISY), which are the recorded
sounds, and (Y) is either D, DS, or DSN, which indicates
whether the evaluation was performed with or without sim-
ulation. D represents real speech data, which were directly
recorded by the distant microphone. DS represents simu-
lated clean speech data, which were synthesized by com-
puting the convolution of the dry sources with the impulse
response from the subject to the distant microphone. DSN
represents simulated noisy speech data, which were synthe-
sized by superposing the ambient noise on the simulated
clean speech data, i.e., (X)-DS. The term (Z) could only
be C, which indicates that while superposing the noise, the
SNR was adjusted. Therefore, the notation of NCx-DSN-C
represents the simulated noisy speech data, which were ob-
tained by computing the convolution of the dry source with
neutral talking style (N-CLEAN) with the impulse response.
Then, the ambient noise of x dB(A) was superposed such
that SNRs in this superposition would be the same as those
in the superposition of LCx-DSN.

The first aspect of this study is the determination of
the effect of the talking style on speech recognition perfor-
mance. For this purpose, the recognition performances us-
ing the clean speech data with neutral talking style, i.e., NC,
NC-D, and NC-DS, are compared with those using clean
speech data with the Lombard talking style, i.e., LCx, LCx-
D, and LCx-DS. The second aspect deals with the main
purpose of this study: analysis of the accuracy of the assess-
ments of noisy speech recognition systems. This analysis is
carried out by comparing the recognition performances us-
ing the simulated noisy speech data, NCx-DSN, LCx-DSN,
and NCx-DSN-C, to the recognition performance using the

real noisy speech data LNx-D. In this case, if the recog-
nition performance of the simulated noisy speech data is
equivalent to that of LNx-D, the accurate simulation-based
assessment of speech recognition performance is achieved
by using such simulated noisy speech data.

2.4 Simulation Method and Requirements

2.4.1 Transfer Function Measurement

The transfer function from the subject to the distant micro-
phone was obtained as the impulse response by the time
stretch pulse (TSP) method. TSPs were played through a
loudspeaker, which was placed at the position of the sub-
ject shown in Fig. 1. An up-type 131072-point TSP sampled
at 32 kHz was used. Synchronous addition of eight micro-
phone inputs was carried out in order to improve the SNR.
The measured impulse response included the influence of
the frequency characteristic of the loudspeaker.

2.4.2 Simulation of Room Acoustics

The effect of a sound field that does not contain ambient
noise (i.e., room acoustics) was simulated. Speech utter-
ances detected at the distant microphone were approximated
by computing the convolution of the impulse response ob-
tained previously (as described in Sect. 2.4.1) with the dry
sources.

It should be noted that the position of the subject’s
mouth and that of the loudspeaker playing the TSPs did not
completely coincide for each utterance. Therefore, the spec-
tra of the real speech utterances recorded at the distant mi-
crophone did not precisely conform to those of the approxi-
mated speech utterances, in which the influence of the sound
field was simulated. However, it is not practically feasible
to measure the impulse response for each utterance. Thus,
we simply adjusted the speech powers of the simulated and
the corresponding real distant-talking speech utterances.

2.4.3 Compensation of Characteristics of Recording De-
vices

Figure 2 illustrates the method for the simulation of room
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acoustics. In this figure, GCM , GS P, GS F , and GDM rep-
resent the frequency characteristics of the close-talking mi-
crophone, the loudspeaker playing the TSPs, the sound field,
and the distant microphone, respectively. GS F and GDM in-
fluence both real and simulated speech utterances. On the
other hand, GCM and GS P affect only the simulated speech
utterances. Therefore, we attempted to compensate for the
distortions in the impulse response caused by both GCM and
GS P. We measured the impulse response from the subject to
the close-talking microphone and designed its inverse filter.
Then, we computed the convolution of the speech utterances
recorded from the same close-talking microphone with this
inverse filter.

2.4.4 Superposition of Ambient Noise

We superposed the ambient noise recorded by the distant
microphone on the clean speech utterances; the influence of
the surrounding environment (room acoustics) on these ut-
terances was simulated, as described in Sect. 2.4.2. The am-
bient noise was adjusted to be 60 dB(A) or 70 dB(A) at the

Fig. 2 Compensation of characteristics of recording devices. GCM , GS P,
GS F , and GDM represent the frequency characteristics of close-talking mi-
crophone, loudspeaker, sound field, and distant microphone, respectively.

Fig. 3 Number of utterances as a function of powers of speech utterances. The dotted line represents
neutral speech utterance, and the solid lines represent Lombard speech utterances.

subject’s ears. Under the quiet condition, since the ambi-
ent noise of 30 dB(A) was observed, this ambient noise was
recorded and then superposed on the simulated clean speech
utterances.

3. Database Analysis

We attempted to verify that speech utterances recorded as
dry sources with Lombard talking style actually exhibit
acoustic characteristics different from those of speech ut-
terances with neutral talking style. This verification was
carried out using the speech powers and vowel formants
in the voiced parts of all the neutral (NC in Table 2) and
the Lombard speech utterances (LC60 and LC70 in Table 2)
recorded by the close-talking microphone. It is well known
that these physical quantities affect speech recognition per-
formances. Figures 3 (a) and 3 (b) show the number of ut-
terances as a function of the average speech powers of the
continuous speech utterances and the spoken word utter-
ances, respectively; the speech powers were averaged over
all frames in an utterance. Figures 4 (a) and 4 (b) show the
positions of the first two formant frequencies of the five
Japanese vowels, /a/, /i/, /u/, /e/, and /o/ in the continuous
speech utterances and the spoken word utterances, respec-
tively. In both these figures, each frequency is averaged over
1000 continuous speech utterances and 500 spoken word ut-
terances by 10 male subjects. These figures show that the
acoustic characteristics of the neutral speech utterances and
the Lombard speech utterances are significantly different,
regardless of the recognition tasks. It was observed that the
power distributions and the vowel formant patterns shifted
with an increase in the noise SPLs in the case of both the
continuous speech utterances and the spoken word utter-
ances.

The results of this analysis reveal that the real noisy
speech utterances, which include the influence of the Lom-
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Fig. 4 Vowel formant positions of speech utterances. The dotted line represents neutral speech. The
solid lines represent Lombard speech.

bard effect (LN60-D and LN70-D), and the simulated noisy
speech utterances, which were simulated using dry sources
with neutral talking style (NC60-DSN and NC70-DSN),
have different acoustic characteristics in the presence of am-
bient noise of 60 and 70 dB(A).

4. Speech Recognition Experiment

4.1 Experimental Overview

The first stage of the experiments is the investigation of the
effect of the talking style on the speech recognition perfor-
mances. This investigation was conducted using the clean
speech utterances. Here, the accuracy of the room acoustics
approximated using the impulse response was also investi-
gated.

The second stage of the experiments is the determi-
nation of the accuracy of simulation-based assessments of
noisy speech recognition and the requirements for accu-
rate simulation. The experiments were conducted on eight
recognition systems listed in Table 3, and their results were
compared. Here, the influence of the Lombard effect on
speech recognition performances was investigated as a func-
tion of the following factors: SPLs of the ambient noise
(e.g., 60 dB(A) or 70 dB(A)), recognition tasks (e.g., CSR
or SWR), and the type of recognition systems (e.g., systems
with or without ambient noise adaptation of acoustic mod-
els).

4.2 Experimental Setup

4.2.1 Acoustic Feature Extraction

Acoustic feature parameters used were 25-dimensional
parameters consisting of 12-dimensional MFCCs, 12-
dimensional ΔMFCCs, and a Δ power. Cepstral mean nor-
malization (CMN) was applied to each utterance in order to

Table 3 Evaluated systems.

Task Adaptation Noise level

1) CSR — 60 dB(A)
2) CSR — 70 dB(A)
3) CSR MLLR 60 dB(A)
4) CSR MLLR 70 dB(A)
5) SWR — 60 dB(A)
6) SWR — 70 dB(A)
7) SWR MLLR 60 dB(A)
8) SWR MLLR 70 dB(A)

Table 4 Experimental conditions for acoustic feature extraction.

sampling frequency 16 kHz
frame length 25 ms
frame shift 10 ms
analysis window Hamming window
pre-emphasis 1–0.97z−1

eliminate the differences in input conditions. The experi-
mental conditions for acoustic feature extraction are shown
in Table 4.

4.2.2 Setup for CSR

Acoustic models were trained with 20406 sentences spo-
ken by 133 male speakers, taken from the ASJ database [9];
this database included Japanese newspaper article sentences
(ASJ-JNAS) and phoneme-balanced sentences (ASJ-PB)
recorded by close-talking microphones. We used the state-
tied triphone HMMs as the acoustic models with 2000
states. The distribution function in each state of the mod-
els was represented by a 16 mixture Gaussian distribution
with diagonal covariances.

Ambient noise adaptation using maximum likelihood
linear regression (MLLR) was applied to those models. The
adaptation data consisted of 475 phoneme-balanced clean
speech utterances by 95 male speakers taken from the ASJ-
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Fig. 5 Speech recognition performances for real and simulated clean speech utterances. Each bar
represents the average performance for 10 male subjects. The error bars on top of these bars denote the
90% confidence intervals.

PB. The ambient noise, which was the same as that used in
the evaluation, was superposed on these utterances at SNRs
of 5 dB, 10 dB, 15 dB, and 20 dB. The adapted models were
constructed for each value of SNR. The number of regres-
sion classes in these adaptations was four. It should be noted
that both the general acoustic models and the adapted acous-
tic models had the neutral talking style.

We used trigram language models that were con-
structed using a lexicon with a vocabulary size of 20 K.
The vocabulary set comprises the most frequently appear-
ing words in the articles in Mainichi Newspaper issues dat-
ing from January 1991 to September 1994.

In evaluation, we used 500 newspaper article sentences
for each evaluation item listed in Table 2, where each of the
10 male subjects spoke 50 utterances in the room shown in
Fig. 1.

4.2.3 Setup for SWR

The construction of acoustic models and their MLLR-based
ambient noise adaptation were carried out under the same
conditions as those used in the CSR experiment.

In evaluation, we used 1000 phoneme-balanced word
utterances for each evaluation item listed in Table 2, where
each subject spoke 100 words in the room shown in Fig. 1.
In this case, the vocabulary set consisted of 216 words.

4.3 Experimental Results of Clean Speech Data

Figures 5 (a) and 5 (b) show the performance of the systems
during the recognition of the clean speech utterances in the
CSR and SWR experiments, respectively.

The acoustic models used in this experiment were
trained with the speech data having neutral talking style
as well as those used in general speech recognition assess-
ments, while the test data had the Lombard talking style.

Therefore, the acoustic discrepancies between the acoustic
models and the test data increased, and the recognition per-
formances decreased with increasing SPLs of the ambient
noise.

In addition, the performance of NC-D was compara-
ble to that of NC-DS, and the performances of LC60-D
and LC70-D were comparable to those of LC60-DS and
LC70-DS, respectively. Thus, we can conclude that the im-
pulse response used in this experiment was sufficiently accu-
rate to approximate the room acoustics, the effect of which
on speech recognition performances is independent of the
Lombard effect.

4.4 Experimental Results of Noisy Speech Data

Figures 6 (a) and 6 (b) show recognition performances ob-
tained by the CSR and SWR experiments, respectively, for
each evaluation item listed in Table 2. The bars on the left-
hand side and right-hand side in each item denote the perfor-
mances of the recognition system trained with clean speech
data and the recognition system adapted to noisy speech
data, respectively. In the case of noise-adapted systems, the
evaluation was carried out at each SNR of the adaptation
data (e.g., 5 dB, 10 dB, 15 dB, and 20 dB), and the perfor-
mances were averaged over all these SNR values.

4.4.1 Results of CSR Experiments

The evaluation items LNx-D and LCx-DSN have the Lom-
bard talking style, while NCx-DSN has the neutral talking
style. Therefore, NCx-DSN has a lower volume of speech
signals and thus a lower SNR than both LNx-D and LCx-
DSN. In fact, NCx-DSN showed a significantly low perfor-
mance as compared to LNx-D, irrespective of the SPLs of
the ambient noise and ambient noise adaptation. Moreover,
the performance of LCx-DSN was almost the same as that
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Fig. 6 Speech recognition performances for real and simulated noisy speech utterances. Each bar rep-
resents the average performance for 10 male subjects. The error bars denote 90% confidence intervals.
The left-hand side and the right-hand side bars in each category represent the performances of HMMs
trained using clean speech utterances and HMMs adapted using noisy speech utterances, respectively.

of LNx-D, irrespective of the noise levels and noise adap-
tation. Therefore, the simulation of noisy speech utterances
is accurate from the viewpoint of speech recognition perfor-
mances if the simulation is conducted using the dry sources
that include the influence of the Lombard effect.

The recognition performance of NCx-DSN-C was al-
most the same as those of LCx-DSN and LNx-D, regardless
of the noise levels and noise adaptation. Since both NCx-
DSN-C and NCx-DSN have neutral talking style, the differ-
ence in their recognition performances is attributed to the
difference in their SNRs. In addition, since NCx-DSN-C
and LCx-DSN have the same SNR, the difference in their
recognition performances is attributed to the difference in
the acoustic characteristics due to the different talking styles
(i.e., neutral and Lombard talking styles). Thus, on the anal-
ysis of the effect of presenting the ambient noise to the sub-
jects on speech recognition performances during CSR, it is
found that the increase in the SNR due to the increase in the
utterance power has a greater impact on the performances
than the changes in the speech spectra induced by the Lom-
bard effect. In addition, if the SNRs of the real noisy speech
utterances are accurately estimated, the performances of the
noisy speech recognition systems can be accurately simu-
lated using the dry sources with not only the Lombard talk-
ing style but also the neutral talking style. However, a con-
venient method for the precise estimation of SNRs of real
noisy speech data [11] has not been proposed.

4.4.2 Results of SWR Experiments

The recognition performance of LCx-DSN was comparable
to that of LNx-D, while the performance of NCx-DSN was
significantly low as compared to that of LNx-D, irrespective
of the noise levels and noise adaptation. Therefore, it can
be conducted that as in the case of CSR, recognition per-

Table 5 Requirements of accurate simulation.

Talking style Lang. modelTask
of dry source

SNR
constraint

Lombard —– —–
precise SNRCSR neutral
estimation

strong

SWR Lombard —– —–

formances of real noisy speech utterances can be accurately
simulated in SWR, if the speech utterances were simulated
using dry sources with the Lombard talking style.

However, unlike the results of the CSR experiments,
the performance of NCx-DSN-C was not comparable to
those of LNx-D and LCx-DSN. In this experiment, the per-
formance of NCx-DSN-C was higher than that of LNx-D by
approximately 10 points, regardless of the noise levels and
noise adaptation.

4.5 Requirements of Accurate Simulation

We now discuss the requirements for carrying out accurate
simulation of noisy speech recognition. Table 5 summarizes
the requirements in the case of each recognition task.

In CSR task we evaluated, accurate simulation could
be achieved by using not only the dry sources with Lom-
bard talking style but also those with neutral talking style.
The latter approach is possible under the assumption that the
SNRs are precisely estimated. In this experiment, since the
acoustic models are trained using the clean speech data with
neutral talking style, the recognition systems are expected to
potentially show discrepancies between the acoustic models
used and the test data, which include the influences of the
Lombard effect (e.g., LNx-D and LCx-DSN). The CSR sys-
tems use language models as well as the acoustic models.
Therefore, the difference in acoustic likelihoods due to the
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Fig. 7 Simulation accuracy in terms of speech recognition performance
as a function of language model weights in the presence of ambient noise
of 60 or 70 dB(A) (x denotes noise SPLs (60 or 70 dB(A)).

difference in the talking styles (e.g., neutral and Lombard
talking style) might be compensated by the likelihoods from
the language models. As a result, the inconsistencies be-
tween the acoustic models and the test data may not have a
considerable effect on the recognition performance.

In the present study, we also investigated the influ-
ence of the constraint of a language model on the accu-
racy of the simulation in terms of the CSR performance.
Figure 7 shows the simulation accuracies for the simulated
noisy speech data, LCx-DSN and NCx-DSN-C, in the pres-
ence of the ambient noise of 60 or 70 dB(A) as a function of
language model weights. Here, the simulation accuracy is
defined as follows;

SA =
|WAreal −WAsim|

WAreal
(1)

where WAreal denotes the word accuracy of real noisy
speech utterances, i.e., LNx-D; and WAsim denotes the word
accuracy of simulated noisy speech utterances, i.e., LCx-
DSN and NCx-DSN-C. If the simulation accuracy is equal
to zero, the simulation is considered to be correct. This fig-
ure shows the following results. (1) The simulation could
be accurately performed, irrespective of the language model
weights and the noise SPLs, when using the dry sources with
the Lombard talking style. (2) The simulation accuracy was
affected by the experimental conditions when using the dry
sources with the neutral talking style. Accurate simulation
was achieved when using a system with a large language
model weight. In contrast, when a small language model
weight was used, the simulation accuracy significantly de-
graded in the presence of ambient noise of 70 dB(A); in this
case, it is very likely for the acoustic changes due to the
Lombard effect to occur.

On the other hand, SWR systems use only the acoustic
models for computing likelihoods. Therefore, the influence
of the spectral differences between the neutral and the Lom-
bard talking styles on the speech recognition performance
was not negligible. In fact, the recognition performance
of simulated noisy speech data with the Lombard talking

style was significantly different from that of simulated noisy
speech data with neutral talking style, even when their SNRs
were the same. From the above results, it can be concluded
that simulation-based assessments of noisy SWR systems
could not achieve accurate simulation with the test data syn-
thesized using dry sources with neutral talking style and thus
require dry sources with the Lombard talking style.

5. Conclusion

We investigated the accuracy of simulation-based assess-
ments of noisy speech recognition with the emphasis on the
influence of the acoustic variations induced by the Lombard
effect on speech recognition performance. The recognition
performances using real noisy speech data could be accu-
rately simulated by compensating the influence of record-
ing devices on the simulation and using the dry sources
with Lombard talking styles, irrespective of the noise lev-
els, recognition tasks, and recognition systems. Although
the SNRs in test data used are the same, the influence of
the talking styles of the dry sources on recognition perfor-
mances in different recognition tasks was different. CSR
could achieve accurate simulation when using a system with
a strong constraint of a language model, irrespective of the
talking styles. In contrast, SWR required simulation using
the dry sources with the Lombard talking style for accurate
simulation.
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