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Abstract

Automatic Speech Recognition (ASR) has matured into a technology which is

becoming more common in our everyday lives, and is emerging as a necessity

to minimise driver distraction when operating in-car systems such as navigation

and infotainment. In “noise-free” environments, word recognition performance

of these systems has been shown to approach 100%, however this performance

degrades rapidly as the level of background noise is increased.

Speech enhancement is a popular method for making ASR systems more ro-

bust. Single-channel spectral subtraction was originally designed to improve hu-

man speech intelligibility and many attempts have been made to optimise this

algorithm in terms of signal-based metrics such as maximised Signal-to-Noise

Ratio (SNR) or minimised speech distortion. Such metrics are used to assess en-

hancement performance for intelligibility not speech recognition, therefore mak-

ing them sub-optimal ASR applications.

This research investigates two methods for closely coupling subtractive-type

enhancement algorithms with ASR: (a) a computationally-efficient Mel-filterbank

noise subtraction technique based on likelihood-maximisation (LIMA), and (b) in-

troducing phase spectrum information to enable spectral subtraction in the com-

plex frequency domain.

Likelihood-maximisation uses gradient-descent to optimise parameters of the

enhancement algorithm to best fit the acoustic speech model given a word se-

quence known a priori. Whilst this technique is shown to improve the ASR word

accuracy performance, it is also identified to be particularly sensitive to non-noise

mismatches between the training and testing data.

Phase information has long been ignored in spectral subtraction as it is deemed

to have little effect on human intelligibility. In this work it is shown that phase
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information is important in obtaining highly accurate estimates of clean speech

magnitudes which are typically used in ASR feature extraction. Phase Estimation

via Delay Projection is proposed based on the stationarity of sinusoidal signals,

and demonstrates the potential to produce improvements in ASR word accuracy

in a wide range of SNR.

Throughout the dissertation, consideration is given to practical implemen-

tation in vehicular environments which resulted in two novel contributions – a

LIMA framework which takes advantage of the grounding procedure common to

speech dialogue systems, and a resource-saving formulation of frequency-domain

spectral subtraction for realisation in field-programmable gate array hardware.

The techniques proposed in this dissertation were evaluated using the Aus-

tralian English In-Car Speech Corpus which was collected as part of this work.

This database is the first of its kind within Australia and captures real in-car

speech of 50 native Australian speakers in seven driving conditions common to

Australian environments.
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Boyraz and Dr Hynek Bořil for your collaboration which I hope will continue in

the future. To the rest of the members of CRSS – thank-you for your friendship

which was a remedy for the constant homesickness during this time!

It is also necessary to acknowledge the various sources of funding which pro-

vided support during this Ph.D. – without it the research would not have been

possible. In particular, I would like to thank the Australian government for

providing the Australian Postgraduate Award, Queensland University of Tech-

nology and the Vice Chancellor, as well as the Co-operative Research Centre for

Advanced Automotive Technology (AutoCRC) and Prof. Sridharan for financial

assistance, particularly during the latter stages of this research. To the AutoCRC,

thank-you for also providing opportunities to engage with other Ph.D. students

across Australia, and for giving us access to resources not available to most Ph.D.

students. My only regret was not being able to take part in a number of activities

because of the need to travel to Melbourne to attend.

Last, but definitely not least, a thank-you to my family and friends for your

continued support throughout the entire candidature. In particular, thanks to

my parents Fred & Cherie for the Saturday morning chats, for listening to all

my concerns, and for your affirmation that I would eventually reach this point.

And finally to my wonderful wife Colleen for your uplifting words and smiles at

the end of a long week, and for your full support whilst I undertook a 3 month

internship on the other side of the world. Your generosity was unsurpassed, and

I hope now that this dissertation is finished, I can return to a normal life!

xxii



Chapter 1

Introduction

1.1 Motivation

At its core, Automatic Speech Recognition (ASR) is the process of determin-

ing a sequence of words spoken by a human using machines. From its earliest

beginnings in vowel and isolated digit recognition in the 1950s and then con-

nected speech recognition in the 1970s [117], ASR systems have matured to the

point of widespread deployment in an ever-increasing range of applications. Small

vocabulary systems (typically less than 100 words) are used in command and

control applications such as computer-based games and entertainment, voice di-

alling on mobile phones, and for providing instructions for navigating menus on

portable devices such as GPS and personal music players. Large vocabulary sys-

tems (greater than 1,000-2,000 words) are required for office dictation applications

and captioning of television programs.

One of the emerging target applications for ASR is that of human-machine

interfaces for automotive environments. As consumers become more accustomed

to the use of hand-held devices such as mobile phones, navigation systems and

music players in their everyday lives, there is an increasing demand for these

devices to be integrated with their vehicles for use whilst driving. Research has

shown however, that during the primary driving task, visual cognitive resources

can easily reach the point of overload [89] without the introduction of secondary

visual stimuli. Therefore, adding visual displays only further increases driver

1
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cognitive workload in this perceptual channel which will likely result in unsafe

driving behaviour. Speech-based interfaces on the other hand, utilise the auditory

perception channel which is generally rarely used during the primary driving

task [96]. As a result, speech recognition is viewed as a key enabler to interfacing

portable devices and in-car informational systems whilst minimising the effects

on driver behaviour and overall road safety.

At the turn of the 21st century, state-of-the-art speech recognition systems

operating in “noise-free” environments were able to produce word recognition

accuracies exceeding 95% accuracy on well-defined large vocabulary tasks and

approaching 100% on small vocabulary tasks [58]. Clearly, speech recognition

technology is no longer a fantasy confined to the realms of science fiction – it has

already reached the levels of user expectation in these “noise-free” environments.

Despite this success, the performance of the same ASR systems degrades

significantly in the presence of even moderate levels of environmental noise. This

phenomenon is particularly problematic in automotive applications where the

level and type of noise continually changes as the driver negotiates their desired

route. To counteract this rapid decrease in word recognition accuracy, focus in

speech recognition research in the past 15 years has centred on making systems

robust in the noisy scenarios typical of crowded airports, street, and restaurants,

as well as in-car environments and airplane cockpits [29].

A number of approaches have been proposed in order to increase the robust-

ness of ASR systems ([27, 46, 81] provide comprehensive reviews). One of these

approaches – speech enhancement – can be ported between a range of differ-

ent environments and used with a wide range of speech recogniser configurations

with little to no modifications; this makes it a widely effective solution. Recent

advances in speech enhancement techniques have come in the form of multiple

microphones which enable spatial filtering and improved enhancement perfor-

mance. The automotive industry necessitates low-cost manufacturing, therefore

single-channel solutions are preferred over multi-channel systems which are still

too expensive at this point in time.

The term speech enhancement is often used interchangeably with noise reduc-

tion since algorithms are typically designed to improve the intelligibility of noisy
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speech signals as perceived by humans through either emphasising speech com-

ponents or removing/reducing the noise components. Given the initial design for

improving human perception, implementing these techniques for computer-based

ASR requires different signal processing and changes the evaluation criteria. De-

spite showing small improvements in speech recognition accuracy, enhancement

techniques designed primarily for human intelligibility are not ideal for ASR ap-

plication. This mismatch between design and application is slowly being acknowl-

edged by the research community, and researchers are beginning to divert their

attention to designing enhancement techniques specifically for use in ASR front-

end processing [10, 127, 130]. This small change of focus in the field of robust

ASR has motivated the research contained in this dissertation.

1.2 Aims and Objectives

Speech enhancement was originally designed for improving human speech intel-

ligibility, however research has typically considered the recognition system and

speech enhancement algorithm as separate entities [127]. An example of this tra-

ditional approach is the European Standard ES 202 050 [33] which stipulates an

advanced speech recognition front-end in which enhanced waveforms – not speech

features – are generated based on signal-level criteria rather than criteria related

to ASR. The focus on signal-level criteria has been identified as a major problem

of current speech enhancement approaches for ASR [127].

In the literature to date, only a few examples of speech enhancement for

robust ASR have explicitly taken into account the operation of the recognition

system [10, 127, 130]. This dissertation aims to extend these existing approaches

and discover new methods by which speech enhancement can be designed for

more effective use in robust ASR.

The general aims of this thesis are:

1. To demonstrate that speech enhancement techniques optimised for human

intelligibility are sub-optimal for integration with state of the art speech

recognition systems.
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2. To propose novel techniques which improve current speech enhancement

algorithms when used as part of the front-end processing for in-car ASR.

3. To consider the implementation of speech enhancement algorithms within

the constraints of the automotive environment.

In order to achieve these aims, the specific research objectives are:

1. To quantify the word accuracy performance of ASR systems when speech

is collected in real car environments and is therefore corrupted by a wide

range of in-vehicle noise conditions.

2. To analyse the effectiveness of traditional speech enhancement and model

adaptation techniques for increasing noise-robustness of ASR systems.

3. To analyse how subtractive-type enhancement algorithms have been previ-

ously used for speech enhancement and ASR and identify the shortfalls of

these approaches in terms of the resulting ASR performance.

4. To propose novel speech enhancement algorithms which directly improve

the performance of the underlying speech recognition engine.

5. To design frameworks which are suitable for integration with existing in-car

speech systems, and where possible, are designed with computational and

hardware requirements in mind.

6. To assess each of the proposed techniques and report their performance

based on speech recognition accuracy and computational requirements.

1.3 Scope of Research

Robust automatic speech recognition is a very broad area of research which en-

compasses the fundamentals of speech recognition such as acoustic and language

model representation, pattern recognition and signal processing, as well as all

the potential methods for increasing robustness. It is therefore very important

to fully define the scope of this thesis in order to ensure the attainment of the

research aims. The scope has been defined as:
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Single-channel speech enhancement. Despite showing the potential to

provide superior speech enhancement performance, systems employing multiple

microphones are still some way from widespread deployment in the automotive

industry due to their increased manufacturing costs. In order to ensure the tech-

niques developed in this dissertation are suitable for improving the current state

of the art in-vehicle speech systems, detailed analysis and novel contributions are

focused solely on single-channel speech enhancement techniques.

Spectral subtraction. This widely used single-channel speech enhancement

technique has undergone a wide range of alterations in the past 30 years in or-

der to provide better performance under different experimental configurations.

Spectral subtraction is chosen as it is a computationally simple solution to the

additive noise problem yet provides sufficient levels of noise reduction. This cost-

performance trade-off is a very important factor when considering application in

automotive environments.

Small-to-medium vocabulary speech recognition. In order to evaluate

the improvements in speech recognition performance that can be achieved using

the proposed speech enhancement techniques, small and medium vocabulary tasks

were chosen as both are common in automotive applications. Small vocabulary

tasks are used for command and control of non-critical functions such as adjusting

the air-conditioning or entertainment systems. Medium vocabulary systems find

their applications in address entry for context-aware navigation systems as well

as communication with information retrieval services via the internet – both of

these applications are becoming common in luxury vehicles.

Real in-car noise environments. Whilst the techniques developed in this

research could be easily applied in other noisy environments, evaluations are

focused solely on in-car speech data. Importantly, data collected in a moving

vehicle is generally preferred over artificially generated data as this “real-world”

data will exhibit real-time variations in noise conditions and also incorporate (to

some extent) the effects of driver stress on speech production.
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1.4 Outline of Dissertation

The remainder of this dissertation is organised as follows:

Chapter 2 presents the fundamental theory behind automatic speech recogni-

tion including speech parameterisation, acoustic modeling and decoding. Whilst

ASR is not a new field of research, it is imperative to understand the recognition

process in order to analyse and develop techniques aimed at improving recogni-

tion performance in the case of train-test mismatches. Three common methods

for improving speech recognition performance in noisy environments are discussed

with reference to challenges facing implementation of ASR in automotive applica-

tions. These techniques are speech enhancement, model adaptation, and robust

feature extraction and recognition algorithms.

Chapter 3 reviews state of the art techniques for both single- and multi-

microphone speech enhancement citing examples of implementations in automo-

tive environments. Theory and implementation of various forms of spectral sub-

traction are presented in detail to provide reference for the novel contributions

of this research. This literature review highlights the traditional focus of speech

enhancement algorithms on optimising signal-based criteria; research directions

focusing on optimising spectral subtractive algorithms specifically for ASR appli-

cations are proposed in order to guide the remainder of the research.

Chapter 4 describes two in-car speech databases used for ASR evaluation

throughout this thesis – the AVICAR database and the Australian English In-

Car Speech (AEICS) corpus which was collected as part of this research. Baseline

ASR performance of each dataset is obtained and compared with that of model

adaptation and three different implementations of spectral subtractive speech

enhancement.

Chapter 5 introduces LIkelihood-MAximising (LIMA) speech enhancement

designed specifically for robust ASR. These techniques optimise enhancement

parameters based on maximising the speech recognition likelihood as opposed

to signal-level criteria. A review of previous LIMA studies leads to the applica-

tion of this approach to Mel-Filterbank Noise Subtraction (MFNS) in order to

reduce the computational requirements of other single-channel implementations.
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The inclusion of cepstral liftering is proposed to overcome differences in dynamic

range between cepstral coefficients which can bias gradient-descent optimisation

towards components with larger magnitudes. ASR and computational perfor-

mance of LIMA-based MFNS is obtained with respect to optimising each of the

enhancement parameters, application of cepstral liftering, and using enhancement

with noise-adapted acoustic models.

Chapter 6 proposes a dialogue-based LIMA framework specifically for im-

plementation in automotive applications. This framework utilises the grounding

procedure which is common to all speech dialogue systems. ASR metrics are used

to compare this proposed framework with existing frameworks based on one-time

adaptation. This chapter also considers the trade-off between processing time

and ASR performance (which is very important in the automotive industry) by

analysing the effects of different levels of optimisation.

Chapter 7 investigates the use of phase information for improving frequency-

domain spectral subtraction by performing the enhancement in the complex do-

main as opposed to the magnitude domain. Potential ASR improvements using

Complex Spectral Subtraction (CSS) are demonstrated using oracle-type exper-

imentation. A method for estimating the phase information is proposed based

upon the stationarity of sinusoidal signals which enables a reference phase to be

projected forward knowing the time between two observations. Further oracle-

type experiments are used to evaluate the necessary frame advances required in

order to exploit phase stationarity. Evaluation is completed by incorporating

soft-decision speech activity detection (SAD) to project the noise phase estimate

through periods of speech, making the proposed technique viable in real-world

scenarios. All experiments in this chapter demonstrate the effectiveness of the

proposed phase estimation procedure and CSS for improving speech recognition

performance in noisy environments.

Chapter 8 describes simplifications to the traditional frequency-domain spec-

tral subtraction algorithm specifically for cost-effective, real-time implementation

in Field Programmable Gate Array (FPGA) hardware. The resulting ASR perfor-

mance of this implementation is comparable to that of an equivalent floating-point

model and uses minimal amounts of FPGA resources, allowing integration with
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other in-car processing modules.

Chapter 9 summarises the major outcomes of this research with particular

reference made to the novel contributions outlined in Section 1.5. Directions for

future research which extend the work in this dissertation are also suggested.

1.5 Original Contributions

1.5.1 Major Contributions

1. The collection and validation of the first in-car speech database recorded

with native Australian speakers in Australian driving conditions. Unlike

other in-car speech corpora of this size, driver speech data was collected

rather than passenger speech. Multi-channel recordings of navigation ad-

dresses and menu commands were obtained for 50 speakers in seven different

noise conditions. Being the first of its kind, this database will impact both

the Australian speech and natural language research community and the

automotive industry.

2. Application of Mel-filterbank noise subtraction to a likelihood-maximising

speech enhancement framework specifically for in-car speech recognition.

Traditionally, enhancement techniques of this nature have considered speech

enhancement and ASR as separate systems; the LIMA approach considers

both as one entity. In this dissertation, MFNS was mathematically derived

for use in this framework, and this approach was also shown to provide a

computationally efficient solution compared to frequency-domain spectral

subtractive speech enhancement. The LIMA-based MFNS system was in-

tegrated within a newly proposed dialogue-based optimisation framework

specifically for use in car environments, and its ASR performance in a range

of scenarios was evaluated and compared with traditional calibrated frame-

works. The analysis showed significant improvements in ASR performance

using the proposed framework, and led to a number of recommendations

for use in vehicular environments to ensure optimal ASR performance and

satisfy other requirements implicitly imposed by the automotive sector.
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3. The use of the short-time phase spectrum to improve the ASR performance

of frequency-domain spectral subtraction. In this work it is shown that ignor-

ing the phase information in frequency-domain spectral subtraction results

in unavoidable errors in the cleaned magnitude spectrum which is used in

common feature representations. Spectral subtraction is subsequently re-

formulated to be performed in the complex frequency domain making use

of a pioneering short-time phase estimation procedure called Phase Estima-

tion via Delay Propagation. Experiments demonstrate the importance of

phase information for robust ASR using spectral subtraction, and verify the

effectiveness of the PEDEP algorithm in a range of signal-to-noise ratios.

1.5.2 Other Contributions

1. A speaker-independent, continuous ASR evaluation protocol for the AVICAR

database. This protocol extends those released with the database, enabling

adaptation, development and evaluation testing on continuous speech tasks,

whilst ensuring that reliable comparisons can be made between single- and

multi-microphone speech enhancement techniques on the same data set;

such comparisons are not always possible with other corpora.

2. Evaluation of LIMA-based enhancement on test data incorporating multi-

ple layers of acoustic mismatch. No previous studies on LIMA-based en-

hancement have used test data consisting of acoustic mismatches other than

background noise. In this dissertation, a second level of mismatch (speaker

dialects) is introduced using the Australian English In-Car Speech corpus.

The ASR performance of the LIMA framework is demonstrated to be highly

sensitive to this second level of mismatch.

3. Simplification of the frequency-domain spectral subtraction algorithm for

cost-effective, real-time implementation in FPGA hardware. This work lead

to a minimal resource solution – which closely matched the ASR perfor-

mance of a floating-point model – being ported to an automotive-grade

FPGA.
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1.6 Publications Resulting from Research

The following fully-refereed publications have been produced during the course

of this PhD research:

1. T. Kleinschmidt, S. Sridharan, M. Mason, “A Modified LIMA Frame-

work for Spectral Subtraction Applied to In-Car Speech Recognition,” in

Proceedings of 1st International Conference on Signal Processing and Com-

munication Systems, (Gold Coast, Australia), pp. 335-338, December 2007.

2. T. Kleinschmidt, D. Dean, S. Sridharan, M. Mason, “A Continuous

Speech Recognition Protocol for the AVICAR Database,” in Proceedings

of 1st International Conference on Signal Processing and Communication

Systems, (Gold Coast, Australia), pp. 339-344, December 2007.

3. T. Kleinschmidt, M. Mason, E. Wong, S. Sridharan, “The Australian En-

glish Speech Corpus for In-Car Speech Processing,” in Proceedings of 34th

IEEE International Conference on Acoustics, Speech, and Signal Process-

ing, (Taipei, Taiwan), pp. 4177-4180, April 2009.

4. T. Kleinschmidt, S. Sridharan, M. Mason, “Likelihood-Maximising Frame-

works for Enhanced In-Car Speech Recognition,” in Proceedings of 4th Bi-

ennial Workshop on DSP for In-Vehicle Systems and Safety, (Dallas, TX,

USA), paper DSP08, pp. 1-8, June 2009.

5. T. Kleinschmidt, P. Boyraz, H. Bořil, S. Sridharan, J. H. L. Hansen,

“Assessment of Speech Dialog Systems using Multi-Modal Cognitive Load

Analysis and Driving Performance Metrics,” to be presented at 2009 IEEE

International Conference on Vehicular Electronics and Safety, (Pune, In-

dia), pp. 167-172, November 2009.

6. J. Whittington, K. Deo, T. Kleinschmidt, M. Mason, “FPGA Implemen-

tation of Spectral Subtraction for In-Car Speech Enhancement and Recog-

nition,” in Proceedings of 2nd International Conference on Signal Processing

and Communication Systems, (Gold Coast, Australia), December 2008.
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7. J. Whittington, K. Deo, T. Kleinschmidt, M. Mason, “FPGA Imple-

mentation of Spectral Subtraction for Automotive Speech Recognition,” in

Proceedings of IEEE Workshop on Computational Intelligence in Vehicles

and Vehicular Systems, (Nashville, TN, USA), pp. 72-79, March-April 2009.

8. H. Ye, J. Whittington, I. Himawan, T. Kleinschmidt, M. Mason, “FPGA

Implementation of Dual-Microphone Delay-and-Sum Beamforming for In-

Car Speech Enhancement and Recognition,” in Proceedings AutoCRC Con-

ference, (Melbourne, Australia) March 2009.

1.7 Research at CRSS, University of Texas at

Dallas

During the latter stages of this candidature, research was conducted as part of

a three month internship at the Center for Robust Speech Systems (CRSS) at

the University of Texas at Dallas (UTD). Due to the timing of this visit, and the

nature of the work performed during this time, much of the research undertaken

was not directly applicable to the work contained in this dissertation. Where

possible, passing references are made to demonstrate the research undertaken,

to assist the discussion, and to also demonstrate progress towards some of the

proposed future research directions. These references can be found in footnotes

in the appropriate sections of this dissertation.
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Chapter 2

Automatic Speech Recognition

2.1 Introduction

Automatic speech recognition (ASR) is the process of converting a sequence of

words contained in an acoustic signal into a textual representation. ASR is used in

a range of applications including dictation, device command-and-control, audio-

based keyword searching, and in security systems. This chapter provides a sum-

mary of the ASR fundamentals relevant to the work contained in this dissertation

– a complete review of ASR technology is beyond the scope of this work.

The typical components of an ASR system are shown in Fig. 2.1. Speech fea-

ture extraction consisting of signal acquisition and parameterisation (Section 2.2)

is required to reduce the dimensionality of the pattern recognition system whilst

emphasising the distinguishing characteristics of speech. Acoustic models based

on the chosen feature set are trained using data from a specific operating environ-

ment, and these models are used with pronunciation dictionaries and language

models in the decoding process. Recognition fundamentals using acoustic and

language models are detailed in Section 2.3.

Current state of the art ASR systems perform remarkably well in controlled

conditions. Under more adverse conditions such as noisy or reverberant envi-

ronments, speech recognition performance decreases dramatically. There are a

number of different approaches to making ASR systems more robust – these

methods are described in Section 2.4.

13
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Figure 2.1: Block diagram depicting the major components of an ASR system.

2.2 Speech Feature Extraction

The purpose of the feature extraction module of Fig. 2.1 is to reduce the data

rate of the incoming acoustic signal, to condition the signal in order to remove

background noise and obtain the features of speech which are most useful for

speech recognition. An expanded view of the feature extractor is shown in Fig. 2.2.

The following sections describe the signal acquisition and preparation stage, as

well as discussing some common speech parameterisation techniques.

2.2.1 Signal Acquisition and Preparation

An acoustic signal containing the word(s) to be recognised is received by a micro-

phone or an array of microphones. Before the digital signal processing elements

of the feature extractor can operate on the signal, the analogue waveform is sam-

pled by an analogue-to-digital converter (ADC) to create a digital signal. For

speech recognition, the common sampling rates used by the ADC are 8 kHz and

16 kHz. The higher sampling rate produces the best recognition performance

since the majority of the useful information in the speech signal lies within the

8 kHz bandwidth [58]; a 16 kHz sampling rate ensures the Nyquist sampling

criterion is satisfied.

A well known characteristic of audio signals is the tendency for high fre-

quencies to have less energy than low frequencies – a phenomenon referred to as

spectral slope [36]. Speech recognition systems utilise information from the entire

frequency spectrum, therefore it is necessary to equalise the dynamic range to off-

set the spectral slope. A pre-emphasis filter boosts the signal energy of the higher

frequencies which contain the majority of the speech information. Pre-emphasis
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Figure 2.2: Signal acquisition, preparation and feature extraction using Mel-
Frequency Cepstral Coefficients.

filtering is achieved using a first-order finite impulse response filter:

y[n] = x[n]− ax[n− 1] (2.1)

where the value of the filter coefficient is typically 0.9 < a < 1.0 for speech

processing applications. In this research, a value of a = 0.97 is used.

Spectral analysis methods used in speech parameterisation are based on short-

time analysis of speech signals which assumes the time segment is short enough

that the signal exhibits short-time stationarity. Such analysis requires the pre-

emphasised speech signal to be divided into a series of overlapping frames. For

speech processing, frames are typically 20-40 ms in length with 10-20 ms advances

between adjacent frames.

Spectral leakage is caused by discontinuities introduced at both ends of ev-

ery frame. The distortion caused by spectral leakage is reduced by applying a

window function to each frame which causes the frame samples to be tapered

towards the frame boundaries. A commonly used window in speech processing

which provides a suitable tradeoff between spectral leakage and resolution is the

Hamming window:

w(n) = 0.54− 0.46 cos

(

2πn

N

)

, n = 0, 1, ..., N − 1 (2.2)

where N is the length of the frame, and n is the sample index within the frame.

For feature extraction methods including Mel-Frequency Cepstral Coefficients

(MFCC), each frame of speech is converted to the frequency domain using a

Discrete Fourier Transform (DFT):

Y (k) =
1

N

N−1
∑

n=0

y(n)w(n)e−j 2πkn
N (2.3)
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where y(n) is the pre-emphasised signal and w(n) is the Hamming window. The

resulting frequency domain signal Y (k) is defined only at discrete frequencies

(through a binning process) and is a complex-valued representation which con-

tains the magnitude |Y (k)| and phase spectra ejθ(k) of the signal:

Y (k) = |Y (k)|ej∠Y (k). (2.4)

2.2.2 Speech Parameterisation

As mentioned previously, parameterisation techniques are required to reduce the

dimensionality of the pattern recognition problem encountered in ASR. Speech

representations used for feature extraction must be compact whilst ensuring the

distinctive characteristics of speech are preserved. Speech signal representations

used in ASR can be classified broadly into two types: (a) methods which model

the speech production process, and (b) those which model speech perception.

Representations using Speech Production Models

Linear Predictive Coding (LPC) [8] utilises an all-pole filter to approximate the

vocal tract. LPC estimates the current speech sample given p previous samples

by minimising the error between the predicted and actual sample value. Error

minimisation is achieved by utilising the autocorrelation method to calculate the

all-pole filter coefficients.

While this model is effective for voiced sounds, LPC doesn’t perform well for

unvoiced sounds which introduce zeros into the speech model. Additive noise also

introduces zeros, and therefore the LPC representation doesn’t perform as well

in additive noise as representations derived from the Fourier transform magni-

tude spectrum. As a result, representations based on the Fourier transform are

generally favoured for ASR systems.

Perceptually Motivated Representations

Perceptually motivated speech representations capitalise on knowledge of the hu-

man auditory system. The two most common feature extraction methods incor-

porating perception models are MFCC and Perceptual Linear Prediction (PLP).
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The MFCC representation is used extensively in this research, and is described

separately in the next section.

Perceptual linear prediction [54] uses the Levinson-Durbin algorithm to per-

form linear predictive analysis as per LPC. Before the LPC analysis, Fourier

transform analysis (as per Eq. (2.3)) is required to determine the power spec-

trum of the signal. Using a series of filterbanks, the power spectrum is warped

to a frequency axis known as the Bark scale which approximates the known

human hearing filters [54]. Equal-loudness filtering and intensity-loudness non-

linear compression are applied to the filterbank outputs to produce a perceptually

motivated power spectrum.

The LPC coefficients are calculated using the Inverse Fourier Transform (IFT)

since the autocorrelation function is the IFT of the power spectrum. The result-

ing LPC coefficients are typically transformed to the LPC-cepstrum, where the

cepstrum is the logarithm of the all-pole filter (more on the cepstrum in the fol-

lowing section). Whilst LPC produces a finite number of coefficients, the cepstral

transform results in an infinite number of cepstral coefficients; research has shown

that 12-20 coefficients are sufficient for ASR applications [54, 114].

Mel-Frequency Cepstral Coefficients

Mel-frequency cepstral coefficients are a perceptually motivated speech represen-

tation based on Fourier transform and filterbank analysis (as shown in Fig. 2.2).

It was proposed in 1980 by Davis and Mermelstein [28] and has regularly been

shown to be superior to other feature representations for ASR on clean speech.

The MFCC representation has a particular advantage over LPC in that it is more

robust to background noise; this was demonstrated for car environments in [85].

MFCCs are based on the Mel-frequency scale which describes the behaviour

of the human auditory system whereby a perceived halving (or doubling) of the

frequency is a true halving (or doubling) in the Mel-scale [138]. The Mel-scale

is approximately linear below 1 kHz and logarithmic for all frequencies greater

than 1 kHz. This frequency warping is approximated by:

W (f) = 2595 log10

(

1 +
f

700

)

(2.5)
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Figure 2.3: Linear filterbanks in (a) Hertz, and (b) Mel-frequency scale.

where f is the linear frequency scale (in Hertz), and W (f) is the perceived fre-

quency (in Mel). This frequency-warping procedure is similar to that used in

PLP where the Mel-frequency scale is used in place of the Bark scale.

The Mel-warping is applied through filterbank analysis which produces a

weighted sum of band-limited power spectrum values |Y (k)|2. An example of

linear-frequency filterbanks in the Mel scale is shown in Fig. 2.3. Filterbank en-

ergies are used to generate the cepstrum as they are a more robust representation

of speech than the power spectrum which exhibits fine spectral harmonics at mul-

tiples of the fundamental frequency. Despite this, a large number of filterbanks

are required for high-performance ASR and therefore cepstral representations are

more effective.

The conversion of filterbank energies to the cepstrum is performed using log-

arithmic compression and a Discrete Cosine Transform (DCT):

Cl =
N−1
∑

n=0

log10(Ml) cos

(

πl(n+ 1
2
)

N

)

(2.6)
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whereMl is the filterbank energy of the lth filterbank, N is the number of cepstral

coefficients, and Cl are the cepstral coefficients. The coefficient C0 provides a

measure of the energy in the signal and is often included in the feature vector as

phonemes tend to have differing energy levels. The DCT is used to decorrelate the

data (since filterbank energies are highly correlated due to the overlap of adjacent

filters), and to also remove one-sided distributions which would be present due

to filterbank energies always being positive. Both of these characteristics are

important for ASR systems which rely on Gaussian-like distributions.

The DCT also causes the signal energy to be contained in the lower frequencies

which enables reductions in dimensionality. Compacting the energy into the lower

frequencies however, results in a variation in the dynamic range of the cepstral

coefficients. As a result, a cepstral lifter can be incorporated (i.e. a filter applied

to the cepstrum) [61]:

C ′
l =

(

1 +
L

2
sin

(

πl

L

))

Cl (2.7)

where L is the order of the lifter, and C ′
l are the cepstrally liftered coefficients.

Cepstral liftering will be assessed in Chapter 5 as a method to overcome one of

the limitations of likelihood-maximisation on MFCC.

The transform to the cepstrum also provides the ability to remove the effect

of the channel response. The speech signal in the time-domain s(n) propagates

through the communication channel which has an impulse response h(n). This is

represented as a convolution in the time-domain:

x(n) = s(n) ∗ h(n). (2.8)

Due to the properties of the Fourier transform, time-domain convolution be-

comes multiplication in the frequency-domain. Application of the logarithm turns

the frequency-domain multiplication into an addition in the cepstrum. If the

channel response is assumed to be constant over long periods of time, techniques

such as Cepstral Mean Subtraction (CMS) [37] can be used to remove the chan-

nel response. The mean cepstrum is typically calculated over an entire recording

of speech, but can operate in real-time through recursive-averaging techniques.

Throughout this research, the mean calculation is taken over the entire recording.
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Speech recognition systems using Hidden Markov Models (HMM) assume that

each frame of speech is independent, therefore no temporal information is used

which indicates how individual speech sounds evolve. First- and second-order

temporal derivatives (also referred to as delta and acceleration coefficients) cal-

culated over short periods (e.g. 5 frames) can be included in the feature vector

to provide complementary information to the HMM speech recogniser. These

features were first proposed by Furui [38] and have been shown to be particularly

robust as they are less sensitive to slowly varying noise than the static cepstral

coefficients from which they are calculated.

Temporal derivatives are calculated using linear regression over successive

frames. Given frame j as the current frame of reference (and therefore central

frame in the regression calculation), first-order derivative features can be calcu-

lated as follows:

∆Cj
l =

∑D
d=1 d(C

j+d
l − Cj−d

l )

2
∑D

d=1 d
2

(2.9)

where D is the order of regression. Second-order derivatives are calculated as

the linear regression of the first-order coefficients as per Eq. (2.9). A full MFCC

feature vector typically includes 39 features consisting of 13 cepstral coefficients

(including C0), 13 first-order derivatives, and 13 second-order derivatives.

2.3 Speech Recognition Fundamentals

Humans communicate worded messages by converting them into a sequence of

speech sounds or acoustic events. The role of the automatic speech recogniser

is to reverse engineer the underlying message given a sequence of acoustic ob-

servations. The effectiveness of ASR systems can be attributed to the choice of

acoustic (speaker-dependent versus speaker-independent) and language models,

and particulars of the application.

As an example, consider a small vocabulary system for number entry on a

mobile phone. Speaker-dependent ASR is a perfect choice for this situation as

model training on a speaker-by-speaker basis can be performed very quickly.

Dictation on the other hand, is a large vocabulary task, and therefore speaker-

independent ASR is more appropriate in order to train effective acoustic models
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Figure 2.4: Hidden Markov Model typically used for ASR.

and deploy to large populations. Further, in terms of language models, the mobile

phone task requires a very simple digit loop, however the dictation task requires

a far more complex model as the probability of word combinations must be taken

into account. The scope of the discussion and experiments in this dissertation is

limited to small and medium vocabulary speaker-independent ASR.

2.3.1 Acoustic Modeling using Hidden Markov Models

The feature extraction methods outlined in Section 2.2.2 generate observation

sequences O defined as:

O = o1,o2,o3, ...,oT (2.10)

where ot is the observation at time t. The observed sequence of feature vectors

is assumed to be generated by a finite state machine known as a Markov model

which enables non-stationary speech signals to be transformed into piecewise

stationary states. For speech recognition, only the acoustic feature vectors from

the speech signal of interest are known; therefore hidden Markov models are used

to determine the unknown (i.e. hidden) state sequence s which generated the

observed sequence of feature vectors O. HMM-based recognition systems are

used throughout this research, and are the basis for the likelihood-maximisation

technique discussed in Chapter 5 and Chapter 6.

The simple five state left-to-right HMM shown in Fig. 2.4 consists of three

emitting and two non-emitting (entry and exit) states. The non-emitting states

are required to chain together multiple HMM for continuous sub-word speech
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recognition. The emitting states (i.e. states 2, 3 and 4 in this example) provide all

the statistical information required for training acoustic models and recognising

speech signals.

There are two important parameters contained within the model; the first

is the observation probability density bj(ot) which determines the probability

of generating observation ot from the emitting model state j. In ASR appli-

cations, probability densities are commonly represented by Gaussian Mixture

Models (GMM). A GMM is comprised of multivariate Gaussian probability den-

sity functions represented by:

ℵ(o;µ,Σ) =
1

√

(2π)n|Σ|
e−

1
2
(o−µ)′Σ−1(o−µ) (2.11)

where µ is the mean vector, Σ is the covariance matrix and n is the dimensionality

of the feature vector. Given a number of mixture componentsM , the observation

probability density becomes:

bj(ot) =
M
∑

m=1

γjmℵ(ot;µjm,Σjm) (2.12)

where γm is the weight of the mth mixture component.

In determining the likelihood of a given state sequence, it is also necessary

to include the transition probabilities between states. In Fig. 2.4, transition

probabilities aij are defined for all allowable state transitions. For each model,

the sum of all transition probabilities will be 1. It should be noted that each

state of the HMM can generate consecutive acoustic observations as transitions

within the same state ajj are permitted.

A key consideration for HMM-based speech recognition are the acoustic units

which are represented by each HMM. For small vocabulary and isolated word

recognition tasks such as digit recognition, a popular approach is to represent

each word by a single HMM [115]. This approach does not scale well to medium

and large vocabulary tasks which contain several hundred to several thousand

words. As a result, sub-word units based on phonemes are used for large vocab-

ulary continuous speech recognition. Using sub-word representations requires a

pronunciation dictionary which maps all words in the recognition vocabulary into

corresponding sub-word sequences.
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Monophone models consist of an HMM for each basic phonetic unit for a

particular language (e.g. there are approximately 43 phonemes used in the En-

glish language). Triphone models incorporate context-dependency in terms of the

phones which occur before and after each phoneme [124]; this is sometimes re-

ferred to as left-and-right context-dependency. Whilst the use of triphone models

requires more training data and results in a larger acoustic model, it does also

provide better speech recognition performance [74]. Triphone models are used for

all acoustic modeling in this thesis.

2.3.2 Recognition using Viterbi Decoding

The recognition problem can be viewed as determining the sequence of words ŵ

with the maximum likelihood of all possible word sequences W :

ŵ = argmax
wǫW

P (w|O) = argmax
wǫW

P (O|w)P (w)
P (O)

(2.13)

which is determined using Bayes’ Rule shown on the right side of Eq. (2.13). In

this equation, P (O|w) is the acoustic score representing the probability that the

observation sequence O was generated by the word sequence w, and P (w) is the

language model score which is explained in the following section. The term P (O)

can be ignored since it represents a fixed sequence of observations and will be the

same for all possible word sequences. This results in the recognition hypothesis:

ŵ = argmax
wǫW

P (O|w)P (w). (2.14)

Since continuous speech recognition takes place on sub-word units, Eq. (2.14)

can be represented as the sum of all states in the state sequence ŝ:

ŝ = argmax
sǫS

∑

s

(

∏

i

P (oi|si)P (si|si−1, w)

)

. (2.15)

The Viterbi algorithm [142] is used to determine the best possible state se-

quence ŝ for the given observation sequence O. The forward log-likelihood of

occupying state j at time t is calculated as:

ψj(t) = max
i

{ψi(t− 1) + log(aij)}+ log(bj(ot)) (2.16)
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where ψi(t) is the log-likelihood of the previous model state. The recognition

log-likelihood is therefore dependent upon the log-likelihood of all previous states

in the sequence.

In order to maintain all possible paths to time t during the decoding process,

a token passing model [156] is employed. Using this model, each state i of the

HMM at time t− 1 contains a token which consists of (among other information)

the current log-likelihood ψi(t − 1) which is passed to all connecting states j in

the network at time t. In doing so, the log-likelihood for the partial path token

is continuously updated and the best possible paths are maintained. After all

tokens have been passed to the next state, they are examined, and the least likely

tokens are discarded. The route taken by the most likely token to the end of the

observation sequence represents the recognition hypothesis.

2.3.3 HMM Parameter Estimation

Prior to recognition, the transition probabilities and output probability densities

must be estimated through training. Using a well labeled set of training data large

enough to contain sufficient examples for each triphone, parameter estimation

can be performed using an algorithm such as Baum-Welch re-estimation [11]

or the Expectation Maximization (EM) algorithm [59]. All acoustic models in

this dissertation have been trained using Baum-Welch re-estimation, and so all

discussion is based on this method of training.

In Baum-Welch re-estimation, an initial estimate of the parameters is obtained

by distributing all training observations between all the required model states.

The re-estimation procedure then assigns each observation vector to each state

in proportion to the probability of the model being in that particular state when

the feature vector was observed. In other words, feature vectors which are most

likely to have been generated by a particular model state contribute more to the

final parameter values than other less likely feature vectors.

In order to calculate the proportionalities for model training, the probability

of state occupation must be calculated using the Forward-Backward algorithm.

The forward probability is the joint probability described by Eq. (2.16); that is,

the likelihood of observing all previous feature vectors and being in state j at
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time t. The backward probability is the conditional probability of observing all

subsequent feature vectors given the model was in state j at time t. The overall

state occupation probability is calculated as the multiplication of the forward and

backward probabilities.

The forward and backward probabilities are calculated for each state and

time for each example of the model token and all model parameters (including the

transition probabilities) are updated. The process continues until the observation

likelihood converges for each model state. This procedure is very time consuming,

however models can be trained in parallel using the above procedure for each

triphone.

2.3.4 Task Grammars and Language Modeling

Task grammars are used to specify legal word sequences for a particular ASR

application. For example, in a system which recognises phone numbers, the

grammar would dictate that eight (or ten) digits be spoken consecutively. An

alternative to a task grammar is to use an open word loop which means any in-

vocabulary word can be spoken at any time with no restrictions. Both open word

loops and well-defined task grammars have been used in the evaluation protocols

defined in Chapter 4.

Word loop grammars are typically combined with a Language Model (LM)

which estimates the probability of a particular word sequence w. The language

model score shown in Eq. (2.14) can be calculated as the product of conditional

probabilities:

P (w1, w2, ..., wN ) =
N
∏

i=1

P (wi|w1, ..., wi−1) (2.17)

where each word probability is conditional upon the previous words in the se-

quence. In a bi-gram LM, the probability of each word is only dependent on the

previous word; therefore the LM predicts the next word in the sequence. Lan-

guage model scores are added to the acoustic scores described in the previous

section each time the recognised sequence moves from the end of one word to

the start of the next word. In-car speech recognition systems are often based on

well-defined command words and digit sequences [6, 67]; therefore it is possible
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to use a grammar to restrict the legal word sequences rather than incorporate a

LM. This dissertation adheres to this use of well defined task grammars rather

than language models.

Insertion penalties and grammar scales are closely related to the concepts of

language modeling. Insertion penalties are added every time a word is inserted to

the recognition hypothesis, and are typically used to limit the insertion of short

words. The grammar scale is used to place more emphasis on the language model

score with respect to acoustic scores. The values of both insertion penalties and

grammar scales are often determined empirically using a development data set.

2.4 Noise-Robust Speech Recognition

Speech recognition systems are susceptible to a wide range of mismatches be-

tween training and testing which cause severe decreases in speech recognition

accuracy. Whilst the word accuracy performance of speech recognition systems

in “noise-free” environments has approached 100%, performance in real-world en-

vironments such as automobiles is still failing to meet user expectation [6, 53, 86].

In these environments, the train-test mismatch can be attributed to the addition

of background noise as well as the variation in speech production which results

from humans communicating in these environments [60]. The latter cause is of-

ten referred to as the Lombard effect [49, 88, 113]. The work contained in this

dissertation focuses solely on combating the effects of additive background noise.

To counteract additive noise, three key approaches for making ASR systems

robust have been proposed (see [3, 46] for some reviews on this field): speech

enhancement, robust acoustic modeling, and the use of robust features or recog-

nition algorithms. None of these methods are specifically designed to be used

in isolation; further ASR improvements can be obtained through implementing

combinations of these techniques (e.g. [22, 151]). The following sections provide

a brief discussion of each of these broad classes of robust ASR techniques.
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Figure 2.5: Additive background noise model commonly used in speech enhance-
ment.

2.4.1 Speech Enhancement

Background noise d(n) is typically considered to be added acoustically to the

speech signal of interest s(n) as shown in Fig. 2.5. Speech enhancement tech-

niques aim to remove the additive noise from the signal and thereby recover a

clean speech representation from the noisy speech signal. In most cases, little

to no prior knowledge of the noise environment is needed, however estimation of

statistical properties of the noise are often required. The clean speech represen-

tation allows acoustic models trained in noise-free environments to be utilised in

ASR; this is particularly important since there is a requirement to collect signifi-

cantly large amounts of data on which to train accurate acoustic models [53, 75].

In automotive environments, collecting enough data to model all variations in

noise conditions is a very expensive and time consuming process, and therefore

enhancement techniques allow clean speech data (of which there is an abundance)

to be used for model training.

Speech enhancement techniques can be broadly divided into single- or multiple-

microphone techniques, and signal- or feature-space techniques. Signal-space

techniques operate directly on the signal in time or frequency domains, and are

generally aimed at improving signal-to-noise ratios (SNR) of the incoming speech

signal. Feature-space algorithms operate on data as part of the feature extraction

process (see Section 2.2.2); this helps minimise extra computational resources re-

quired to incorporate into existing ASR systems. A literature review of state of

the art speech enhancement techniques is presented in Chapter 3.

Enhancement techniques (even for ASR purposes) have been typically de-

signed to satisfy signal-level criteria (e.g. maximising SNR) and not designed

specifically for speech recognition accuracy [46, 127]. Whilst this is the case, im-

provements in ASR accuracy can still be observed when traditional signal-space
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speech enhancement algorithms are used in the pre-processing stage. Novel con-

tributions of the research contained in this dissertation modify the criteria of

enhancement algorithms with the sole aim of optimising for speech recognition

applications.

2.4.2 Robust Speech Modeling

Robust speech modeling techniques provide an almost opposite approach to that

of speech enhancement. These techniques aim to incorporate noise into the acous-

tic model rather than remove noise from the signal of interest. There are four main

approaches to noise-robust acoustic modeling: (a) model re-training, (b) multi-

style model training, (c) model adaptation, and (d) Parallel Model Combina-

tion (PMC). The first two techniques relate to the way the acoustic model is

trained, whilst the latter methods transform existing (typically “clean”) acoustic

models to the noisy environment.

Acoustic model re-training continually trains an environment-dependent acous-

tic model when data from new test environments becomes available [3]. In this

way, it is possible to have matched conditions for a wide range of noise conditions.

This method requires a priori knowledge of the environment characteristics which

is not always available, as well as large amounts of data for each noise condition

which makes the collection and transcription process very demanding. This ap-

proach is not suitable for automotive environments where there is the need to

consider a very large range of noise conditions which arise due to different vehicle

and engine types, road materials and driving conditions.

Multi-style training results in an environment-independent model where train-

ing data from a wide range of acoustic environments is available [84] but does

not need to be relevant to the application environment. The limitations of data

collection make the ability to obtain sufficient data from a large enough range of

environmental conditions difficult, resulting in a acoustic models which are not

truly environmental-independent.

Model adaptation schemes are used to transform reference speech models into

the noisy application environment. These methods are very sensitive to variations
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in noise conditions present in the adaptation data which may restrict improve-

ments in ASR performance. Nevertheless, model adaptation techniques require

considerably less data than that required for acoustic model training, making it

a more viable approach for in-car speech recognition applications. In Chapter 4,

model adaptation is used as part of the evaluation protocols developed within

that chapter. Two common model adaptation techniques are described here:

Maximum A Posteriori (MAP) adaptation and Maximum-Likelihood Linear Re-

gression (MLLR).

MAP adaptation (sometimes referred to as Bayesian adaptation) [75] uses

an existing speech model to provide prior knowledge of the model parameter

distributions. Having knowledge of the distributions, adaptation of the jth HMM

state means µ can be obtained for each mixture component m using:

µ̂jm =
Njm

Njm + τ
µ̄jm +

τ

Njm + τ
µjm (2.18)

where τ is used to weight the influence of the prior acoustic model, N is the

occupation likelihood of the adaptation data, and µ̄jm is the observed mean of

the adaptation data. More details on the calculation of the occupation likelihood

and observed mean of the adaptation data can be found in [75]. In order to place

more emphasis on the prior model, higher values of τ should be used. MAP

adaptation ensures that only mean components of the state models observed

in the adaptation are updated – therefore sufficient data is required to provide

coverage of all state models. MAP adaptation is used to assess the database

evaluation protocols defined in Chapter 4 and is shown to provide widespread

word accuracy improvements for in-car ASR.

MLLR adaptation [77] uses the EM algorithm to produce a set of linear trans-

formations for the mean and variance parameters in a GMM-based HMM acoustic

model. This transformation shifts the mixture component means and changes the

variances so that each state in the HMM system has a greater likelihood of gen-

erating the observed adaptation data. MLLR can be used to generate a global

transformation for all Gaussian components in the presence of small amounts

of adaptation data, or to produce more specific transformations based on re-

gression classes as more data becomes available [155]. Since MLLR produces
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transformations which cover all Gaussian components, less adaptation data is re-

quired than for MAP adaptation. In the case where large amounts of adaptation

data is available, MAP outperforms MLLR because it adapts details about each

Gaussian component rather than using a grouped regression class approach [58].

The results of adaptation can be improved further by combining both MAP and

MLLR [133, 155].

Parallel model combination [39] is another method of adaptation whereby

acoustic models are trained for clean speech and environmental noise separately,

and these are added together during system operation. In car environments, this

addition can be based on the SNR as well as the noise condition [121] and can

considerably improve recognition rates in vehicles traveling at speed. As there is

a requirement to model (and subsequently store) a wide range of environmental

conditions, PMC has limited practical application in the automotive industry

which emphasises low-cost software and hardware solutions.

2.4.3 Robust Speech Parameterisation and Recognition

Algorithms

Robust speech parameterisation techniques seek representations of speech which

are immune to the effects of environmental noise and are therefore effective for

both clean and noisy speech recognition. In this way, the effect of the noise is

not removed directly but is reduced in the feature extraction process. The major

advantage of these techniques is that only very weak assumptions about the noise

are made and explicit estimation of statistical parameters are not required [46].

The latter is also a limitation in some environments as the techniques are not

specifically tuned to particular characteristics of the noise signal.

RelAtive SpecTrAl (RASTA) processing is one method for improving the ro-

bustness of common feature extraction techniques [55, 129]. The idea behind

RASTA is to use a band-pass filter which suppresses slowly and quickly vary-

ing components of speech, and in the process emphasises important parts of the

speech that are most robust against noise [129]. RASTA processing has been ap-

plied in various forms, and has shown positive results when integrated in feature
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extraction processing in car environments [134].

Robustness can be incorporated into speech decoding algorithms to account

for the masking effect of noise on the speech signal, as achieved using the missing

features paradigm [24]. This approach is based on the notion that when some

speech features (and sometimes entire frames) are masked by particular types and

levels of noise, they become unreliable for use in the decoding stage. In doing so,

emphasis is placed on speech characteristics which are robust to noise. Missing

feature methods determine a mask (e.g. using auditory scene analysis [17]) and

this mask can be used to reconstruct the unreliable features [116] or modify the

decoding stage [25]. Whilst this paradigm has been shown to be effective for ad-

ditive car noise [25], the major drawback of this method is that uncertainty mask

estimation relies on estimation of the noise signal, which inherently assumes that

the noise is stationary [126], and therefore performance is limited in environments

subject to non-stationary noise sources.

Another advance in robust speech recognition algorithms is to use a Recogniser

Output Voting Error Reduction (ROVER) paradigm [35] which has resulted from

an increase in available computing resources. In a system following the ROVER

framework, multiple speech recognisers are run in parallel, each employing a dif-

ferent robust technique. For example, one recogniser might use RASTA-PLP

or MFCC feature extraction, whilst another uses spectral subtraction speech

enhancement. This paradigm operates under the assumption that the parallel

recognisers will exhibit different types of errors under different noise conditions.

In vehicular environments, the increase in required computing resources to em-

ploy the ROVER paradigm make it unsuitable for the near real-time operation

demanded by such an application [3].

2.5 Summary

In this chapter, the fundamentals of automatic speech recognition including speech

parameterisation, acoustic modeling and methods for making ASR systems more

robust in adverse environments have been presented. The common Mel-frequency

cepstral coefficients feature extraction algorithm was detailed in full including
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the use of cepstral mean subtraction, cepstral liftering and temporal derivatives

which are used throughout this research. Acoustic modeling using hidden Markov

models was explained with reference to both model training and speech decoding.

Important aspects of this discussion will be made clear when discussing the novel

contributions of this dissertation.

A range of common approaches to making ASR systems more robust in the

presence of additive background noise including speech enhancement, acoustic

model training and adaptation, and robust feature extraction and recognition al-

gorithms were discussed. Particular reference to implementation in in-car speech

recognition applications was made for each of these methods. Speech enhance-

ment techniques which overcome most of the limitations of data requirements,

processing requirements, and stationarity assumptions are deemed to be most

suitable for in-car speech recognition, and will be discussed in further detail in

Chapter 3.



Chapter 3

Speech Enhancement

3.1 Introduction

In “real-world” environments where the levels of background noise cannot be

considered insignificant, the recognition accuracy of ASR systems degrades sig-

nificantly. Speech enhancement is a popular approach to improving the robust-

ness of ASR through the removal of additive noise from recorded speech signals.

Robustness for ASR applications is only one motivation for the use of speech

enhancement – discussion of the motivations for enhancement in general speech

processing applications is made in Section 3.2.

Speech enhancement techniques can be broadly classified by the number of

microphones used. Single-channel techniques (Section 3.3) are well suited to a

number of applications (e.g. in-car ASR) where hardware costs are a key fac-

tor. Multi-channel speech enhancement techniques, whilst increasing hardware

requirements, have been shown to provide superior enhancement performance

through the use of spatial filtering. Common multi-microphone techniques are

reviewed in Section 3.5. In these sections, particular reference is made to exam-

ples of speech enhancement used for in-car speech recognition.

A number of these single- and multi-channel enhancement techniques require

the estimation of statistical characteristics of the background noise. Common

techniques for noise estimation are detailed in Section 3.4.

The chapter concludes by discussing the research directions investigated in this

33
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dissertation. In particular, shortfalls of the traditional optimisation criteria for

single-channel speech enhancement used as a front-end for ASR are highlighted.

This discussion leads to the definition of the scope of the research.

3.2 Motivations for Speech Enhancement

In “real-world” environments, ASR has so far failed to live up to consumer expec-

tations. For automotive applications, the low performance of ASR is due primar-

ily to the large number of noise sources both within the car (e.g. air-conditioning

fans, infotainment systems, other passengers), and also external to the cabin

(e.g. engine noise, road noise, wind noise, other vehicles). As briefly mentioned

in Chapter 2, the perception of these noise sources can also lead drivers to change

their vocal effort; this is commonly referred to as the Lombard effect [88]. In this

research, emphasis is placed only on the effects of additive noise on the speech

signal (i.e. the Lombard effect is assumed to be absent).

Since the performance of ASR systems in adverse environments is generally

unsatisfactory, it is required to make them more robust. Three common ap-

proaches are to use speech enhancement, robust acoustic modeling or robust

speech parameterisation and recognition algorithms. All of these approaches were

analysed in Chapter 2, with speech enhancement suggested as being most appro-

priate to improve the robustness of in-car ASR systems.

The motivation for using speech enhancement in automotive environments

arises primarily from the time and expense required to collect significant amounts

of data on which to train or adapt acoustic models for a wide range of noise

conditions. Speech enhancement techniques can handle the constantly changing

noise conditions, allowing noisy speech signals to be transformed into a clean

speech representation (either waveform or feature vectors) which enables the use

of well-trained clean speech acoustic models for ASR.

Another motivation for the use of speech enhancement is to improve the qual-

ity of speech communication in noisy environments. In this application, the aim is

to satisfy signal-level criteria such as maximising signal-to-noise ratio, minimising

the signal error, or improving human perceptual quality [127]. These criteria are
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used for both single- and multi-microphone enhancement techniques [46, 127].

Most speech enhancement techniques were originally designed for speech in-

telligibility rather than for ASR [46]. Whilst there have been numerous examples

where enhancement techniques have been shown to be a successful pre-processing

stage for robust speech recognition, some enhancement techniques distort the

speech signal in ways which can cause ASR performance to decrease. Any so-

lutions derived from signal-level criteria which produce improvements in word

accuracy are therefore typically sub-optimal for ASR. Redesigning enhancement

techniques to optimise for speech recognition has gained increased interest in

recent years [9, 127, 130], and is the focus of the research in this dissertation.

3.3 Single-Channel Techniques

3.3.1 Spectral Subtraction

Spectral subtraction was first proposed by Steven Boll in 1979 [14]. It has become

one of the most widely used single-channel noise reduction techniques, and is

commonly used as a baseline for comparing novel speech enhancement techniques.

Approaches for optimising spectral subtraction specifically for automatic speech

recognition applications are the focus of this thesis.

The aim of spectral subtraction is to estimate the spectrum of the clean speech

signal by subtracting an estimate of the noise spectrum from that of the noise-

corrupted speech signal. Subtraction typically takes place in the magnitude or

power spectrum, but may also take place on filterbank energies as will be de-

scribed in this section.

The basis for many speech enhancement algorithms (including spectral sub-

traction) is the assumption that the noise and speech signals are statistically

independent [13]. In this instance, noise can be regarded as being added acous-

tically to the clean speech signal as was shown in Fig. 2.5. In the time domain

this addition is represented as:

y(n) = s(n) + d(n) (3.1)

where s(n), d(n), and y(n) are the clean speech, additive background noise and
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noisy speech signals respectively. During speech segments, the noise signal is

assumed to remain stationary, and if the noise environment changes between

two consecutive speech segments, there should be sufficient time in which to

accurately re-estimate the noise characteristics [14]. Methods of estimating noise

characteristics are explained in Section 3.4.

As per MFCC feature extraction detailed in Chapter 2, the noisy speech

signal is broken up into frames and transformed to the complex discrete frequency

domain using Eq. (2.3) to produce:

Y i(k) = Si(k) +Di(k) (3.2)

where i is the frame index. The generalised frequency-domain spectral subtraction

rule derived from the early works of Boll [14] and Berouti et al. [13] is defined by:

|Ŝi(k)|γ =











|Y i(k)|γ − αi(k)|D̂i(k)|γ |Y i(k)|γ − αi(k)|D̂i(k)|γ > β|D̂i(k)|γ

β|D̂i(k)|γ otherwise

(3.3)

where |D̂i(k)| is an estimate of the noise magnitude spectrum obtained during

periods of non-speech, and |Ŝi(k)| is the resulting estimate of the clean speech

signal. The parameter γ determines the spectrum the subtraction takes place

in; for example this may be the magnitude spectrum (γ = 1) [14], or the power

spectrum (γ = 2) [13, 34, 85]. Whilst these values of γ produce spectra which have

theoretical relevance, there is actually no limit to the values that this parameter

can take [26, 68, 79].

Since the noise spectrum is obtained through estimation, time- and frequency-

dependent subtraction factors, αi(k), are introduced to compensate for under-

estimating or overestimating the potentially non-stationary instantaneous noise

spectrum. Optimisation of αi(k) has been the subject of much of the spectral

subtraction research to date. An SNR-weighted subtraction factor was first in-

troduced in [13], but numerous methods for determining the subtraction factors

have since been proposed [63, 79], including examples where in-car speech recog-

nition was the target application [86, 122, 150]. A considerable amount of this

research has been aimed at improving speech intelligibility by reducing the levels

of musical noise present in the enhanced signal [45]. Musical noise is an artefact
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of spectral subtraction resulting from both over-estimation and under-estimation

of the noise spectrum [13].

Since the instantaneous signal spectrum can be smaller than the estimated

noise spectrum, it is possible for |Ŝi(k)|γ to become negative; therefore, the spec-

tral flooring factor, β, is used to reduce the effects of over-subtraction. The value

for the flooring factor is typically 0 < β ≪ 1 [13, 91, 105]. Most implementa-

tions set a constant spectral floor factor, however some studies have determined

the noise floor factor dynamically [122]. The spectral floor factor can be ap-

plied to the noise spectral estimate [13, 68, 146], and also to the instantaneous

noisy speech signal [34, 91, 131] to enforce a maximum level of signal attenuation.

In this research, the spectrum to which spectral flooring is applied varies based

upon ASR word accuracy performance; the relevant spectra are outlined when

explaining the individual experimentation configurations.

Rather than using a subtraction factor for each DFT frequency bin, more

recent research has looked at reducing the number of subtraction parameters by

using pre-determined frequency bands [10, 63, 132]. These methods are referred

to as Multi-Band Spectral Subtraction (MBSS) techniques. For example, the

spectral subtraction rule used by Kamath and Loizou [64] is:

|Ŝi
b(k)|γ =











|Y i
b (k)|γ − αi

bδb(k)|D̂i
b(k)|γ |Y i

b (k)|γ − αi
bδb(k)|D̂i

b(k)|γ > 0

β|Y i(k)|γ otherwise

(3.4)

where the values for αi
b are determined by the local SNR in the bth sub-band. The

three critical bands used in MBSS are specified by:

δb =



























1 fU,b ≤ 1 kHz

2.5 1 kHz < fU,b ≤ fs
2
− 2 kHz

1.5 fU,b >
fs
2
− 2 kHz

(3.5)

where fs is the signal sampling frequency and fU,b is the upper frequency of the bth

sub-band. The motivation for using the representation detailed in Eqs. (3.4)-(3.5)

is to reduce the levels of speech distortion in critical speech frequency bands [87].

Performing MBSS also considerably reduces the number of required subtrac-

tion parameters; the above implementation uses only 3 frequency bands, whilst
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Singh and Sridharan [132] use 18 critical frequency bands, and Chen et al. [19]

and BabaAli et al. [10] use 24 and 25 Mel-scaled frequency bands respectively.

These implementations are all in stark contrast to the 257 parameters needed for

each DFT frequency when a 16 kHz signal is analysed with 32 ms windows.

At this point, it should also be noted that it is assumed that spectral sub-

traction is only required on the magnitude spectrum, leaving the phase spec-

trum ej∠Y
i(k) unchanged. This assumption is generally appropriate as phase has

been regarded as unimportant for human perception [109, 143], although this

has been challenged in recent times [110]. The noisy speech phase spectrum is

re-combined with the modified magnitude spectrum |Ŝi(k)| for synthesis to a

time-domain signal via an IFT and overlap-add reconstruction [4].

All examples of spectral subtraction described thus far have performed the

subtraction in the frequency-domain. Whilst this is appropriate for both speech

intelligibility and ASR applications, noise subtraction can also be performed

on the Mel-filterbank energies which are a part of MFCC feature extraction

[103, 108]. Throughout this dissertation, this method will be referred to as Mel-

Filterbank Noise Subtraction (MFNS). If the frequency bands k are split into M

sub-bands based on the Mel-scale, MFNS can be defined as:

Ei
Y (m) =

∫ fU,m

fL,m

|Y i(k)|dk

Ei
D̂
(m) =

∫ fU,m

fL,m

|D̂i(k)|dk

Êi
S(m) =











Ei
Y (m)− αi(m)Ei

D̂
(m) Ei

Y (m)− αi(m)Ei
D̂
(m) > βEi

Y (m)

βEi
Y (m) otherwise

(3.6)

where Ei
Y (m), Ei

D̂
(m) and Êi

S(m) are the energies of themth Mel-filterbank of the

noisy speech, noise estimate and the estimate of the clean speech filterbank en-

ergy respectively. The scaling factor β provides a maximum level of signal energy

attenuation and ensures output filterbank energies remain positive as per the

frequency-domain formulation. In this instance, the subtraction factors αi(m)

are filterbank-dependent rather than frequency-dependent. In [103], the value

of β = 0.1 was used with constant values of αi(m) = 1 across all filterbanks.

Implementing noise subtraction in this domain provides close coupling with the
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MFCC feature extraction process and also provides robustness against large, im-

pulsive spectral magnitudes.

It was previously stated that much of the research in noise subtraction tech-

niques has been based around optimising the oversubtraction parameters. Typ-

ically, this has been to improve speech intelligibility, but some reports do show

improvements in ASR accuracy using signal-level criteria such as SNR. Only

one research group have looked at methods for optimising these parameters

specifically for speech recognition applications. BabaAli et al. [10] utilise multi-

band spectral subtraction to enhance the noisy speech, and apply a likelihood-

maximising (LIMA) framework [127] to optimise the subtraction factors. Much

of their work was performed in parallel with the work contained in this disserta-

tion, which uses Mel-filterbank noise subtraction as the enhancement technique

in a LIMA framework. Further discussion and analysis of LIMA-based noise

subtraction techniques can be found in Chapters 5 and 6.

3.3.2 Wiener Filtering

The spectral subtraction techniques discussed in Section 3.3.1 were not derived

using well-defined mathematical error criterion; they simply assume that additive

noise can be subtracted from the noisy speech signal. Wiener filters – whilst still

assuming that noise is additive – reduce noise levels by minimising the mean-

square error between the estimated and desired signals [148]. In deriving the

Wiener filter, it is also assumed that the signals under analysis are stationary,

which is not always the case. Kalman filters (which have been used for speech

enhancement for both intelligibility and ASR applications [40, 44, 85, 111]) are

an extension of the Wiener filter which enables handling of non-stationary noise.

According to Wiener filter theory, Eq. (3.1) is altered such that the noise and

speech signals are passed through a linear system with impulse response, h(n):

y(n) = h(n) ∗ [s(n) + d(n)] (3.7)

The goal of the Wiener filter approach is to determine the optimal impulse

(or frequency) response of the linear filter h(n). Assuming clean speech and noise

signals are uncorrelated, the parametric frequency-domain Wiener filter response
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can be derived as [82]:

H i(k) =

(

Si(k)2

Si(k)2 + aiDi(k)2

)β

=

(

ξi(k)

ai + ξi(k)

)β

(3.8)

where ai and β are used to alter the signal attenuation for each frame i [87],

and ξi(k) is the a priori SNR in frequency k. The traditional Wiener filter

(i.e. a = β = 1) attenuates noise at each frequency in proportion to the a priori

SNR in much the same way that frequency-dependent spectral subtraction does.

Deriving the frequency-response of spectral subtraction filter in [13] will lead to

the same response [87, 101].

The major drawback with this derivation of the Wiener filter is the require-

ment to have a priori knowledge of the power spectrum of the clean speech

signal. Since this is the desired result of enhancement, numerous methods have

been proposed to overcome this limitation, including iterative Wiener filtering

with [51, 112] and without constraints [82]. In these implementations, the clean

speech signal is continually estimated (after initialisation as the noisy speech

signal) using an updated Wiener filter.

Application of Wiener filtering to ASR has been less prevalent than spectral

subtraction. This is due to the sub-optimality of the Wiener filter in non-Gaussian

noise environments, and also the computational requirements of iterative Wiener

filtering. Specific examples of Wiener filtering in ASR front-ends include [2, 51],

with some application to in-car speech recognition [7, 20, 41, 98].

3.3.3 MMSE-Based Spectral Enhancement

Research has typically shown that only the magnitude spectrum is important for

human speech intelligibility [109, 143], therefore the optimal complex spectrum

estimator – the Wiener filter – is not the optimal magnitude spectrum estimator

in the Minimum Mean-Square Error (MMSE) sense. Unlike the Wiener filter,

the MMSE estimator does not assume a linear relationship between the observed

spectral information and the estimator; it does, however, make assumptions about

and required knowledge of the statistical distributions of the speech and noise

magnitude spectra [31].
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The MMSE uses a Bayesian probability approach to determine the clean

speech amplitudes assuming Gaussian distributions for the speech and noise mag-

nitudes [31]. Derivation of the spectral estimator results in the following spectral

gain function:

G(ξ(k), γ(k)) =

√
π

2

√

v(k)

γ(k)
exp

(

−v(k)
2

)[

(1 + v(k))I0

(

v(k)

2

)

+ v(k)I1

(

v(k)

2

)]

(3.9)

where I0(·) and I1(·) are zeroth and first order Bessel functions, v(k) is defined

by:

v(k) =
ξ(k)

ξ(k) + 1
γ(k) (3.10)

and ξ(k) and γ(k) are the a priori and a posteriori SNRs respectively. The

dependence on the current frame i has been dropped for simplicity. Even though

the influence on overall attenuation is less than the a priori SNR, the MMSE

estimator also relies on the a posteriori SNR which is useful for reducing the

levels of musical noise [87]. It should also be noted that when the a priori SNR

is large, the MMSE estimator behaves similarly to the Wiener filter.

Attempts to derive an MMSE estimator for the phase spectrum were also

described in [31], however the derivation led either to the magnitude estimator

becoming sub-optimal, or the noisy speech phase being the optimal phase spec-

trum. As a result, only the magnitude MMSE is used in speech enhancement

applications.

A key issue with the MMSE estimator described in Eqs. (3.9)-(3.10) is the

reliance on estimating both the variance of the noise magnitude spectrum, and the

a priori SNR. The noise variance is easily calculated during non-speech periods

using the noise estimation techniques described in Section 3.4. Solutions for

estimating the a priori SNR include the maximum-likelihood approach [31], as

well as decision-directed approaches [23, 31, 52].

Derivatives of the original MMSE technique have also been proposed in the

literature, including the log-MMSE estimator [32], and the pth-power magnitude

estimator [154]. Alternatives to using Gaussian-distributed spectral values such

as Gamma [93] and Laplacian distributions [18] have also been reported.

Examples of MMSE-based speech enhancement as a front-end for speech en-

hancement include [43, 94]. In highly mismatched noise conditions [43], a modified
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MMSE estimator showed ASR word accuracy improvements over Wiener filtering

and the original MMSE estimator [31], whilst Matassoni et al. [94] showed that a

highly optimised spectral subtractor (based on [13]) can outperform both MMSE

and log-MMSE estimators in automotive environments.

3.3.4 Phase Spectrum Compensation

The speech enhancement methods discussed thus far have only operated on the

magnitude spectrum of the incoming signal. Recently, researchers at Griffith

University, Australia, have been exploiting the phase spectrum for speech en-

hancement [135, 137, 149]. These have been some of the first attempts to use the

phase spectrum for speech enhancement applications.

Phase Spectrum Compensation (PSC) utilises the synthesis procedure (i.e. IFT

and overlap-add reconstruction) commonly used in speech enhancement where an

enhanced waveform is required for playback. Since the incoming speech signal

is real-valued, the DFT coefficients are conjugate symmetric. PSC controls the

amount of reinforcement or cancellation that occurs during synthesis by adding

a noise-weighted anti-symmetry function Λi(k) to the noisy speech signal in the

complex frequency domain [137]:

Y i
Λ(k) = Y i(k) + Λi(k). (3.11)

For frequencies with low noise magnitudes, the anti-symmetry function causes

little change to the original signal. For high noise components however, the anti-

symmetry function causes the conjugate pairs to cancel during the synthesis stage.

The reader is directed to [137, 149] for detailed descriptions of this technique.

Whilst PSC has shown promising improvements in human intelligibility, it

has not yet been used in a speech recognition application. Chapter 7 provides

discussion of another method of incorporating phase information into speech en-

hancement techniques for ASR applications.
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Figure 3.1: Tracking performance of noise estimation techniques on a 2 second
segment of a noisy speech signal.

3.4 Single-Channel Noise Estimation

The single-channel speech enhancement algorithms discussed in Section 3.3 all

assume that estimates of the noise characteristics are available. Noise estimation

techniques therefore play an important role in the effectiveness of these enhance-

ment algorithms. For example, if the noise estimate is too low, the resulting

clean speech estimate will still contain significant levels of noise. Alternatively, if

the noise estimate of too high, there is potential for speech distortion. Another

important consideration for applications such as in-car speech recognition is the

ability to track continually changing noise conditions (see Fig. 3.1). This sec-

tion explains the concept of Speech Activity Detection (SAD) and analyses three

common approaches to noise estimation with particular reference to Fig. 3.1.

3.4.1 Speech Activity Detection

Speech activity detection is the process of determinating the presence of either

speech or silence in a segment of speech. A number of features can be used

for determining SAD including short-time energy, zero-crossings [62], cepstral

features [48] or periodicity [139], and output a binary decision of whether the

segment contains speech or silence. SAD detects silence periods not only at the
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beginning or end of an utterance, but also in the middle of sentences. In low-

SNR and non-stationary noise environments, these algorithms typically perform

poorly, and are often left out of noise estimation methods in such environments.

3.4.2 Minimum Statistics

Minimum Statistics (MS) noise estimation utilises the premise that the spectrum

of the noise signal generally exhibits lower magnitudes than the underlying speech

signal. As a result, noise estimates can be derived by tracking the minimum

spectral magnitudes over finite time windows for each frequency [91]. In order to

reduce the effects of outlying spectral values, the minimum statistics algorithm

typically smoothes the signal spectrum prior to calculating the noise estimate.

The blue line in Fig. 3.1 shows the estimation performance of the original

implementation of the MS algorithm [91]. Examination of this figure shows two

mains drawbacks of MS: (a) the noise level is consistently lower than the true

noise level, and (b) the algorithm fails to respond rapidly to increases in the

noise spectrum. To counteract (a) in spectral subtractive speech enhancement,

the subtraction values are typically αi(k) > 1. Methods for reducing this bias

have also been proposed in the literature [92].

The slow response to increase in noise levels is attributed to the use of finite

time windows. To overcome this limitation, methods for continually updating

the noise spectrum have also been proposed [30] and shown to improve the per-

formance of the original implementation [99].

3.4.3 Time-Recursive Averaging

Time-Recursive Averaging (TRA) techniques are used regularly for noise estima-

tion as they can be implemented efficiently, and can track increases and decreases

in the noise signal effectively. The recursive nature of this technique comes from

the fact that the noise estimate |D̂i(k)|γ is updated according to the noise es-

timate of the previous frame |D̂i−1(k)|γ. The TRA algorithm has the general
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form:

|D̂i(k)|γ =











η|D̂i−1(k)|γ + (1− η)|Y i(k)|γ |Y i(k)|γ > λ|D̂i−1(k)|γ

|D̂i−1(k)|γ otherwise

(3.12)

where η is the smoothing factor which can be frame- and/or frequency-dependent.

The value for η can be determined using estimated SNR [83], or probabilities of

speech presence [90, 136]. In Eq. (3.12), soft-decision SAD is used to determine

which frequencies of the noise estimate are updated based on the instantaneous

signal spectrum, previous noise estimate and scaling factor λ. Soft-decision SAD

can also be left out of this technique by setting λ = 0. This dissertation uses a

static η and λ for all frames and frequencies.

The magenta and green lines in Fig. 3.1 shows the performance of TRA with

and without the use of soft-decision SAD respectively. It can be seen that TRA

without SAD is able to respond quickly to both increases and decreases in the

noise spectrum, making it more effective than MS and histogram-based meth-

ods in noise tracking. Without the use of SAD, this tracking ability can easily

lead to noise over-estimation since the TRA estimator will also track speech

components (which generally exhibit higher spectral magnitudes); this can lead

to speech distortion when using subtractive-type enhancement algorithms. The

use of soft-decision SAD is able to reduce this response sensitivity, providing

a lower noise estimate in cases where the noise spectrum increases significantly

which avoids tracking speech components. Using high smoothing factors (typi-

cally 0.9 < η < 1) can also be used to reduce the response sensitivity. Finding

an appropriate combination of λ and η is important for the effectiveness of the

TRA noise estimation technique.

3.4.4 Histogram-Based Techniques

Histogram-based noise estimation resulted from the observation that the most fre-

quent spectral values correspond to the level of the noise spectrum [56, 87, 118].

Finite time windows are used to construct a histogram of past spectral values,

from which the maximum value is taken as the noise estimate. This technique
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is generally robust to scenarios where the histogram has two modes – one rep-

resenting speech and the other noise. In most cases the noise mode dominates,

and therefore histogram estimation accurately extracts the noise level. Similar to

MS estimation, the noisy signal spectrum is smoothed prior to constructing the

histogram to reduce extreme spectral values.

The red line in Fig. 3.1 shows the noise tracking performance of the basic

histogram noise estimator [56] with a time window of 40 frames. The histogram

method is seen to track the true signal level more effectively than MS estimation,

although – compared to the TRA algorithm – it does show noticeable delays in

increasing (frames 80-130) and decreasing (frames 160-195) the noise estimate

when the spectral magnitude changes rapidly. Whilst this makes it robust to the

large spectral magnitudes present during speech segments, it can result in speech

distortion due to noise over-estimation (from delays in reducing the estimate) or

increased residual noise levels due to under-estimation (due to delays in increasing

the estimate). Having determined an appropriate trade-off between distortion

and residual noise, the response time can be increased/decreased by changing the

finite time window used in the histogram construction [87].

3.5 Multi-Channel Speech Enhancement

Speech enhancement with multiple microphones has become a popular and ef-

fective approach for speech enhancement, particularly in ASR systems. Speech

signals are captured simultaneously by all microphones in the system, and this

multi-sensor information is then used to filter the signal to produce an estimate of

the clean speech signal. As a result of the use of multiple signal channels, multi-

microphone methods have shown more impressive results than single-channel

techniques for ASR applications in car environments [80]. Despite these improve-

ments, multi-channel techniques still have limited application in some domains

(particularly automotive) due to the increased hardware requirements (and con-

sequently increased costs) and extra processing required for each of the channels.

In this section, common approaches for multi-channel speech enhancement are

briefly described in order to provide a complete review of state-of-the-art speech
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Figure 3.2: Near-field spatial information used by multi-channel beamforming
algorithms.

enhancement techniques. Multi-channel techniques are not further explored in

this dissertation; readers are encouraged to refer to the cited publications for

more technical details.

3.5.1 Beamforming

Multi-channel beamforming combines the acoustic signals from all microphones

to perform filtering which differentiates the signal of interest from the background

noise based on physical locations. If the geometry of the microphones with re-

spect to the target source is known a priori (as shown by the near-field scenario

in Fig. 3.2), a beam can be formed which includes the target source but excludes

the noise source which could be any form of noise field, or a point source as shown

in the diagram. Under a near-field assumption – which is more appropriate than

the far-field for in-car applications – the beam is created by compensating the re-

spective propagation delays between the source and each microphone. Practically,

this operation results in each microphone being aligned in the time axis.

Having compensated the delays, the microphone channels are individually

weighted and combined in order to reinforce the speech signal; for this reason the

technique is referred to as filter-and-sum beamforming. This operation causes

cancellation of noise and other signal sources outside the target direction as they

are assumed to be uncorrelated in each microphone. In the frequency domain,
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the filter-and-sum beamformer is represented as:

S(k) =
1

N

N
∑

n=1

Gn(k)Yn(k) exp
−j2πk∆n (3.13)

where N is the number of microphones, Yn(k) is the signal received at the nth

microphone, Gn(k) are the filter coefficients, and the exponential term is com-

pensation for the delay ∆n.

A number of fixed and adaptive beamforming techniques to determine the

filter weights Gn(k) have been proposed in the literature. A common fixed beam-

former used as a baseline system for comparison with novel beamformer algo-

rithms [102] is the delay-and-sum beamformer, in which Gn(k) = 1 [16]. This

beamformer was shown to be effective for dual-microphone hardware implemen-

tations in a range of noise conditions in car environments [152]. Many other filter-

and-sum beamformers have been proposed to optimise the filter weights Gn(k)

for particular noise fields and conditions [95]. Whilst the majority of these beam-

formers maximise signal level criteria, a likelihood-maximisation framework to

optimise the filter coefficients specifically for ASR in noisy environments has also

been proposed [127].

The most commonly used beamformer for automotive applications is the

adaptive Generalised Sidelobe Canceller (GSC) based on the Griffiths-Jim beam-

former [47, 106, 107]. In [107], the GSC configuration was shown to be more

effective than delay-and-sum beamforming in reducing word error rates for both

city and highway driving.

3.5.2 Blind Source Separation

Blind Source Separation (BSS) techniques aim to distinguish a set of signals

(s1, ..., sN ) which have been mixed with some unknown model (see Fig. 3.3) [73,

153]. Examples of mixing scenarios include adding background noise to clean

speech, or two speakers talking at the same time (i.e. a simplified version of

the “cocktail-party” problem [21]). Therefore, whilst BSS is not explicitly a

speech enhancement technique, it can be used for such applications where the

target speech has been corrupted by background noise. In order to perform the

separation, it is generally required to have at least the same number of channels
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Figure 3.3: Signal and mixing model assumed in blind source separation.

as there are sources to separate (i.e. for the simple speech in noise problem, a

minimum of two microphones are required).

Blind source separation (in similarity with the general speech enhancement

model) assumes that the signals that have been mixed are uncorrelated, and can

therefore be considered statistically independent. As such, no assumption is made

about the spatial locations of the sources, which is in contrast to the beamforming

techniques described in the previous section. Examples of BSS which incorporate

beamforming concepts can also be found in the literature for improved separation

performance [120].

BSS has been applied as a front-end for speech recognition in high-noise car

environments with around 30% improvement in word recognition accuracy [12].

3.5.3 Phase-Error Filtering

Phase-Error Filtering (PEF) is a recent and unique development in multi-channel

speech enhancement. It was originally proposed for dual-channel speech enhance-

ment [1], but was extended for multiple microphones in [72]. This technique has

been included in this review as it incorporates two increasingly-popular methods

for speech enhancement and recognition which are the emphasis of this disserta-

tion: enhancement using phase information, and integration with LIMA frame-

works [130]. Despite this influence, PEF is not considered in detail elsewhere

in this dissertation since it is a multi-channel enhancement technique and this

research is concerned only with single-channel enhancement.

The delay compensation previously discussed theoretically time-aligns the

speech components in all microphones; therefore, the values of the phase spec-

trum should be the same (i.e. have a phase error of zero). Due to the presence of

noise however, the true phase error is non-zero, and the mean square phase error

increases as the level of noise increases [1]. Using this observation, the phase-error



50 Chapter 3. Speech Enhancement

filter applied to the noisy speech signal is defined as:

G(k) =
Y (k)

1 + γθ2(k)
(3.14)

where θ(k) is the phase difference between two channels, and γ controls the ag-

gressiveness of the filter which can be optimised using a LIMA framework. The

likelihood-maximised phase-error filter showed consistent word error rate reduc-

tions compared to delay-and-sum beamforming across a wide range of SNRs [130],

proving its validity as a speech enhancement technique for ASR applications.

3.6 Research Directions

In-car speech recognition has been chosen as the application environment for

design and evaluation of speech enhancement techniques in this dissertation. As

will be shown in Chapter 4, considerable improvements in speech recognition

accuracy are still required in order perform at levels which meet driver expectation

and will ultimately make these systems commercially viable on a large scale.

At the present time, multi-microphone systems are deemed too expensive

for widespread adoption in the highly competitive automotive industry. As a

result, this research has chosen to investigate only single-channel enhancement

techniques designed specifically for improved speech recognition accuracy.

Throughout the review in this chapter, numerous examples of speech enhance-

ment used in front-end processing for ASR have been cited. In the majority of

these techniques, the optimisation criteria are based on signal level measures

which are most suited to speech enhancement for speech quality and human in-

telligibility. Whilst some techniques have shown improvements in word accuracy

rates, the results are purely by-products of the enhancement process, and are

therefore sub-optimal for ASR applications. Approaches such as the LIMA frame-

work briefly introduced in this chapter can further optimise the performance of

these techniques specifically for ASR. Progress has been made to applying LIMA

frameworks in real-world environments using single-channel speech enhancement,

but there are still limitations to current implementations which are evaluated in

Chapter 5 along with potential solutions. Consideration of specific application to

automotive environments is the focus of Chapter 6.
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Finally, careful analysis of single-channel enhancement reveals the preference

to use only information about the magnitude (or power) spectrum of the speech

and noise signals. In these instances, the noisy phase spectrum is left unaltered,

and is used for synthesis to the time-domain if required. For frequency-domain

spectral subtractive techniques in particular, estimates of the phase spectrum

could be used to reduce the errors in the overall magnitude estimate by performing

the subtraction in the complex frequency-domain as opposed to the magnitude

spectrum. Chapter 7 proves this concept, and proposes methods for obtaining

phase spectrum estimates of the noise or speech signal.

Practical application of these enhancement techniques inherently introduce a

resource versus performance trade-off which must be carefully considered. Sim-

plification of frequency-domain spectral subtraction for a cost-effective hardware

implementation which also ensures optimal speech recognition performance in

vehicular environments is considered in Chapter 8.

3.7 Summary

This chapter has outlined state of the art speech enhancement using both single-

and multi-microphone approaches. Single-channel techniques discussed include

spectral subtraction, Wiener filtering, MMSE-based methods, and the recent de-

velopment of phase spectrum compensation. These algorithms rely heavily on

estimation of the noise spectrum – three solutions to this problem were discussed

and compared.

Brief descriptions of three multi-microphone speech enhancement techniques

completed the review of the state of the art technology in this field. Despite

showing better enhancement performance than single-channel techniques, multi-

microphone techniques were still deemed too expensive for the application domain

of interest in this research – in-car ASR. As a result, the remainder of this work

concentrates solely on single-channel speech enhancement.

The optimisation of speech enhancement techniques for intelligibility rather

than automatic speech recognition has been identified as the major shortcoming
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of the existing approaches. Research directions aimed at specifically optimis-

ing common single-channel speech enhancement techniques for ASR applications

have been discussed and comprise the novel contributions of this dissertation.

Two particular approaches which integrate the enhancement technique and the

ASR system more closely are of interest in this work – likelihood-maximisation

frameworks (Chapters 5-6), and the incorporation of phase spectrum information

(Chapter 7).



Chapter 4

ASR Evaluation Databases

4.1 Introduction

Since most ASR systems are trained for use in controlled environments, they

fail to produce satisfactory performance under more adverse conditions such as

those encountered in automotive environments. One of the major limitations in

making ASR systems more robust is the inability to collect sufficient amounts of

data on which to train acoustic models and perform meaningful evaluations. The

collection of data requires hundreds of hours of work in recording data as well as

transcribing it for training and evaluation purposes. Once acoustic models have

been trained, experimental evaluation requires a significant amount of test data

– which must be different from the training data – in order to obtain statisti-

cally relevant descriptions of the performance of any robust speech recognition

technique.

Two in-car speech databases – including the Australian English In-Car Speech

corpus (AEICS) collected as part of this research – and their corresponding eval-

uation protocols are outlined in Section 4.2. In defining the evaluation protocol,

it is important to also declare the parameters used in the development of the

baseline ASR system (Section 4.3). This declaration includes all parameters re-

lating to acoustic model training, grammar definition, performance measures,

and parameters used in speech enhancement and model adaptation. Using these

53
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well-defined evaluation protocols, the performance of subtractive-type speech en-

hancement and MAP adaptation on both databases are analysed in Section 4.4.

4.2 In-Car Speech Databases

Much of the previous research on in-car ASR has typically been performed with

small amounts of data collected for a particular study (e.g. [86, 107]), or data

which was artificially generated [12, 20, 41, 98, 122]. The former approach typ-

ically results in limited amounts of evaluation data, which not only puts doubt

over the statistical significance of the experiment, but also makes comparisons

between techniques difficult since all researchers need access to that data.

To alleviate the limited data scenario, the Aurora experimental framework

was introduced [57]. Although this database has been used extensively to re-

port and compare experimental results [7, 43, 71], the framework has two very

important limitations. Since noisy speech data was created by adding various

noise sources (including car noise) to a large speaker-independent isolated digit

database [78], no alteration was made to the speech waveform. As a result, it

fails to reflect changes in speech production which are due to the Lombard effect

or other types of stress. Further, state of the art speech enhancement techniques

(see Chapter 3) use multiple microphones; therefore the Aurora framework is un-

suitable for evaluating these methods. Under this framework, the comparison of

both single- and multi-microphone enhancement techniques is impossible.

In order to overcome these limitations, a number of large in-car speech databases

have been collected [50, 119]. These collections contain recorded speech from a

large number of speakers under an extensive range of real noise conditions. Un-

fortunately, datasets of this size have seen limited use because they are either not

publicly available or very expensive to acquire. The AVICAR (“Audio-Visual

speech In a CAR”) database collected at the University of Illinois [76] is an ex-

ception to this rule as it is freely available; this dissertation has developed an

evaluation protocol [66] to enable widespread use for in-car ASR evaluations (see

Section 4.2.1).

Whilst the cited databases (including AVICAR) provide significant resources
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Table 4.1: AVICAR database in-car noise conditions.

Noise Description

IDL Engine running, car stopped, windows up

35U Car travelling at 35mph, windows up

35D Car travelling at 35mph, windows down

55U Car travelling at 55mph, windows up

55D Car travelling at 55mph, windows down

for in-car ASR with American and European speakers, no data previously ex-

isted for Australian speakers driving under Australian road conditions. Notice-

able differences exist between Australian English and both American and British

English [141]; therefore data is required to optimise in-car ASR systems for Aus-

tralian environments. For this reason, the Australian English In-Car Speech

corpus [67] was collected to assist this research (Section 4.2.2). This database

was a major outcome of this Ph.D. research program, as well as the research col-

laboration between QUT, LaTrobe University, Melbourne, and General Motors

Holden as part of a project under the Co-operative Research Centre for Advanced

Automotive Technology (AutoCRC).

4.2.1 AVICAR

The AVICAR database contains multi-channel audio and video speech recordings

in 5 different driving conditions (see Table 4.1). The microphone and camera

arrays were placed on the sun-visor and dash in front of the front-seat passenger

while the driver ensured the desired noise conditions were being met. Since the

passenger’s speech is recorded, this collection only simulates driver speech, and

therefore is unsuitable for analysing the effects of speaking on driver distraction

and vice versa. For such a purpose, a data collection such as UTDrive [6] would

be more appropriate. Despite this limitation, AVICAR is suitable for evaluating

low-SNR neutral speech recognition through combining multi-channel audio and

visual speech recognition.

Data was recorded under four distinct tasks – isolated digits, isolated letters,

phone numbers and TIMIT sentences. The isolated digits task closely resembles
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command and control applications, whilst the isolated letters task mimics spelling

which may be required in navigation systems. The other two tasks constitute

continuous speech recognition tasks – phone numbers represent small vocabulary

systems, whilst the sentences match medium vocabulary tasks. Further infor-

mation about the utterance scripts used in the collection can be found in [76].

A recognition framework for the isolated digit and letter tasks is provided with

the database, however this research is primarily interested in continuous speech

recognition, and therefore an evaluation protocol was developed as part of this

dissertation to enable model adaptation, development testing and evaluation [66].

More detailed information about the full recording setup can be found in [76].

It should be noted that the released portion of the AVICAR database contains

less data than documented in [76]. It includes audio and video for 87 and 86

speakers respectively. This reduced amount of data was taken into account in the

evaluation protocol development outlined in the following section.

Evaluation Protocol

Whilst all recorded speech is English, approximately 40% of the speakers are

from Latin America, Europe, East or South Asia. Of these speakers, fifty-five

suitable American English speakers were chosen to create a k-fold leave-one-out

experimental procedure, with a smaller set chosen to analyse the performance of

non-native speakers. The American English speakers were randomly divided into

groups I-V as shown in Table 4.2. Group VI (comprising 11 randomly selected

non-native speakers) is designed purely to characterise the expected decreases in

ASR performance for non-native speakers – there is insufficient non-native data

to make adaptation useful, and the variation of nationalities is likely to make

system tuning problematic. In all instances, an effort was made to distribute

male and female speakers evenly, as well as distribute the utterance scripts to

limit text-dependency. For each speaker group, 160 utterances were randomly

chosen for each noise condition, giving a total of 800 utterances per group.

The five native English groups were split into a series of experimental folds

comprising 60% of the data for model adaptation, and 20% each for development
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Table 4.2: AVICAR database protocol speaker groups.

Group Speakers

I AM4, BM4, CF5, DF1, EF4, EM1, FF2, GM4, HF2, HM3, IF1

II AM3, BF5, BM1, CM1, DM2, EM4, FF5, GF2, HF3, IM5, JM2

III AM2, BM3, CF1, DF4, EF1, EM2, FM2, GF1, GM1, HF5, JF1

IV AM5, BF1, CF2, DF2, EF5, FM5, GF4, GM3, HM1, IM4, JF4

V AF2, BF2, DF3, EF3, EM3, FM4, GF5, GM5, HF1, HM4, JF5

VI AF3, BM2, CF4, CM3, DM3, FM3, GF3, HF4, IF3, JF2, JM4

Table 4.3: Protocol groups for k -fold leave-one-out ASR experiments.

Fold Adapt. Dev. Test Eval. Test Fold Adapt. Dev. Test Eval. Test

1 I, II, III IV V 6 II, III, V IV I

2 III, IV, V I II 7 I, III, IV V II

3 I, II, V III IV 8 II, IV, V I III

4 II, III, IV V I 9 I, III, V II IV

5 I, IV, V II III 10 I, II, IV III V

testing and evaluation testing. These groupings are shown in Table 4.3. Averag-

ing results over a number of folds enables more indicative speaker-independent

recognition results since individual groups may be affected by poor (or very good)

performance of one or two speakers. The first 5 folds are used for all experimenta-

tion in this dissertation as this ensures each speaker is used once in the evaluation.

The evaluation protocol also stipulates the use of the centrally located ar-

ray microphone (M4) for all single-microphone experiments. Multi-microphone

experiments can use whichever combination of microphones is required for the

particular enhancement technique.

In order to reflect command and control applications in car environments, task

grammars are chosen to be unconstrained word loops. This type of grammar

produces worst-case recognition results (i.e. it is a true baseline system); this

also allows improvements in ASR performance to be shown through the use of

language models or grammar constraints. For the phone numbers and TIMIT

sentences tasks, the number of words in the grammar are 11 and 773 respectively

therefore constituting the small and medium vocabulary tasks. Throughout this

research, only the phone numbers task is used as the performance of the sentences
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Figure 4.1: Location of 8-microphone array used in collecting the Australian
English In-Car Speech corpus.

task under such a task grammar is comparatively very low (see [66]).

More specific details on how this evaluation protocol was developed can be

found in [66]. A copy of the file lists used in this evaluation has been made

publicly available.

4.2.2 Australian English In-Car Speech Database

To collect speech data from the driver, a linear microphone array consisting of

8 high-quality omni-directional elements was fitted to the central roof console

of a 2008 VE Commodore as shown in Fig. 4.1. This location is an industry-

favoured position due to the ease of integration with existing electronics whilst

still providing good signal-to-noise ratios [119]. The microphones were spaced

symmetrically around the midline of the vehicle with 2 cm spacing between each

adjacent microphone. The average location of the driver’s mouth was estimated

(with reference to the microphone closest to the driver) to be 35 cm to the right,

25 cm below, and 17.5 cm behind this reference microphone.

A total of 50 native-English speakers were collected for this corpus consisting

of 20 female and 30 male drivers, all who had lived in Australia for at least 5 years

to allow for naturalisation to the Australian English dialect. Female speakers were

aged between 21 and 53 years; male speakers between 20 and 67 years old.

A command and control grammar (shown in Extended Backus-Nauer form in
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Table 4.4: Extended Backus-Nauer form grammar used in the collection of the
Australian In-Car Speech Corpus.

$Numbers = [ NUMBER ] ( $Single Digit |$Two Digits |$Three Digits |$Four Digits );

$Street = [ $Street Prefix ] $Street Name $Street Type;

$In Suburb = [ ( AT |IN ) ] $Suburb;

$Corner = ( CORNER |JUNCTION |INTERSECTION ) OF $Street AND $Street [ $In Suburb ] ;

$Address = ( [ $Numbers ] $Street $Suburb List ) |( $Suburb List $Street [ $Numbers ] ) |$Corner;

$Addr Cmd = ENTER ( ADDRESS |DESTINATION ) $Address;

$Other Cmd = RECALL DESTINATION $Single Digit |( START |STOP ) NAVIGATION |RETURN |BACK |MAIN MENU;

$Cmd = $Addr Cmd |$Other Cmd;

Table 4.5: Seven in-car noise conditions in the AEICS database.

Condition Description

C0 Car idle, sealed cabin, no HVAC

C1 Medium speed (50-60 km/h), sealed cabin, no HVAC

C2 Medium speed (50-60 km/h), sealed cabin, HVAC on full fan

C3 Medium speed (50-60 km/h), driver window open, no HVAC

C4 High speed (90-100 km/h), sealed cabin, no HVAC

C5 High speed (90-100 km/h), sealed cabin, HVAC on full fan

C6 Car idle, sealed cabin, HVAC on full fan

Table 4.4) was formulated to generate a large number of consistent utterances

for drivers to say in a variety of driving conditions based on a mock navigation

task. The lists of 20 suburbs, 1931 street names, 16 prefixes and 37 street types

were extracted from the Ausway index database. The task-oriented grammar

provides the potential to investigate language processing techniques which may

aid medium and large vocabulary command and control applications.

Seven different driving conditions were used as general audio scenes for utter-

ance recordings. These conditions were chosen to capture variety in general noise

types and levels present in the cabin of a vehicle whilst also representing likely

driving scenarios in Australia at that time. Table 4.5 lists these recording con-

ditions, where HVAC stands for the Heating, Ventilation, and Air Conditioning

system.
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Each speaker was recorded speaking a series of utterances in these driving con-

ditions. For each driving condition, the speaker recorded 6 utterances consisting

of one common, two repeated and three unique utterances. Common utterances

were a set of utterances which each participant recorded, one associated with

each specific driving condition. Repeated utterances occur more than once in the

entire database (and may occur in the same noise condition), though never occur

twice by the same speaker. Unique utterances occur only once across the entire

database. This procedure was chosen to collect some data which can be regarded

as speaker dependent whilst minimising the effect of text-dependency.

Utterances consisted of two different types of information – an address-style

utterance, or a chain of six commands (never in the same order for unique utter-

ances) used in a navigation system. It should be noted that the command chains

were separated into individual commands after collection. Examples of both of

these types of utterances are shown below.

Navigation: ENTER ADDRESS TWO GEORGE STREET BRISBANE or

ENTER DESTINATION JUNCTION OF COLLINS WAY AND

CORDOVA STREET WEST END

Command: MAIN MENU or START NAVIGATION or RETURN or

RECALL DESTINATION THREE.

More details on the data collection procedure can be found in [67].

Evaluation Protocol

The AEICS database is suitable for use in a number of speech processing fields

such as speech enhancement and speech recognition. The multiple channel record-

ing process ensures investigations into current beamforming techniques are pos-

sible. For single-channel experiments, microphone 0 is chosen as it is closest to

the driver and generates the highest ASR accuracies based on preliminary ex-

periments. Multi-channel techniques can utilise any combination of channels as

required by the individual technique.

Like the evaluation protocol for the AVICAR database, the 50 speakers are

divided into 5 groups of 10 speakers to enable model adaptation, development
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Table 4.6: Speaker groupings used in the Australian In-Car Speech Database
evaluation protocol.

Group Speakers # Utterances

I P04, P05, P11, P14, P16, P17, P21, P26, P35, P42 714

II P08, P09, P12, P15, P22, P27, P30, P34, P47, P49 840

III P02, P07, P18, P23, P38, P39, P43, P46, P54, P55 790

IV P10, P19, P24, P25, P31, P32, P36, P45, P52, P53 720

V P03, P06, P13, P20, P28, P29, P33, P37, P41, P51 749

and evaluation testing through the use of k-fold leave-one-out testing. The groups

(shown in Table 4.6) were randomly generated with some gender balancing as per

the previous evaluation protocol. Again, 60% of the data is made available for

adaptation, with 20% set aside for both development and evaluation testing. The

experimental folds are the same as those shown in Table 4.3. The first 5 folds are

used for all experimentation in this dissertation as this ensures all 50 speakers

are used in the evaluation.

Unlike the AVICAR evaluation protocol, the constrained grammar used for

utterance generation (see Table 4.4) is also used for ASR. The constrained gram-

mar is necessary since there are two types of potential input (i.e. commands

or navigation addresses), and using an open-word loop grammar could lead to

recognition hypotheses which make no sense for this application.

4.3 Experimental Configuration

4.3.1 Baseline Speech Recogniser

Throughout this research, the Hidden Markov Model Toolkit (HTK) [155] is used

for acoustic model training and utterance decoding. Context-dependent 3-state

left-to-right triphone HMMs were trained using the speaker-independent Wall

Street Journal 1 training dataset which consists of almost 70,000 utterances.

Unless otherwise noted, the full procedure outlined in Section 2.2.2 including

CMS and cepstral liftering was used to generate 39-D MFCC feature vectors –

13 MFCC (including C0) along with delta and acceleration coefficients – for each
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32 ms frame with 10 ms advance between frames. HMM states were represented

using a 16-component GMM for speech components, and a 48-component GMM

for silence models.

4.3.2 Speech Recognition Performance Measure

Evaluating the performance of ASR systems requires a performance metric which

enables simple comparisons of results. Two common measures used in such evalu-

ations are the word recognition rate and the word error rate. In this dissertation,

only the word recognition rate is referred to. The word recognition rate of a

speech recognition system is defined as:

Accuracy =
N −D − S − I

N
× 100% (4.1)

where N represents the total number of words in the experiment, D the number

of deletions, S the number of substitutions, and I the number of insertions.

A deletion occurs when a word from the known sequence is removed from the

hypothesised word sequence. A substitution occurs when a word from the known

sequence is replaced by a different word in the hypothesised word sequence. An

insertion occurs when a word is added in the hypothesised word sequence. The

hypothesised word sequence is that which is determined by the speech decoder as

the sequence with the greatest likelihood, whilst the known word sequence is the

true sequence of words. These two sequences must first be dynamically aligned

in order to correctly determine the word accuracy.

As an example of calculating the word accuracy, the following dynamically

aligned sequences comprise a known and a hypothesised word sequence from the

phone numbers task of the AVICAR database [76]. Substitutions are shown in

bold, deletions by ** and insertions are underlined. The overall word accuracy

of this sequence is 70% since there is one substitution, one deletion and one

insertion.

True: Six three zero seven one nine five eight seven three.

Hypothesised: Six three zero seven one nine nine eight oh seven **.
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Table 4.7: Parameters used in evaluating the various techniques.

Technique Parameters Spectral Floor

LSS γ = 1, α = 1, β = 0.45 Noise Estimate

MBSS γ = 2, β = 0.35 Noisy Speech Signal

MFNS α = 1, β = 0.45 Noisy Speech Signal

4.4 Baseline ASR Evaluation

A baseline ASR evaluation was conducted on both databases outlined in Sec-

tion 4.2 to assess the performance of three spectral subtractive speech enhance-

ment techniques, as well as model adaptation and task grammars in the case of the

AVICAR database. The enhancement techniques evaluated include frequency-

domain linear spectral subtraction (Eq. (3.3)), Kamath’s multi-band spectral

subtraction (Eq. (3.4)), and Mel-filterbank noise subtraction (Eq. (3.6)). The

subtraction and flooring parameters used for each of these techniques are shown

in Table 4.7. For all enhancement techniques, time recursive averaging with soft-

decision SAD (Eq. (3.12)) was used to estimate the noise with λ = 5 and η = 0.97

determined empirically based on preliminary ASR word accuracy performance.

Using data from the AVICAR database, the mean and variances of the original

acoustic models were adjusted using MAP adaptation with τ = 16 used for

weighting the prior speech model. In [66], it was observed that variance and

mean adaptation was most successful in adapting Gaussian mixtures to in-car

noise conditions. The high emphasis placed on the prior acoustic model can

be attributed to ensuring the models remain speaker-independent since there

are only 33 speakers in each adaptation fold. The experimental results in [66]

have not been included here in order to maintain focus on the evaluation of the

enhancement techniques.

Based on the empirically determined value of τ = 16 for the AVICAR database,

a value of τ = 8 was used for the AEICS corpus since there is a need to also put

emphasis on the Australian English dialect in the adapted acoustic models and

not just adapt to the noise conditions.

Finally, to demonstrate the performance difference between constrained and

unconstrained grammars, the open-word loop specified for the AVICAR phone



64 Chapter 4. ASR Evaluation Databases

Table 4.8: ASR baseline evaluation results for phone numbers task of the AVICAR
database.

Grammar
ASR Word Accuracy(%)

IDL 35U 35D 55U 55D

Baseline Open 71.6 49.6 37.2 42.9 24.7

Baseline Constrained 78.4 53.9 37.8 43.9 22.9

LSS Open 75.0 54.4 41.0 50.6 31.0

MBSS Open 74.2 50.7 37.6 47.3 29.6

MFNS Open 74.2 49.7 36.9 46.8 28.6

MAP Adaptation Open 82.8 77.4 69.4 76.2 59.2

MAP + MFNS Open 80.6 73.8 66.2 75.4 61.0

numbers task was altered to ensure decoding always produced sequences of 10

digits. As a result, the possible types of errors was reduced to deletions and

substitutions.

4.4.1 Experimental Results & Discussion

The speech recognition results for the AVICAR phone numbers task and the

AEICS corpus are shown in Tables 4.8 and 4.9 respectively. Throughout this

dissertation, references to “Baseline” results are those obtained by decoding the

original noisy speech signals. It should also be noted that results presented in [67]

for the AEICS corpus were a combined average of the command and navigation

tasks presented here.

Discussion

General Data Trends: Analysing the baseline system results for both datasets, a

number of observations related to in-car noise conditions can be made. Comparing

the results for all car speeds with either windows up or down (AVICAR) or

HVAC on or off (AEICS), it can be seen that an increase in vehicle speed –

which increases noise levels due to wind and road friction – causes degradation

in recognition accuracy. The decrease in performance is particularly noticeable

in the navigation task of the AEICS corpus when the air-conditioning system is
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Table 4.9: ASR baseline evaluation results on the AEICS corpus.

Task
ASR Word Accuracy(%)

C0 C6 C1 C2 C3 C4 C5

Baseline Commands 92.0 55.8 84.6 49.0 81.2 81.8 43.2

LSS Commands 94.0 72.6 88.1 68.3 88.6 86.3 67.7

MBSS Commands 94.2 72.3 86.6 69.6 88.4 85.9 67.6

MFNS Commands 93.8 71.0 85.4 69.6 87.0 85.5 66.3

MAP Adaptation Commands 99.1 96.9 98.7 95.5 98.6 98.5 94.8

MAP + MFNS Commands 98.7 98.4 98.5 98.3 99.2 98.3 96.6

Baseline Addresses 83.3 36.8 67.9 30.8 46.4 47.0 27.2

LSS Addresses 84.9 48.6 74.2 42.7 53.5 55.2 39.3

MBSS Addresses 85.8 48.1 74.7 41.5 56.4 53.3 37.7

MFNS Addresses 85.6 48.1 73.1 41.4 55.1 52.5 37.5

MAP Adaptation Addresses 91.3 69.4 86.2 71.2 81.6 81.5 68.6

MAP + MFNS Addresses 90.1 76.9 88.7 80.2 85.5 85.0 79.6

off (C0, C1, C4) – accuracies are 83.3%, 67.9% and 47.0% for idle, 50-60 km/h

and 90-100 km/h respectively.

In the AVICAR results, having the windows open appears to have more af-

fect on the recognition accuracy than simply increasing vehicle speed. This is

demonstrated through recognition accuracies showing better performance for the

car traveling at 55 mph with windows up (55U) compared to 35 mph with win-

dows down (35D). This result is in accordance with the findings of Zhang and

Hansen [157] who determined that road and wind noise dominate the noise field

when the windows are open. Compared with having the windows closed, this

scenario leads to greater decreases in accuracy as vehicle speed increases. This is

due to the fact that a sealed cabin acts as a filter and rejects some of the external

noise; opening the window subjects the cabin to amplified levels of road and wind

friction as vehicle speed increases.

For AEICS, having the air-conditioning system on appears to have the greatest

effect on ASR accuracy. In the idle case (C0 and C6), the performance differ-

ence is approximately 46.5% for the navigation task. Further, having the window
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down (C3) doesn’t degrade the performance anywhere near as drastically as air-

conditioning (C2). This effect is attributed to the location of the air-conditioning

vents which are directly beneath the microphone array; therefore fan noise is

recorded by the microphone at considerably higher amplitudes than noise coming

from the driver’s side window. This observation (along with that of the previous

paragraph) demonstrates the need for careful consideration of microphone place-

ment in the vehicle, as well as an understanding of ASR performance limitations

that may result from a particular choice of location.

Grammar: Using a constrained grammar on the AVICAR phone numbers task

improves recognition performance in most noise conditions, although the amount

of improvement reduces as the noise level increases, and leads to inferior word

accuracies in the noisiest condition (55D). Two factors are involved which lead to

these results. Firstly, the open word loop grammar was found to be particularly

susceptible to deletion errors, which is a direct result of the background noise.

Words are deleted in this instance as the noise completely masks the speech, and

the silence model is determined to be more likely than any speech component.

This is particularly true for words beginning with unvoiced components like /f/

as in “FOUR” or “FIVE” (which exhibited the highest deletion occurrences out

of the 11 digits). Unvoiced components are commonly regarded as having charac-

teristics similar to white Gaussian noise, and therefore tend to be easily masked

by background noise.

In the case of a constrained grammar, deletion and insertion errors occur to-

gether since every utterance must contain 10 digits. This grammar exhibited

less combined occurrences of deletions and insertion errors than the open word

loop grammar, but substitutions occurred more regularly. This was particularly

true in the 55 mph with windows down noise condition where the number of

substitutions was more than twice the number for the open word loop grammar.

Inspection of the confusion matrix showed most substitutions resulted in either

“OH” or “EIGHT” being recognised. These two words respectively accounted

for 48% and 33% of the substitutions in this noise condition. As observed previ-

ously, words which start with an unvoiced component are masked until a voiced
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component is present. Since there must now be 10 digits in the hypothesised ut-

terance, these words are substituted with words beginning with voiced phonemes

(“OH” or “EIGHT”) rather than deleted as was the case with the open word

loop grammar. Whilst there are other examples of words beginning with voiced

speech in this vocabulary (“ONE”, “NINE” and “ZERO”), these two words are

phonemically shorter which will make them more likely.

Model Adaptation: The application of MAP adaptation shows global improve-

ments over the baseline results in all noise conditions for both corpora. For the

AVICAR database, since the adaptation set consists of native American English

speakers, adaptation adjusts the models solely to the noise levels in the vehi-

cle. The improvement in word accuracy for all noise conditions excepting idle

(which is significantly more quiet) is more than 25%, proving the effectiveness

of MAP adaptation for this application. The scale of these improvements can

be attributed to task similarity between adaptation and test sets which both in-

clude a large number of digit samples from the small vocabulary phone numbers

task. This ensures the adaptation process accurately transforms the active tri-

phone models to the new in-car environment since there are many examples in

the adaptation set.

For the AEICS corpus, the increases in ASR performance can be attributed

to the two-fold adaptation to both the noisy in-car environment and the Aus-

tralian English speakers; although exact contributions of each factor are difficult

to ascertain and not considered important. The average 7.5% improvement in

word accuracy across the two tasks in the very low noise idle condition (C0)

demonstrates the contribution of adaptation to the Australian accent. All other

noise conditions exhibit improvements in excess of 14% for the command task,

and 18% for the navigation task due to dialect and noise adaptation. These re-

sults show that the AEICS corpus is more than suitable for adapting well-trained

American English acoustic models for in-car speech applications in Australian

environments.

Speech Enhancement: All three single-channel spectral subtractive enhance-

ment techniques provide word accuracy improvements over the baseline system.

This is true for all noise conditions with very few exceptions including idle in
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both datasets. The absolute improvements are seen to be greater in the noisier

conditions where the background noise considerably hinders speech recognition

accuracy. These results prove the value of using spectral subtractive speech en-

hancement in the front-end of a speech recogniser.

Comparing the performance of the three techniques shows that frequency-

domain LSS provides better overall performance than the other two techniques.

Despite using static values for the subtraction parameter (α = 1), these results

verify the belief in [10, 127] that optimising enhancement parameters based on

signal-level criteria (such as SNR in Kamath & Loizou’s MBSS method) does

not lead to optimal ASR performance. This result strengthens the motivation to

use likelihood-maximising techniques to optimise speech enhancement techniques

used in the ASR front-end; this is explored in Chapters 5 and 6.

Despite showing consistent improvements over the baseline system, MFNS

fails to match the ASR performance of frequency-domain LSS. Given that noise

components overlap with speech components in the frequency range below 1000 Hz

(a phenomenon which can be seen in Fig. 4.2), to explain these results we con-

sider the extreme case where two adjacent frequencies, f1 and f2, contain only

noise and only speech respectively. In this instance, the superior performance

of LSS can be attributed to the fine-grained nature of the subtraction process

which would remove most of the noise from f1 but not subtract anything from f2

ensuring the speech signal is fully preserved. This is because the noise estimate

at f1 will be close to the instantaneous magnitude, while the estimate at f2 will

be zero.

The spectral averaging prior to MFNS on the other hand, causes the noise and

speech components to be combined into the same filterbank which puts greater

emphasis on the noise estimation procedure and also the subtraction factors α

(which have been kept constant in this experiment and comparison). If noise is

oversubtracted from this filterbank, the speech component of the signal will likely

be distorted resulting in decreased ASR word accuracy.

From this analysis, it can be seen that the performance of MFNS is susceptible

to instances where noise and speech are present in adjacent frequencies which are

averaged into the same Mel-filterbank energy. This scenario is likely to occur
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Figure 4.2: Example spectrogram of speech recorded at 55 mph with windows
down.

in low-frequencies where the noise and speech signals overlap as seen for the in-

car noise case shown in Fig. 4.2. It should be noted however, that there is no

advantage in using LSS over MFNS when speech and noise signals exist at the

same frequency f as both methods have the potential of inaccurately subtracting

the noise estimate from the signal.

Speech Enhancement and Model Adaptation: Combining model adaptation

and MFNS speech enhancement yields results which are always better than MFNS

alone, but in the case of AVICAR are inferior to model adaptation in most noise

conditions. For the AVICAR database, the decreased ASR performance is due to

an objective conflict between the two techniques. MAP adaptation transforms the

clean speech models to some level of background noise based on the adaptation

data. Speech enhancement on the other hand, aims to transform the noisy speech

back to a clean speech estimate.

An example of this conflict for the AVICAR database is shown in Fig. 4.3

where the ‘blue mismatch’ represents the difference between adapted models and

noisy speech, and the ‘orange mismatch’ is the difference between adapted models

and enhanced speech for the 55U noise condition. It can be seen that by per-

forming speech enhancement and then ASR using adapted models can actually

increase the mismatch between the data and the models compared to the use

of model adaptation only. This explains the majority of the results seen in Ta-

ble 4.8, the only exception being the 55 mph with windows down condition which



70 Chapter 4. ASR Evaluation Databases

Noise Level

Original
Clean

Speech
Model

55D35D55U35UIDL

Adapted
Speech
Model

xxxxxxxxxxxxxxx
Adaptation

xxxxxxxxxxxxxxxxxxxxxxxxxxx Speech Enhancement
x
x
x
xxxxxxx

x
x
xMismatch

Mismatch

Figure 4.3: Example of the adaptation-enhancement conflict on the AVICAR
database.

improves by 1.7%. In this case, the very high level of noise in the original record-

ings increases the mismatch between noisy speech and adapted acoustic models

(i.e. the ‘blue mismatch’); therefore speech enhancement is able to make the

orange ‘mismatch’ smaller (albeit by enhancing the speech to contain less noise

than that present in the adapted models).

The results for the combined adaptation and enhancement scenario on the

AEICS corpus (Table 4.9) exhibits a different performance trend. Only the idle

noise condition (C0) shows a degradation in word accuracy which follows the

adaptation-enhancement conflict previously discussed. The improvement in ASR

accuracy observed in all other noise conditions suggests some imbalance between

adapting to both noise and dialect mismatches. For example, if adaptation focuses

on dialect more than noise, the overall noise levels in the acoustic model will be

lower than experienced in the AVICAR case. In this case, speech enhancement

will be able to further reduce the noise mismatch between the test data and the

adapted models.

Since Australian English speakers are used throughout the adaptation and

test sets, the improvement due to dialect adaptation should be constant across

all noise conditions, whilst improvements due to noise adaptation will vary due

to the remaining ‘blue mismatch’ in Fig. 4.3. Since the idle case (C0) has little

to noise background noise, it should benefit primarily from dialect adaptation,

and may even suffer from noise adaptation since the resulting noise levels in the

model will be greater than the idle condition. Looking at the results in Table 4.9

more closely, the relative improvement in word accuracy performance for idle on
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the address task is approximately 48%. In the case of traveling at 50 km/hr with

window down (C3), the relative improvement is increased to 65%, which suggests

the noise adaptation on this condition only contributes around 17% improvement

which is considerably less than the improvement due to dialect adaptation. As a

result, there will likely be noticeable noise mismatch, and so speech enhancement

is able to produce improvements over the system using only MAP adaptation.

This analysis of the speech recognition results provides some insight into the

processes occurring in both MAP adaptation and speech enhancement. Further

experimentation could be performed to examine this phenomenon more closely,

however a number of factors including the amount of training data and the em-

phasis to be placed on the original acoustic model will need to be considered

carefully. As a result, it was deemed unnecessary to further investigate this effect

in this dissertation.

Given the results on the accent-matched AVICAR database, it should be noted

that ASR performance could be improved with the joint adaptation-enhancement

approach if the enhancement was used as part of the feature extraction procedure

used in model training. Another approach to improve performance would be

to alter the enhancement parameters (α 6= 1) to better suit the new acoustic

model. Within the aims of this dissertation, the latter approach is preferred as it

enables the enhancement technique to be used with any acoustic model making

the approach independent of the data used for training and adaptation.

4.5 Research Directions

The experimental evaluation in Section 4.4 showed the ASR performance char-

acteristics of single-channel subtraction-type speech enhancement techniques. In

summary, these techniques were able to improve word accuracies when using

clean speech models, but failed to provide any performance gains when using

dialect-matched adapted acoustic models. Further, the best word accuracy per-

formance in very noisy conditions was around 60% which is unlikely to meet user

expectations.



72 Chapter 4. ASR Evaluation Databases

The research directions proposed in Chapter 3 were specifically directed at de-

signing speech enhancement techniques with improvements in ASR performance

in mind. The experimental results presented in this chapter have solidified this

position and also added the consideration of making these techniques suitable for

use with any acoustic model regardless of the nature of the data used in the train-

ing process. Chapters 5 and 6 consider a likelihood-maximisation technique which

satisfies both these objectives, whilst Chapters 7 and 8 look solely at improving

recognition accuracy when only clean speech acoustic models are available.

It would also be beneficial to examine the effects of combining model adap-

tation and speech enhancement specifically in scenarios where there are environ-

mental mismatches (e.g. office versus in-car) as well as mismatches due to speech

production (e.g. accent/dialect or stressed speech). The results of such a study

would enable system designers to fine-tune acoustic models based on a wider

range of user and environment requirements, and would be particularly useful in

creating effective in-car speech recognition systems for the Australian automotive

industry where there is currently limited speech resources.

4.6 Summary

This chapter has presented two in-car speech databases which are used throughout

this dissertation for ASR evaluation of speech enhancement techniques. The first

in-car speech database including Australian speakers (AEICS) was collected as

part of this thesis and was described in Section 4.2.2. The AEICS database

was shown to be suitable for developing in-car ASR applications in Australian

environments given existing systems trained on American English data.

The baseline recognition system and evaluation protocols for each database

used in this research were also outlined. Initial evaluation of the performance

of three different single-channel speech enhancement techniques was performed,

and showed each technique capable of improving the performance of a baseline

ASR system. The performance of these techniques failed to outperform acous-

tic model adaptation, and combining both enhancement and adaptation showed

different performance characteristics depending on the levels of mismatch. For
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a system with matched dialects in adaptation and test phases, decreased over-

all recognition accuracy was observed because of the mismatch incurred due to

the adaptation-enhancement conflict. A system in which there were mismatches

between dialects as well as noise conditions produced an acoustic model which

favoured dialect adaptation, enabling speech enhancement to improve the overall

ASR word accuracy when the two systems were combined.

The research directions proposed in Chapter 3 regarding the design of speech

enhancement algorithms which specifically improve speech recognition accuracy

were supported with experimental evidence which showed poor performance of

ASR in high noise environments and a need to carefully consider the data used

for acoustic modeling. In Chapter 5, a method called likelihood-maximisation is

applied to MFNS in order to optimise the enhancement parameters for improved

speech recognition performance; this approach is suitable for use with clean speech

and noise-adapted acoustic models.
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Chapter 5

Likelihood-Maximising Speech

Enhancement for Robust ASR

5.1 Introduction

Many of the single- and multi-channel speech enhancement algorithms presented

in the literature review in Chapter 3 were designed primarily to produce improve-

ments in the human intelligibility of speech signals. In doing so, most of these

techniques optimise enhancement parameters based on signal-level criteria such as

maximising signal-to-noise ratio, minimising speech distortion or minimising the

mean-squared signal error. Automatic speech recognition systems however, hy-

pothesise the most likely sequence of statistical acoustic models produced by the

observed feature vectors. Since ASR is a computer pattern recognition problem,

traditional optimisation of speech enhancement algorithms based on waveform

criteria do not translate into optimal improvements in ASR word accuracy.

The likelihood-maximisation (LIMA) framework was designed to overcome

this incompatibility of optimisation criteria in traditional enhancement tech-

niques. In Section 5.2, likelihood-maximisation is derived in general form, and

the limited studies which have employed this approach are reviewed with par-

ticular reference made specifically to studies employing spectral subtractive en-

hancement. The scope of research in this chapter is confined only to spectral

subtractive techniques as they are a common approach for single-channel speech

75
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enhancement, are computationally simple and provide sufficient levels of noise

reduction. Such considerations are very important for applications in automo-

tive environments as was outlined in the Scope of Research (Section 1.3). In

this dissertation, it is proposed to apply LIMA to Mel-Filterbank Noise Subtrac-

tion (MFNS), and a direct theoretical comparison with the existing application

employing frequency-domain Multi-Band Spectral Subtraction (MFNS) is made

in Section 5.3.

Whilst these studies have shown the promise of LIMA frameworks with a range

of enhancement techniques, some limitations in the approaches and experiment

procedures have yet to be addressed. Section 5.4 introduces potential methods

for overcoming some of these limitations and proposes extensions to the previous

application of LIMA to subtractive-type algorithms.

Having proposed the application of the LIMA framework to Mel-filterbank

noise subtraction, validation experiments are performed in Section 5.5. These

experiments also assess simplifications and extensions to the existing parameter

set, along with the performance of this technique using noise-adapted acoustic

models.

5.2 Likelihood-Maximising Speech Enhancement

5.2.1 Development of LIMA Framework

In Chapter 2, ASR was presented as a statistical pattern recognition problem

rather than a signal processing problem. For example, in this research acoustic

events are modeled as mixtures of Gaussian probability distributions; therefore

the goal of ASR is to determine the sequence of acoustic models which most

likely correspond to the observed feature vectors. Since speech enhancement is

incorporated as part of the feature extraction process, LIMA aims to determine

the set of enhancement parameters which maximises the likelihood of the correct

sequence of acoustic events being output from the ASR system. This section

demonstrates how this can be achieved for any speech enhancement technique
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with a set of P enhancement parameters defined by:

ξ = {ξ1, ξ2, ..., ξP}. (5.1)

In order to derive the LIMA approach for optimisation, first recall from Sec-

tion 2.3.2 the optimal Bayes’ classifier used for ASR decoding:

ŵ = argmax
wǫW

P (O|w)P (w) (5.2)

whereO is the sequence of observed features described by Eq. (2.10), and P (O|w)
and P (w) are the acoustic and language scores respectively. The observed feature

vectors are a function of both the input speech and the feature extraction proce-

dure; therefore, if speech enhancement is part of feature extraction, the observed

features are a function of the enhancement parameters:

ŵ = argmax
wǫW

P (O(ξ)|w)P (w). (5.3)

In Eq. (5.3) it can be seen that the language score is not dependent upon

the observed feature vectors (and therefore ξ), and can be ignored [127]. The

optimal set of enhancement parameters ξ is calculated such that it maximises

the acoustic likelihood P (O(ξ)|w) given a transcription wC which is assumed to

be known a priori :

ξ̂ = argmax
ξ
P (O(ξ)|wC). (5.4)

Practicalities of obtaining and utilising the correct word transcription wC in

vehicular environments are the focus of Chapter 6, and as such will not be dis-

cussed further in this chapter.

For HMM-based speech recognition systems, there are many possible state

sequences which generate the correct word transcription wC – these sequences

all contribute to the overall acoustic likelihood. Amongst the collection of cor-

rect state sequences SC is the most likely state sequence si for all frames i –

it is assumed that this particular sequence contributes the most to the total

acoustic likelihood (since many sequences are highly unlikely). This assumption

considerably reduces the computational complexity of the LIMA approach. The

maximum-likelihood estimate of the enhancement parameters ξ which optimises
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Figure 5.1: Generalised ASR likelihood-maximising framework for speech en-
hancement.

the log-likelihood of the acoustic state sequence si is therefore determined as [125]:

ξ̂ = arg max
ξ,s∈SC

{

∑

i

log(P (oi(ξ)|si)) +
∑

i

log(P (si|si−1, wC))

}

. (5.5)

This equation contains two terms which demonstrate the joint optimisation

problem encountered in this framework. The first term,
∑

i log(P (oi(ξ)|si)), de-
termines the optimal set of enhancement parameters given a correct and constant

state sequence si. The second term,
∑

i log(P (si|si−1, wC)), determines the opti-

mal state si given the correct word transcription wC and the previous state si−1

(N.B. the enhancement parameters are constant). Thus, the state sequence si

and the set of enhancement parameters ξ are jointly optimised, a process shown

graphically in the generalised LIMA framework in Fig. 5.1. Optimisation of the

recognised state sequence is achieved through the use of Viterbi alignment which

is similar to Viterbi decoding described in Chapter 2 but uses the known tran-

scription wC to generate a frame-by-frame alignment of model states.

Since the second part of Eq. (5.5) optimises only the state alignment, the

optimisation of the set of enhancement parameters for an HMM-based speech

recognition system is defined as:

ξ̂ = argmax
ξ

log(P (oi(ξ)|si)). (5.6)

A closed form solution to this optimisation problem does not exist due to the

complex signal processing involved in the feature extraction and speech enhance-

ment processes. Therefore, non-linear optimisation approaches such as gradient-

descent methods are required to solve this problem. In order to use gradient-

descent optimisation, it is required to determine the gradient of the likelihood
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function L(ξ):

L(ξ) =
∑

i

log(P (oi(ξ)|si)). (5.7)

Assuming the GMM defined by Eqs. (2.11)-(2.12), calculation of the gradient

and appropriate simplifications leads to the gradient function with respect to each

of the enhancement parameters (see [125] for full derivation) :

∇ξL(ξ) = −
∑

i

M
∑

m=1

χim(ξ)
∂oi(ξ)

∂ξ
Σ−1

im(oi(ξ)− µim) (5.8)

where χim(ξ) is the a posteriori probability of the mth mixture component in

state si given the observed feature vector oi(ξ) (for more details, refer to [125]).

The mean vector µ and covariance matrix Σ are required for each state i and

mixture component m in order to calculate the gradient. The remaining term in

Eq. (5.8) is the Jacobian matrix, ∂oi(ξ)
∂ξ

, which consists of the partial derivatives

of each feature vector element at frame i with respect to each of the parameters

of the speech enhancement technique. The derivation of the Jacobian matrix is

unique to each speech enhancement technique – examples of Jacobian matrices

can be found in the references cited in Section 5.2.2.

Having obtained the Jacobian elements for the speech enhancement technique

of interest, the optimal set of enhancement parameters can be obtained using the

method of conjugate gradients [104]. This has been the most popular approach to

solving this non-linear optimisation problem in previous studies [10, 127], and will

be used in all experimentation involving the LIMA framework in this dissertation.

The joint optimisation process continues until both the enhancement param-

eters and the state sequence converge. Given variations in speakers, noise condi-

tions and utterance lengths, the number of optimisation iterations is not bounded,

and could be very time-consuming in order to guarantee convergence. This partic-

ular consideration is explored in more detail for in-car applications in Chapter 6.

5.2.2 Previous LIMA Speech Enhancement Studies

Despite the potential of LIMA-based speech enhancement for improved robust

ASR, very few studies have yet to apply this approach. The first major study and

derivation was performed by Michael Seltzer and colleagues at Carnegie Mellon
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University [125, 127]. In their research, the LIMA approach was originally applied

to a time-domain multi-microphone filter-and-sum beamformer; they termed this

technique LIMABEAM. Their research also considered practical use of the LIMA

approach – the proposed methods will be discussed in detail in Chapter 6.

Optimisation in LIMABEAM was used to determine 140 filter weights in the

log-Mel spectral domain as opposed to the Mel-frequency cepstral domain, how-

ever ASR was still performed on MFCC features using parallel acoustic models.

Performance evaluation in moderately noisy and reverberant office environments

showed an average 17.5% relative improvement over both conventional delay-and-

sum beamforming and a filter-and-sum beamformer with post-filtering. Further

improvements in ASR performance were obtained by applying other robust ASR

techniques including MLLR adaptation after LIMABEAM. This collection of ex-

periments demonstrated the potential of LIMA frameworks for robust ASR using

speech enhancement. The authors successfully extended the system to sub-band

LIMABEAM designed specifically to improve the performance of LIMABEAM

in highly reverberant environments [128].

A similar framework was used by Shi et al. [130] for optimising the single

parameter which determines the aggressiveness of the dual-channel phase-error

filter discussed in Section 3.5.3. This parameter was optimised using a generalised

EM algorithm in the MFCC feature space, however the acoustic models were

trained with phase-error filtered clean speech data rather than unprocessed clean

speech data. This system outperformed the static phase-error filter as well as a

dual-channel delay-and-sum beamformer with post-filtering under a wide range

of input SNR.

More recently, LIMA was applied to a multi-band spectral subtraction tech-

nique [9, 10]. In this research, 25 Mel-spaced sub-bands were used to perform

spectral subtraction in the frequency-domain. The expression for the Jacobian

elements, ∂oi(ξ)
∂ξ

, was also extended to account for the inclusion of CMS in the

feature extraction process:

∂oi(ξ)

∂ξ
=
∂oi(ξ)

∂ξ
− 1

T

T
∑

i=1

∂oi(ξ)

∂ξ
(5.9)

where T is the total number of frames in the utterance. Details of this technique
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are provided in Section 5.3.1 and compared with the proposed Mel-filterbank

noise subtraction implementation in Section 5.3.2.

In [10], the multi-band spectral subtraction approach was accompanied by an

extensive experimental evaluation. Phoneme recognition was performed on two

clean speech datasets which were mixed with a range of noises to satisfy a range

of SNR. The LIMA approach showed consistent accuracy improvements over a

modified version of the multi-band spectral subtraction proposed by Kamath and

Loizou [64] as well as a system with no speech enhancement. Other important

outcomes from this study include:

1. On clean speech data, the LIMA approach recovers decreases in ASR per-

formance which are incurred by traditional speech enhancement techniques;

the resulting recognition accuracies closely match those obtained on clean

speech.

2. In scenarios where noise levels change during a recording, LIMA speech

enhancement still provides improved speech recognition accuracy.

3. The use of a single enhancement parameter in the LIMA framework can

outperform the spectral subtraction method proposed by Berouti et al. [13].

4. LIMA speech enhancement can be used with acoustic models which are

trained on noisy speech data. The LIMA optimisation process adapts the

enhancement parameters to best fit the statistics of the acoustic model; in

other words, it minimises any train-test mismatch which results from the

operating environment. As such, the LIMA approach can be seen to be

independent of the data used for acoustic model training.

5. The inclusion of CMS in the feature extraction process (and subsequently

LIMA speech enhancement) results in over 30% absolute word error reduc-

tion on data recorded in a 15 dB office environment.

Despite these promising outcomes and the size of the evaluation, there are a

few shortfalls which will be discussed in Section 5.4.

All the studies discussed in this section optimised the enhancement param-

eters based upon the state sequence for an entire utterance. As a result, the
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enhancement parameters are the best match for a wide range of HMM states, but

not necessarily optimal for a specific acoustic event. The standard LIMABEAM

algorithm was extended to derive a separate set of filter weights during calibra-

tion for each phone observed in the calibration utterance [70]. Their experiments

showed a small number of filter-taps is best in order to avoid over-fitting to the

small amount of calibration data for each phone. Using this setup, it was possible

to achieve a 12.2% relative improvement over the utterance-based LIMABEAM

method used by Seltzer et al. [127] in low SNR conditions. Despite the improve-

ments in ASR performance, this method is likely to incur considerable overhead

during decoding of an unknown utterance as each input frame must be processed

by the filters for all phones. At this point in time, the authors have not proposed

a method to reduce this overhead.

5.3 LIMA Applied to Spectral Subtractive Speech

Enhancement

5.3.1 Multi-Band Spectral Subtraction

BabaAli et al. [9, 10] propose the use of overlapping Mel-spaced sub-bands to

perform multi-band spectral subtraction in the frequency domain. The advantage

of using MBSS as opposed to applying a subtraction factor α for each frequency

band is that the size of the parameter space to be optimised is considerably

reduced. Using MFCC feature extraction as defined in Chapter 2, the number of

parameters P can be reduced from 257 (i.e. (N/2) + 1 where N is the length of

the DFT) to 26. In their implementation, a subtraction factor αl is used for each

Mel-spaced filter l, which is defined in the frequency domain as:

α̂l(k) =











αl f l
L ≤ k < f l

U

0 otherwise

(5.10)

where f l
L and f l

U are the lower and upper frequencies of the lth Mel-filter. Due

to the overlapping nature of these filters, it is also necessary to introduce a vec-

tor B which accounts for this overlap (N.B. in frequencies with overlapping filters
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B(k) = 2, otherwise B(k) = 1). The resulting spectral subtraction rule used in

the MBSS implementation [10] is defined as:

|Ŝi(k)|2 =
(

|Y i(k)|2 −
L
∑

l=1

α̂l(k)

B(k)
|D̂i(k)|2

)

× U

(

|Y i(k)|2 −
L
∑

l=1

α̂l(k)

B(k)
|D̂i(k)|2

)

(5.11)

where U is the Heaviside step function, and i is the frame index. From this

equation they derive the gradient of |Ŝ(k)|2 with respect to each of the subtraction

factors αl as:

∂|Ŝ(k)|2
∂αl

=











−|D̂(k)|2

B(k)
f l
L ≤ k < f l

U

0 otherwise.

(5.12)

In implementing Eqs. (5.11)-(5.12) the authors removed the spectral flooring con-

dition β|Y i(k)|2 by setting β = 0; this was due to their belief that the subtraction

factor α is the sole important parameter in spectral subtraction for ASR. It should

be noted that this formulation differs from all implementations of spectral sub-

traction since the original work by Boll [14] which remove the hard spectral floor

imposed by half-wave rectification. This implementation was confirmed with the

authors, however we were unable to replicate their results as attempts to imple-

ment their approach have failed to converge. Consequently, we have not been able

to perform an experimental comparison between their technique and the proposed

MFNS approach. Please refer to Section 5.3.2 for a comparison of computational

complexity.

The Jacobian element for the cth element of the observed feature vector o in

frame i w.r.t. the lth subtraction factor is determined as:

∂oic
∂αl

= −
L−1
∑

l=0

Φcl

M i
l

N/2
∑

k=0

vl(k)
∂|Ŝi(k)|2
∂αl

(5.13)

where vl(k) is the coefficient of the lth Mel-filterbank for the kth frequency com-

ponent, N is the length of the DFT, Ml is the energy of the lth Mel-filterbank,

and Φ is the C × L DCT matrix.

It should also be noted that BabaAli et al. apply no constraints on the es-

timated parameters, therefore it is possible for the subtraction parameters to

become negative in situations where the test data is less noisy than the training
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data. Whilst this may be suitable for that particular scenario, it may cause prob-

lems if the next speech recording comes from a noisier environment. For example,

in an automotive application where training data may come from a range of noise

conditions, optimisation performed on speech from the idle noise condition would

be the most likely to result in negative enhancement parameters. This outcome

is potentially problematic if the next speech recording comes from a significantly

more noisy environment such as driving at 90-100 km/h with the HVAC on. The

effect on ASR performance of applying constraints to the optimised parameters

will be investigated in Section 5.5.

5.3.2 Mel-Filterbank Noise Subtraction

In this research, Mel-filterbank noise subtraction is considered for application in

the LIMA framework. In this case, the number of enhancement parameters in the

set ξ is the same as that used in the MBSS approach described in Section 5.3.1,

however the subtraction is performed on Mel-filterbank energies rather than power

spectra. For this application, the form of MFNS presented in Section 3.3.1 is used:

Ei
Y (l) =

∫ f l
U

f l
L

|Y i(k)|dk

Ei
D̂
(l) =

∫ f l
U

f l
L

|D̂i(k)|dk

Êi
S(l) =











Ei
Y (l)− αlE

i
D̂
(l) Ei

Y (l)− αlE
i
D̂
(l) > βEi

Y (l)

βEi
Y (l) otherwise

(5.14)

where Ei
Y (l), E

i
D̂
(l) and Êi

S(l) are the energies of the lth Mel-filterbank of the

noisy speech, noise estimate and the estimate of the clean speech filterbank energy

respectively, and β is the spectral flooring factor. It should be noted that the

clean speech filterbank energy estimate Êi
S(l) is equivalent to Ml in Eq. (5.13).

In the case of MFNS, the Jacobian elements are:

∂oic
∂αl

=
L−1
∑

l=0

Φcl

Ei
Ŝ
(l)

∂Êi
S(l)

∂αl

(5.15)

The expression for
∂Êi

S
(l)

∂αl
is fully derived in Appendix A. Substituting in the
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Figure 5.2: Comparison of the computational requirements for each iteration of
the method by BabaAli et al. [10] and the proposed MFNS-based method.

result to Eq. (5.15), the full expression for the Jacobian elements is expressed as:

∂oic
∂αl

= −1

2

L−1
∑

l=0

ΦclE
i
D̂
(l)

Êi
S(l)

(

1 + sign
{

Ei
Y (l)(1− β)− αlE

i
D̂
(l)
})

(5.16)

where sign{X} = X/|X|.
The major differences between the proposed method and that used by

BabaAli et al. are shown in Fig. 5.2. The two approaches have a number of

blocks in common – signal analysis and DFT, application of the Mel-filterbank,

and the cepstral transform and DCT. Common processes used on an iteration-by-

iteration basis will not be considered in the following computational complexity

comparison since they contribute identically to both techniques. The main differ-

ence between the two approaches is the domain in which the partial derivatives

∂
∂ξ

are calculated (i.e. their domain of operation).

In optimisation problems, the aspect which contributes most to the overall

computational complexity is the number of iterations required for convergence.

Although we have been unable to quantify this experimentally, there is no reason

to believe that one of these methods will converge faster than the other (N.B. this

assumption will be revisited). Making this assumption, it is therefore necessary to

compare the complexity of these two methods in terms of the processing required

during each iteration.

The iteration-by-iteration processing for each approach is highlighted in red

in Fig. 5.2. This figure shows that the proposed method avoids the need to apply
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the Mel-filterbank to the derivative ∂
∂ξ
, a process with O(K) complexity where

K = N/2 + 1.

The other point of deviation between the two methods is the derivative cal-

culation. Ignoring all information which can be calculated once and stored, both

derivative calculations involve a single multiplication for each element of the rel-

evant spectrum. For the proposed MFNS-based method, the complexity of the

derivative calculation is O(P) (where P is the number of filterbanks/enhancement

parameters), whereas the complexity of the original method – since it operates

in the frequency domain – is O(K).

The relevant computational complexity of the proposed algorithm is therefore

O(P) compared to the original method which is O(K)+O(K). Since P ∝ log(K),

it can be seen that the original method is exponentially more expensive than the

proposed MFNS-based method on an iteration-by-iteration basis. Therefore, if

the original method did converge faster, it would need to do so exponentially in

order to counteract the extra complexity in each iteration.

Another consequence of the logarithmic relationship between P and K is

the effect of scaling on these algorithms. For example, if the signal sampling

rate was doubled, and the analysis window size maintained, the resulting signal

spectrum would become 2K, therefore doubling the computational complexity of

the method proposed by BabaAli et al. [10]. For the proposed method however,

the increase in complexity is considerably less since the increase in Mel-filterbanks

is proportional to log(2).

5.4 Extensions to Existing LIMA Research

5.4.1 Optimisation on MFCC Features

In the initial evaluation of likelihood-maximisation, Seltzer et al. [127] optimised

the filter-and-sum beamformer filter weights using features from the log-Mel spec-

tral domain rather than the cepstral domain despite using MFCC features for

ASR. Log-Mel spectral coefficients were chosen since the magnitudes of all coeffi-

cients are of a similar dynamic range whereas the magnitude of cepstral features
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Figure 5.3: (a) Cepstral lifter and (b) output of the cepstral lifter on a single
frame of speech.

decrease as the order increases. In gradient-descent optimisation, if dynamic

ranges vary, components with larger magnitudes dominate the resulting objective

function [127] which makes optimising cepstral coefficients problematic. Previous

research has failed to propose methods for normalising the cepstral coefficient

dynamic range so optimisation can take place effectively on MFCC features, yet

some studies have still applied optimisation to these features [10].

The cepstral lifter – which was introduced in Section 2.2.2 – is designed to

increase the dynamic range of the higher-order coefficients. The cepstral lifter Ψ

used throughout the experiments in this dissertation has the form:

o′ic = Ψco
i
c =

(

1 +
22

2
sin
(πc

22

)

)

oic (5.17)

and is shown graphically in Fig. 5.3(a). It can be seen that as the order of the

cepstral coefficient is increased, the lifter response also increases. The effect on

the speech signal is shown in the example in Fig. 5.3(b) which shows the maxi-

mum values of each cepstral coefficient are better matched across the full range

of coefficients than was the case without liftering. This reduction in variation

across the cepstral coefficients is the property of the lifter which has the poten-

tial to reduce the effect of components dominating the objective function used in

gradient-based optimisation.
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To integrate cepstral liftering into the gradient function, each partial deriva-

tive in Eq. (5.15) is multiplied by the lifter coefficients Ψ:

∂oic
∂αl

= Ψc

L−1
∑

l=0

Φcl

Ei
Ŝ
(l)

∂Êi
S(l)

∂αl

(5.18)

5.4.2 Evaluation of Spectral Subtractive LIMA

Despite the comprehensive evaluation performed in [10], there are still some gaps

in the knowledge acquired from their experimentation. Below are proposed eval-

uation procedures to fill these knowledge gaps.

1. The effect of the spectral flooring factor β on the optimisation has yet to be

determined. To examine these effects, it is proposed to perform optimisation

on β alone (i.e. keeping α constant), and also in combination with α.

2. No comparison between the use of a single subtraction factor for all filter-

banks and a separate factor for each filterbank has been made. If the single

subtraction factor produces similar performance, it will considerably reduce

the processing time required to perform the optimisation.

3. All speech recognition experiments performed were either isolated word or

phone recognition tasks; no reference was made to continuous speech recog-

nition. This research will evaluate the performance of spectral-subtractive

LIMA on continuous speech recognition tasks in the AVICAR database and

the AEICS corpus (navigation address task).

4. LIMA-based MBSS was shown to provide further improvements to an ASR

system using noise-adapted speech models, however the adapted models

didn’t consider the performance under other mismatches such as differing

dialects or stressed speech. Using the Australian English data in the AEICS

corpus, this research can evaluate the word accuracy performance of the

LIMA framework when a second mismatch is present in the test data.1

1A study on the performance under Lombard speech was initiated during an internship at
the University of Texas at Dallas, however results of this study were incomplete at the time of
submission of this dissertation.
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5.5 Experiments & Discussion

A series of experiments were conducted primarily to address the limitations of

previous evaluations (Section 5.4.2). In particular, these experiments aim to

provide:

• A comparison of constrained and unconstrained optimisation of the over-

subtraction factor α;

• An evaluation of the effectiveness of the spectral flooring factor β as a

parameter for optimisation;

• An analysis of the performance of difference combinations of enhancement

parameters used in optimisation;

• An evaluation of the use of cepstral liftering to reduce the variation in

dynamic range of the cepstral features and therefore provide even weightings

for optimising each element;

• An evaluation of LIMA frameworks on test data which consists of two mis-

matches – one due to noise and one due to speech production variabili-

ties (e.g. the Australian English dialect using American English acoustic

models); 2

• An indication of the general importance of model adaptation and the re-

sulting choice of enhancement parameters.

The experiments reported in this section utilise the baseline speech recogniser

and evaluation protocols described in Section 4.3. An alteration to the protocol

for the AVICAR database was required in order to ensure utterances were avail-

able for each speaker in each in-car noise condition. This led to a subset of 38

speakers for these experiments.

For experiments reported here which use only CMS (i.e. no cepstral lifter),

a separate acoustic model was trained using the same Wall Street Journal 1

2Dialect – as opposed to accent – is used throughout this dissertation to represent the
difference between American English and Australian English. The term accent can be used to
refer to the realisation of English by non-native speakers; as a result, dialect is chosen since
only data from native English speakers are used in these evaluations.
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data. Data for model adaptation was made available according to the evaluation

protocols defined in Section 4.3.

Being an optimisation problem, the number of iterations used in the joint

optimisation process is an important part of the experimental set-up. In this

chapter, only one joint optimisation iteration was performed (i.e. only one decode

pass). This level of optimisation was based on the results presented in Chapter 6

which show that care must be taken to avoid over-optimising the enhancement

parameters when LIMA-based speech enhancement is employed on in-car speech

data. The number of gradient-descent iterations differ depending on the acoustic

model used and the set of enhancement parameters ξ being optimised – they

are chosen to provide the best improved performance across all noise conditions.

These values will be noted on an experiment-by-experiment basis.

The LIMA framework applied in this chapter is speaker- and noise-dependent

calibration whereby the first utterance for each speaker in each different noise

condition is used to optimise the enhancement parameters. This particular frame-

work was used since it best matches the experimental procedures used in previous

research [10]. More information on this implementation of the LIMA framework

can be found in Chapter 6. Limitations on the number gradient-descent iterations

have been applied throughout this chapter given the ease of over-optimisation

and its detrimental effects on ASR performance – effects which are highlighted

in Chapter 6.

The ASR performance of various LIMA-based MFNS configurations is com-

pared with both a baseline ASR system with no speech enhancement, and a

version of MFNS which uses static parameters as per the experimentation in

Chapter 4. For the experiments without cepstral liftering, β = 0.4, whereas

β = 0.45 for the cases with cepstral liftering. The static oversubtraction factor

αl = 1 was used for all experiments.3 These parameter values were also used as

the initial values for the optimisation process.

Computational factors were obtained by running a number of the configura-

tions on a set of 35 utterances. In all cases, the code was optimised to ensure

3The notation αl refers to a separate parameter for each filterbank as opposed to a global
parameter denoted as α. The same notation is used for β in Sections 5.5.3-5.5.4.
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minimal processing was required during each iteration. The results quoted in

this section were obtained by comparing CPU times for each experiment and

normalising to a reference experiment (i.e. the reference experiment has a com-

putational factor equal to 1). Computational analysis was performed only on

the AVICAR dataset because the length of all utterances are approximately the

same, whereas utterances in the AEICS corpus consist of both short commands

and long navigation addresses which makes comparison of computation times

misleading. Computation factors for the baseline systems are not included as

they do not provide a fair comparison with the optimisation framework.

In this chapter, only results for the navigation address task of the AEICS

corpus are quoted since this thesis is most interested in continuous speech recog-

nition. Appendix B contains the results for the commands task.

5.5.1 Constrained Optimisation

In the work by BabaAli et al. [10], they suggested removing constraints on the

oversubtraction factors α in order to reinforce some frequencies; this approach

may be particularly useful if the general level of noise in the acoustic model is

greater than the noise in the test data. This did, however, raise concern over the

generality of the optimised parameters (as discussed in Section 5.3.1). In order

to determine if there is potential to lose generality by relaxing the parameter

constraints, the ASR performance with and without parameter constraints was

compared. For both cases, it was found that the best ASR performance across all

noise conditions occurred using 4 gradient-descent iterations. These results are

shown in Tables 5.1-5.2.

Given that the best ASR performance for both constrained and unconstrained

optimisation was obtained at the same number of iterations, the results in these

tables can be used to directly compare both the computation time and ASR

performance of these approaches. From a computational perspective it can be

seen that the application of constraints incurs only 2.6% processing overhead.

This small increase in processing is attributed to the fact that for all optimisation

iterations prior to convergence, constraints were applied in less than 0.5% of cases.

In terms of speech recognition accuracy, it can be seen for both datasets that
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Table 5.1: Comparison of constrained and unconstrained optimisation on the
AVICAR phone numbers task.

Experiment GD Iter.
ASR Word Accuracy (%) Computation

IDL 35U 35D 55U 55D Factor

Baseline NA 70.4 48.8 36.2 41.8 23.5 NA

Static MFNS NA 73.8 48.3 37.9 44.8 27.2 NA

Constrained 4 74.1 50.2 38.5 45.3 27.2 1.0

Unconstrained 4 74.0 50.8 38.1 45.4 27.0 0.974

Table 5.2: Comparison of constrained and unconstrained optimisation on the
AEICS navigation address task.

Experiment GD. Iter
ASR Word Accuracy (%)

C0 C6 C1 C2 C3 C4 C5

Baseline NA 83.4 37.8 67.5 30.6 47.8 48.0 26.5

Static MFNS NA 85.4 48.3 74.4 43.0 56.9 55.4 38.5

Constrained 4 85.2 45.4 73.6 40.6 56.6 54.3 37.1

Unconstrained 4 84.9 46.0 74.0 41.0 56.7 54.1 36.6

neither approach produces global improvements over the other, with word accu-

racies varying by at most 0.6%, but generally by less than 0.3%. This similarity

in ASR performance is attributed to the fact that constraints are only applied

to approximately 20% of the calibration utterances, resulting in the majority of

the optimised parameters being common to both constrained and unconstrained

optimisation.

The similarity in computation and ASR performance between constrained

and unconstrained optimisation shows that relaxing the constraints on αl does

not result in the final parameter values losing generality, which justifies the un-

constrained optimisation approach chosen by BabaAli et al. [10]. Despite this

justification, it is chosen to utilise constrained optimisation throughout the re-

mainder of this research, namely for the improvements in performance that are

shown for the noisier conditions of the AVICAR database (i.e. the two windows

down conditions) which are the worst performing conditions across both evalua-

tion datasets.

Before moving on to assessing cepstral liftering, it is important to note the
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overall performance characteristics of LIMA-based MFNS on the two datasets.

For the AVICAR database, there are small (but ever-present) improvements in

ASR performance over the static speech enhancement case. The same can not

be said of the AEICS corpus where the closest the proposed system comes to the

static enhancement case is 0.2%, with the performance dropping by as much as

2.9% below baseline enhancement. This observation is attributed to the sensitiv-

ity of the LIMA approach to a second level of acoustic model mismatch.

As explained in Sections 5.2-5.3, LIMA-based speech enhancement is designed

to reduce the background noise present in the test data given the acoustic model

used for ASR. If the acoustic model is trained or adapted using noisy speech

data, the LIMA approach will match the level of noise in the incoming speech

recording to the acoustic model. As such, the LIMA approach only deals with

the mismatch due to noise. In the case of the AEICS corpus however, there is a

second mismatch which is due to dialectal differences between American (training

data) and Australian English (test data). This dialectal difference was shown to

be quite significant given the improvements in ASR performance in Chapter 4

when the American English acoustic model was adapted with a subset of the

AEICS corpus prior to testing.

Differences between accents and dialects are typically divided into four main

categories [141, 145]. Of particular interest to the scenario discussed here are

differences between the lexical realisations of words, and differences in the acoustic

realisations of the two dialects. Examples of these two differences are shown in

Fig. 5.4.

Lexical differences occur due to the pronunciations of words in two dialects –

phonemes can be deleted, substituted, or inserted. In the example in Fig. 5.4(a),

the phoneme /t/ is deleted in the Australian English realisation of “ENTER”,

whilst both “JOHNSON” and “MELBOURNE” contain phoneme substitutions.

Lexical differences are particularly problematic for the forced alignment process

that occurs in the LIMA framework.

Forced alignment converts the word sequence (which is known a priori) into

its phone-level transcription; this lower-level transcription is used to match each

observation vector to a HMM state. Thus, if the lexicon fails to provide a true
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Figure 5.4: Two examples of multiple levels of acoustic mismatch due to differ-
ences in the (a) lexical realisations, and (b) acoustic realisations of two dialects.

realisation of a particular word in the Australian dialect, the sequence of HMM

states chosen during forced alignment may be incorrect. In the case of the dele-

tion seen in Fig. 5.4(a), the phoneme /t/ will be forced to be a part of the state

sequence, even if the speaker used the alternative pronunciation. These states

will therefore be unreliable and are likely to throw off the values of the optimised

enhancement parameters since the wrong models are being used in the optimisa-

tion. In this dissertation, some effort was made to convert the American English

lexicon to an Australian English version, so the effect of lexical differences should

be minimal, although some inaccuracies will still exist as a number of words have

multiple pronunciations.

Differences in the acoustic realisation of phonemes are therefore regarded as

the major factor in the performance characteristic observed in Table 5.2. In

comparison to both British and American English, Australian vowels exhibit a

number of differences in the formant space [141]. In particular, some Australian
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vowels exhibit a rise in formant frequency, some have more open realisations, and

some vowels are even closer together than in American English. This means, for

words pronounced with the same phonemes, the observed acoustic events will be

considerably mismatched, as can be seen by the example for phoneme /æ/ in

Fig. 5.4(b) which shows both noise and dialect mismatches. In this instance, any

phoneme that is realised acoustically different to the American English acoustic

model will be unreliable, which could be a significant number of the force-aligned

states.

Despite removing the noise mismatch, the LIMA framework appears suscep-

tible to the second layer of mismatch present in the AEICS corpus. This could

be counteracted by adapting the original acoustic models to incorporate the Aus-

tralian English dialect; this approach is evaluated in Section 5.5.4. The evaluation

of cepstral liftering and parameter combinations in the next two sections utilise

the original clean speech models; therefore only the AVICAR database is used to

avoid the problems observed regarding secondary acoustic mismatches.

5.5.2 Cepstral Liftering

In Section 5.4 cepstral liftering was introduced to the LIMA framework in order

to make the optimisation more effective on Mel-frequency cepstral coefficients

which previously suffered from the effects of varying dynamic ranges across the

coefficients. The ASR performance using LIMA-based MFNS with CMS and

cepstral liftering on the AVICAR database is compared with that of a framework

using only CMS in Table 5.3. Like the CMS-only system evaluated in the previous

section, the liftered version also performed best using constrained optimisation

with 4 gradient-descent iterations.

Despite incurring very minor increases in computation (0.1%), cepstral lif-

tering appears to provide no advantages over the CMS-only system when the

LIMA framework is applied. Analysing the baseline systems (with and without

enhancement) it can be seen that cepstral liftering fails to provide a solution

which improves ASR performance in all noise conditions. This tends to suggest

that the cepstral lifter employed in this research is not suitable for improving
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Table 5.3: Comparative performance evaluation of LIMA framework on the
AVICAR phone numbers task with and without cepstral liftering.

Experiment GD. Iter
ASR Word Accuracy (%) Computational

IDL 35U 35D 55U 55D Factor

Baseline NA 70.4 48.8 36.2 41.8 23.5 NA

Static MFNS NA 73.8 48.3 37.9 44.8 27.2 NA

CMS Only 4 74.1 50.2 38.5 45.3 27.2 1.0

Baseline NA 71.5 47.8 35.6 40.2 24.0 NA

Static MFNS NA 74.5 49.2 36.6 44.0 28.1 NA

CMS + Liftering 4 74.2 49.4 37.5 43.9 27.6 1.001

the performance of in-car speech recognition, in spite of the dynamic range nor-

malisation that occurs as shown in Fig. 5.3(a). If this lifter is inappropriate for

this type of test data, the comparison of the two LIMA-based enhancement sys-

tems in this section will be unreliable. Therefore, future research is required to

determine an appropriate lifter prior to evaluating the effect of liftering in the

likelihood-maximisation approach.

5.5.3 Parameter Combinations

Previous work in LIMA-based spectral subtraction failed to quantify the effects

of optimising the oversubtraction factors α as well as the spectral flooring fac-

tor β. In this section, various combinations of parameters have been evaluated

on the AVICAR database. These combinations include single parameters for all

Mel-filterbanks (α, β), parameters for each Mel-filterbank (αl, βl), as well as

combinations of αl and β.

Prior to performing ASR experiments, the number of iterations required for

convergence of each set of parameters was determined. The mean and median

number of iterations for each set of parameters can be found in Table 5.4. In

general, the number of iterations required for convergence increases as the num-

ber of parameters increase, however an exception to this rule are the combined

parameter sets which converge faster than using a single oversubtraction factor.

The reason behind this may be due to the incorporation of β which converges
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Table 5.4: Comparison of number of iterations for convergence for each of the
parameter combinations.

1× α 1× β 26× α 26× β

[26× α] [26× α]

+ +

[1× β] [26× β]

Mean Iterations 12.5 5.7 17.5 9.1 11.0 11.7

Median Iterations 10 5 17 8 11 11

in half the number of iterations required for the same number of oversubtraction

factors. If β is converging quickly in the cases where both parameters are opti-

mised, the oversubtraction factors may be forced to search for local maxima in

the vicinity of β. Given the fact that over-optimisation is a serious issue for this

framework (as shown in Chapter 6), convergence caused by local maxima should

be avoided since less iterations than required for convergence will be best suited

to ASR.

The reason why the two parameters converge at different rates is likely due

to differences in the range of values each parameter can take which is dictated by

the constraints. Constraints were always applied to ensure 0 < βl ≤ 1, however

the only constraint on αl was that it be positive. The constraints applied to βl

potentially makes the initial guess (βl = 0.4) much closer to the final value than

that for αl, resulting in less iterations to achieve convergence.

Given the concerns surrounding over-optimisation, the number of gradient-

descent iterations used in the ASR experiments were determined using prelimi-

nary experiments which are not reported here. In general, the lower the number

of optimised parameters, the lower the number of iterations. The exception to

this rule is the combination of all oversubtraction factors with a single spectral

flooring factor – a low number of iterations was used to account for the fast

convergence rate of the single spectral flooring factor. The number of iterations

used for each set of parameters are shown along with the recognition results and

normalised processing times in Table 5.5.

Despite requiring less than 25% of the processing for optimising parameters

for each filterbank, the use of a single oversubtraction factor or a single spec-

tral flooring factor fails to produce word accuracy improvements over the static
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Table 5.5: Performance evaluation of LIMA framework on the AVICAR phone
numbers task for different parameter sets.

Experiment GD. Iter
ASR Word Accuracy (%) Comp.

IDL 35U 35D 55U 55D Factor

Baseline NA 70.4 48.8 36.2 41.8 23.5 NA

Static MFNS NA 73.8 48.3 37.9 44.8 27.2 NA

1× α 1 73.7 49.4 38.2 44.4 27.1 0.237

26× α 4 74.1 50.2 38.5 45.3 27.2 1.0

1× β 1 73.3 50.6 38.8 45.3 26.5 0.238

26× β 4 74.1 50.1 37.5 44.3 26.3 0.954

[26× α] + [1× β] 1 73.4 49.2 37.8 44.4 26.4 0.551

[26× α] + [26× β] 5 74.3 51.7 39.3 45.9 26.9 2.160

enhancement system across the full range of noise conditions. Whilst some con-

ditions show consistent improvements with single parameters (e.g. 35 mph with

windows up), the idle condition performance decreases in both cases, and no per-

formance improvements can be seen in the noisiest condition (55D). Since the

enhancement parameters are applied across all Mel filterbanks, they fail to pro-

vide enough resolution to allow for sufficient attenuation of the energies of the

lower filterbanks (which are most affected by noise) whilst preserving the energies

of the higher filterbanks which exhibit mostly speech.

By using a parameter for each of the Mel-filterbanks, more consistent perfor-

mance across the range of noise conditions can be observed, particularly when

optimising α. In all conditions, the optimised oversubtraction factors improve

(or at least maintain) ASR performance, with the largest relative improvement

being 3.7% for the 35U noise condition. For the spectral flooring factors, similar

improvements in word accuracy can be observed in the two least noisy conditions

(IDL and 35U), but they fail to improve performance in the noisier conditions.

Considering these two results, it appears that optimising the oversubtrac-

tion factor(s) is more important than optimising the spectral flooring factor(s).

This observation confirms the thoughts of BabaAli et al. who removed the spec-

tral flooring factor from their multi-band spectral subtraction implementation as

they believed it to be least influential on overall ASR performance [10]. The
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results here however show that some improvement in performance is possible by

optimising this parameter, and therefore further improvements may be possible

when combining both sets of parameters.

Two combinations of parameters are shown in the bottom two rows of Ta-

ble 5.5. It can be seen that adding a single spectral floor factor to the full set of

oversubtraction factors degrades speech recognition accuracy; although not docu-

mented here, this decrease was more prevalent as the number of gradient-descent

iterations were increased. From this result and the previous experiment using a

single β parameter, it is clear that using a global value is not ideal for use in

MFNS-based LIMA.

The combination of 52 parameters shown at the bottom of Table 5.5 produces

the best overall word accuracy performance, with four of the five noise conditions

improving by at least 2% relative to the performance of the static enhancement

system with a maximum improvement of 6.6% in the 35U condition. For the

remaining condition (55D), a 0.3% improvement was obtained using only two

iterations of gradient-descent optimisation (not shown in the table) which en-

abled it to outperform a system which only optimises the oversubtraction factors

(26×α). This experiment demonstrates that by increasing the degree of freedom

in the enhancement algorithm (i.e. increasing the number of enhancement param-

eters which are optimised), the greater the likelihood can be maximised which

ultimately results in better ASR performance. The major drawback of using more

parameters is that more than double the processing time is required. For prac-

tical implementation, a trade-off between computational cost and improvement

in ASR performance must be made, and it may therefore be decided to optimise

just the oversubtraction factors.

5.5.4 Acoustic Model Adaptation

Previous studies on LIMA-based speech enhancement highlighted the ability for

the framework to be used with both clean speech and noise-adapted acoustic

models. To verify the proposed MFNS-based LIMA implementation behaves in

the same way, the original clean speech acoustic models were adapted with in-

car speech data as per the evaluation protocols outlined in Chapter 4. This was
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Table 5.6: Performance evaluation of LIMA framework on the AVICAR phone
numbers task with MAP adaptation.

Experiment Iter.
ASR Word Accuracy (%)

IDL 35U 35D 55U 55D

Baseline NA 82.5 76.0 68.3 74.7 58.3

Static MFNS NA 80.0 71.7 64.5 73.0 58.4

26× α ∞ 81.2 75.5 67.3 74.5 59.9

26× β ∞ 82.6 76.2 68.5 75.2 59.6

[26× α] + [26× β] ∞ 82.4 76.0 68.1 75.1 59.6

Table 5.7: Performance evaluation of LIMA framework on the AEICS navigation
address task with MAP adaptation.

Experiment GD. Iter
ASR Word Accuracy (%)

C0 C6 C1 C2 C3 C4 C5

Baseline NA 90.5 69.4 86.2 71.4 81.7 82.4 69.3

Static MFNS NA 89.1 77.0 88.2 80.6 86.2 85.7 79.1

26× α 1 88.5 75.2 88.4 77.6 84.6 84.9 77.5

26× β 1 89.6 77.9 88.1 81.6 86.5 85.5 81.3

[26× α] + [26× β] 1 89.0 73.8 87.7 77.7 84.2 84.8 76.1

done for both the AVICAR and AEICS datasets and the results can be found in

Tables 5.6 and 5.7 respectively.

Before analysing the speech recognition results, it is important to note the

change in the number of gradient-descent iterations (compared to Sections 5.5.1

and 5.5.3) used to generate these results. An analysis of the number of iterations

required for convergence on the AVICAR database revealed that more iterations

were required than when using clean speech models (e.g. median 20 iterations for

[26× α]).

Considering this effect more closely, frames which are aligned incorrectly (and

therefore can be considered unreliable) are more prevalent when the clean speech

acoustic models are used for forced alignment since the overall ASR performance

of these models is lower compared to the MAP-adapted models (refer to the ex-

periments in Chapter 4). During optimisation, these unreliable frames act as a

source of noise which limits the amount of change that can be made to the overall
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acoustic likelihood which in turn leads to faster convergence to the maximum like-

lihood. By using noise-adapted speech models, the number of unreliable frames

(and therefore noise) is reduced, which reduces the limits on the overall max-

imised likelihood. In short, the more accurate the model alignment, the greater

the maximum likelihood that can be obtained.

Despite the greater number of iterations required to achieve convergence, the

two corpora exhibited considerably different optimal ASR behaviour w.r.t. the

number of gradient descent iterations. The AEICS corpus (Table 5.7) experienced

continual over-optimisation as the parameters converged, and as a result the best

ASR performance was obtained with minimal gradient descent iterations. Limit-

ing the number of gradient descent iterations however failed to produce a solution

which was able to consistently outperform even the static enhancement system,

regardless of the combination of parameters used.4This behaviour matches that

of LIMA-based enhancement on the original acoustic model observed in Sec-

tion 5.5.1.

This consistency in behaviour suggests that despite model adaptation intro-

ducing Australian dialect information into the original American English acoustic

models5, the amount of adaptation is insufficient to fully counteract the effects

of this second layer of acoustic mismatch. Given the behaviour on both original

and adapted acoustic models, it is inferred that the LIMA framework is highly

sensitive to the data used for model training and that encountered during testing.

This observation is an important outcome for the research community and practi-

cal implementations of LIMA-based systems, and therefore warrants considerable

future research in order to overcome these issues; discussion on this is provided

in Section 5.6.

For the AVICAR database, the best overall word accuracy was achieved (in

4By examining the results in Table 5.7, it can be seen that the system optimising only β

parameters improves on the static MFNS in 5 out of the 7 noise conditions. Whilst this result
demonstrates promise in the LIMA-based enhancement on the AEICS corpus, the inconsistency
still suggests that the model adaptation employed here is not fully effective in counteracting
the second layer of acoustic mismatch.

5In Chapter 4 – by examining the performance of the idle noise condition – it was observed
that the adaptation process was capable of improving ASR performance by introducing Aus-
tralian dialect information into the original American English acoustic models. This can be
further verified by comparing the baseline results in Tables 5.2 and 5.7.
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most noise conditions) when the system allowed for convergence of the parameters

which is the expected behaviour of any optimisation problem. This was not

true however for the very noisy conditions which produced maximum recognition

accuracies in the first few iterations, and then gradually decreased with further

iterations owing to over-optimisation. Only the results generated by convergence

have been quoted here since they generally outperformed the baseline system

with and without enhancement.

On closer examination of Table 5.6, the baseline enhancement system is iden-

tified to behave as it did in Chapter 4 where the conflict between speech en-

hancement and model adaptation caused the overall ASR accuracy to drop for

the quieter noise conditions. It is important to note that in all cases however,

the LIMA framework is able to recover at least some of these performance losses;

this is true for any combination of optimised parameters.

For the case where only the spectral flooring factors βl are optimised, the

LIMA approach is able to provide at least minor improvements in word recog-

nition accuracy for all noise conditions; relative improvements range from 0.6%

for idle through to 3.1% for 55 mph with the windows down. These improve-

ments can be attributed to the need for a different noise floor, since the noise

level present in the new adapted models is greater than that of the original clean

speech models. This suggests that optimising the spectral floor factor is more

important than the oversubtraction factors when noisy adaptation data is made

available to the acoustic model.

For both of the previous observations, the initial force-aligned state sequence

was generated using the static enhancement case even though it produces lower

word accuracies than the baseline system for the quieter noise conditions. As a

result, the state alignment used for optimisation will be less reliable than that

possible using the baseline enhancement system. This lower accuracy transcrip-

tion is likely to be the reason why the LIMA system is only able to (at best)

marginally improve on the baseline recognition system. There is potential to

improve this performance by using the baseline transcription to optimise the en-

hancement parameters.
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5.6 Research Directions

Over-fitting the enhancement parameters was found to be a significant problem

surrounding the application of the LIMA framework. The core of this problem

relates to the dependency on the data used for calibration. One perspective of

this data-dependency is the amount of speech required to provide a good fit for

all states in the acoustic model, and not just those present during optimisation.

This issue was briefly considered by Seltzer et al. [127] who suggested that if

the utterance length is kept constant, over-fitting is more likely to occur as the

number of parameters are increased. It could also be hypothesised that as the

length of the adaptation utterance is decreased (therefore less models used for

optimisation), the more reliant the optimised parameters become on the states

present. This problem is very similar to that of training speaker-independent

acoustic models – it is required to have enough speakers in order to reduce the

reliance on any one speaker.

Considering the evaluation datasets used in this thesis, the AVICAR phone

numbers task can potentially hide this reliance since the ten digits in each ut-

terance are likely to utilise at least half of the “active” model states (i.e. those

states present given the task grammar and vocabulary) which makes the opti-

mised parameters suitable for most successive utterances. However, if the frame

alignments are highly reliable (e.g. when using noise-adapted acoustic models),

there is potential to overfit the parameters to those model states observed in the

calibration utterance, and this effect will be emphasised when digits are repeated.

Likewise for the AEICS corpus, if optimisation takes place on a command

phrase, it may overfit the parameters for the small set of models present; these

parameters may not be applicable for a navigation address which will be more

phonetically balanced. This reliance on the model coverage provided by the

adaptation data is likely to be the primary reason behind BabaAli et al. using

phonetically balanced sentences for the large part of their evaluation [10].

It is therefore of practical importance to fully understand the dependency of

the LIMA framework on the calibration data, particularly in scenarios (like that

in the AEICS corpus) where the same speech system is used for a range of task
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grammars and vocabulary sizes. Using the AEICS corpus, it is intended to extend

the current research to analyse the effect of different lengths of adaptation data

on the overall performance of the LIMA framework.

Looking at the model coverage problem from a different perspective, perhaps

the triphone acoustic models used throughout this research are not the best choice

for the LIMA framework. Given the same length of available calibration data,

the model coverage on a triphone acoustic model would be considerably less than

that using a phone-based model; this may explain the smaller improvements

in ASR performance demonstrated in this chapter (around 2% relative). Small

model coverage will also favour over-fitting in the same way as described above for

short adaptation utterances. Another side-effect of using triphone models is the

potential to make state alignments less accurate due to increased confusability

between models with the same base phone but different contexts. It is therefore

seen as very important to assess the influence of the model unit used within

this framework by extending the work contained in this dissertation to compare

the use of triphone, phone and broad phone class models for both the forced

alignment and final recognition stages.

Experiments using the AEICS corpus highlighted the sensitivity of the LIMA

framework to secondary acoustic mismatches between training and testing – even

performing model adaptation was unable to remove the second layer of acoustic

match which was due to speech production rather than background noise. There

are a number of approaches which could be taken to alleviate this sensitivity.

For example, greater amounts of data could be utilised for dialect-adaptation of

the acoustic model. In the evaluation protocol utilised throughout this disserta-

tion, only limited data has been made available for model adaptation, which is

unlikely to cover all states in the acoustic model adequately. In this instance,

any unadapted states observed during calibration will act as a source of noise

to the likelihood-maximisation algorithm, resulting in sub-optimal enhancement

parameters. In order to provide sufficient amounts of data, a speech database

such as the Australian National Database of Spoken Language (ANDOSL) [100]

may be suitable.

Another approach to counteract this sensitivity would be to first analyse the
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influence of particular broad phone classes on the optimisation outcome in order

to establish whether particular phones are more problematic than others. This

suggestion is based on the fact that different accents of English differ more in the

realisation of vowels than other phonetic classes [141, 145]. Once the influence

of each phone class has been established, it may be possible to apply a reward-

punish scheme which emphasises or attenuates the influence of phones based on

their likeness or differences between dialects.

For in-car speech applications, the speaker- and noise- dependent framework

employed for the experimentation in this chapter and in previous research is

highly impractical. In particular, this framework requires not only a calibration

utterance for every speaker (which is not restrictive) but also in every conceiv-

able noise condition. For example, if a calibration utterance is required for every

combination of speed (for instance in 10 km/hr intervals), air-conditioning status

or window position, the result would be a scenario in which the driver is con-

tinually asked for calibration utterances and not their desired set of commands.

This problem could be reduced by clustering noise conditions, however consid-

erable thought must be placed on how to best group these conditions to ensure

the system covers the full range of noise conditions yet isn’t over-generalised.

This practical limitation of existing LIMA frameworks motivated the research of

a dialogue-based solution which is presented in Chapter 6.

Despite deriving the theoretical computational advantage over the original

frequency-domain method proposed by BabaAli et al. [10], this research was un-

able to compare the two approaches experimentally. This limitation was due to

an inability to replicate the system used in [10], despite many attempts to com-

municate with the authors. In the future, the aim is to resolve the issues with

the current implementation from whence it will be possible to truly verify the

computational savings of the proposed LIMA-based spectral subtraction in Mel-

filterbank domain and also compare the ASR performance of the two approaches.

In Section 5.4, cepstral liftering was proposed to correct the problem sur-

rounding varying dynamic ranges in the cepstral coefficients which causes the

optimisation process to favour elements with greater magnitudes. In evaluating

this solution, liftering failed to provide consistent improvements in ASR word
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accuracy, even on test data without speech enhancement applied. Despite this

performance characteristic, it is still firmly believed that cepstral liftering is a

computationally efficient solution to the problem, however further research is re-

quired to pinpoint whether the lifter implementation is inappropriate or whether

the phenomenon seen in this chapter is confined to in-car noise environments and

not applicable to other adverse environments.

Finally, very little attention was paid to characteristics of the optimisation

technique and their possible effects on the rate of convergence in this chapter

(and the next). Whilst this was not necessary for demonstrating the concepts of

the LIMA approach, this lack of focus may have led to slower rates of convergence

than possible. For example, it was noticed that β parameters converged faster

than α parameters; this could be related to either the initial guess (i.e. the initial

guess of β was more accurate than α) or a considerable difference in the range

of possible values each could take. Whilst analysis of the effects of these two

optimisation variables (among others) is not sufficiently significant to contribute

to the body of scientific research in this field, it may be of importance when

porting the LIMA approach to commercial applications in which fast convergence

rates are essential.

5.7 Summary

In this chapter the generalised framework of likelihood-maximising speech en-

hancement for robust ASR was introduced. An analysis of previous LIMA im-

plementations of single-channel spectral subtractive enhancement schemes was

presented, and it was shown that this type of framework was suitable for use

with a wide range of test data and acoustic models. It was highlighted that the

only previous use of LIMA-based enhancement for spectral subtractive-type al-

gorithms was computationally expensive, and therefore it was proposed to reduce

this computational burden by using Mel-filterbank noise subtraction rather than

frequency-domain spectral subtraction.

As well as the general formulation of MFNS-based LIMA, it was proposed

to optimise the spectral flooring factor β as well as the oversubtraction factor α.
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Cepstral liftering was also incorporated in order to reduce the effects of the varying

dynamic ranges of cepstral coefficients which are present in the MFCC represen-

tation – in these scenarios, the cepstral coefficients with the greatest magnitude

dominate the gradients calculated during the optimisation.

Evaluation of the proposed system began by analysing the effects of con-

straining the oversubtraction factors to positive values. It was found that the

constraints were applied infrequently and this led to only minor increases in pro-

cessing time with comparable performance to unconstrained optimisation.

Despite incurring minimal increases in computational times, cepstral liftering

was shown to provide no improvements in speech recognition performance regard-

less of its use in baseline systems or the LIMA framework. It was hypothesised

that cepstral lifter used in this dissertation is not effect for in-car speech data –

this hypothesis will be tested in future studies.

An evaluation was conducted which compared various combinations of en-

hancement parameters for optimisation. It was seen that optimising the spectral

flooring factor(s) causes faster convergence rates, but fails to provide any improve-

ments in word recognition accuracy over optimising the oversubtraction factors.

By optimising both the oversubtraction factor and spectral flooring factor for each

Mel-filterbank, the overall word accuracy was increased from the static enhance-

ment system by over 2% in most noise conditions and outperformed optimisation

of only the oversubtraction factors. Despite the superior ASR performance, opti-

mising both sets of parameters incurs considerable processing overhead compared

to only optimising the oversubtraction factors.

The LIMA framework was finally applied to noise-adapted speech models on

both the AVICAR and AEICS datasets. Results on the AEICS corpus showed

that model adaptation was unable to fully remove the detrimental effects of a

second level of acoustic mismatch (due to the Australian English dialect). This

was consistent with the use of the original clean speech models in which the

performance of the LIMA-based enhancement failed to match a system with static

enhancement parameters. For both databases, it was observed that optimising

the spectral flooring factor β was more important than the oversubtraction factors

α; this was necessary in order to produce a noise floor which better matched noise
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levels in the adapted acoustic models.

A number of future research directions were proposed to contribute to the ex-

isting body of scientific knowledge about LIMA-based systems and to also speed

up convergence rates of practical LIMA-based systems. Of particular future in-

terest is the need to determine a solution to the problem of model sensitivity

when multiple layers of acoustic mismatch are present between training and test-

ing. Proposed avenues of investigating this particular problem and its solutions

include increasing the amounts of adaptation data, as well as a thorough analysis

of the effects different phonemes have on the optimisation process.

Throughout the evaluations in this chapter, a one-time calibration frame-

work was used for each speaker in each in-car noise condition. This particular

framework is impractical for in-car applications due to the requirement for a large

number of calibration utterances. To overcome this impracticality, Chapter 6 pro-

poses a framework which couples LIMA-based speech enhancement with speech

dialogue systems.



Chapter 6

LIMA Frameworks for In-Car

Speech Recognition

6.1 Introduction

In the previous chapter, likelihood-maximisation applied to Mel-filterbank noise

subtraction was proposed and evaluated by optimising enhancement parameters

using a single utterance for each noise condition for each speaker. This particular

application of LIMA was referred to as a Calibrated LIMA framework [127].

Given the number of noise sources (engine, wind, air-conditioning etc.) and

within-source variations due to speed, traffic and external weather conditions,

there is an almost endless number of noise characteristics possible inside a vehicle.

Calibrated frameworks in the form used in Chapter 5 are therefore impractical for

in-car applications as they require calibration utterances (and associated storage

of optimised parameters) to cover every possible noise condition.

Other forms of LIMA frameworks have been proposed in the literature, how-

ever these also have shortfalls for in-car applications. The discussion of these

frameworks (Section 6.2) leads to the formulation of a dialogue-based LIMA

framework which is suitable for in-car environments in Section 6.3.

To evaluate the LIMA frameworks discussed in this chapter, the trade-off

between ASR performance and processing requirements is examined by altering

the number of iterations used in parameter optimisation (Section 6.4.1). Using

109
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the results obtained from this investigation, each of the LIMA frameworks are

evaluated, and recommendations for the use of LIMA-based MFNS for automotive

speech recognition are made in Section 6.4.2.

In order to make the proposed dialogue-based framework better suited to de-

ployment in automotive environments, the computation time of the optimisation

process needs to be further reduced. Section 6.5 discusses research directions

which could be pursued in order to make LIMA frameworks realisable for appli-

cation in future generations of vehicles.

6.2 Review of Practical LIMA Frameworks

In vehicular environments, the goal is to create human-machine interfaces (HMI)

to in-vehicle infotainment, navigation and command and control systems via

voice. Speech-based interfaces allow drivers to keep their eyes on the road and

hands on the steering wheel whilst accessing these services instead of, for example,

looking away and manually changing radio stations, cabin temperature or enter-

ing navigation addresses. Therefore, speech-based interfaces are an important

development in improving road safety.

In this application, the human-machine interface is a speech dialogue sys-

tem (SDS). Figure 6.1 shows the general architecture of the speech dialogue sys-

tem; it can be seen that speech recognition is only one component of a much

larger architecture required for effective dialogue systems. Although the purpose

of LIMA-based speech enhancement is to make ASR systems more robust to en-

vironmental noise, when analysing the strengths and weaknesses of its practical

implementation it is also important to consider how the ASR component is incor-

porated in a SDS. Throughout the following sections, practical LIMA frameworks

will be considered with reference to deployment in SDS rather than standalone

ASR systems.

6.2.1 Calibration

The simplest and most common approach for optimising the enhancement pa-

rameters in a LIMA-based framework is to use an adaptation session in which a
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Figure 6.1: Architecture of a spoken dialogue system (taken from [97]).

single utterance with a known transcription wC is used to determine the optimal

set of enhancement parameters. Following the adaptation session, the optimised

enhancement parameters are kept constant for all other utterances. In this ap-

proach, the user is aware of the adaptation process as they will be requested

to say a particular phrase which is not likely to be part of the desired dialogue

transaction. The “calibration” approach was used in previous studies [10, 127]

and was used for all experiments in Chapter 5 where an adaptation utterance

was used for each speaker in each noise condition. Each of these studies have

shown that calibration-type frameworks produce satisfactory improvements in

word recognition accuracy.

Whilst the use of a known word transcription in the calibration framework

ensures that optimisation takes place on a state sequence which is correct (ex-

cluding alignment errors), this type of framework inherently assumes that the

background noise conditions do not change between the calibration and testing

sessions. This is a major challenge for in-car speech recognition since vehicular

environments are subjected to continually changing noise levels and conditions –

this approach would require a calibration utterance every time noise conditions

change significantly from the previous optimisation. Two simple solutions to this

problem are:

1. The optimised enhancement parameters could be stored for each common

noise condition, however this still requires an initial calibration utterance for
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each of these conditions. Since there is a wide range of noise conditions, the

user would be continually asked to repeat the adaptation utterance in order

to obtain the optimal set of parameters. This operation is an unnecessary

annoyance for the driver, and is likely to lead drivers to become frustrated

with the SDS; such emotions could lead to further repercussions on ASR

and driving performance.1

2. Enhancement parameter calibration could be performed once only for each

driving session; for example, a common startup utterance such as “Start

dialogue” could be used for adaptation. Whilst this removes the need for

regular adaptation sessions (and reduces user awareness of the adaptation

process), it introduces the risk of inferior recognition in noise conditions

significantly different from those present during calibration.

The results in Chapter 5 led to the hypothesis that small coverage of the

acoustic model space leads to ASR performance which (at best) only marginally

improves on an enhancement technique with fixed parameters. Since the calibra-

tion framework is reliant on the words in the adaptation utterance, it is therefore

necessary for this utterance to be phonetically balanced and sufficiently long

enough to provide as much model coverage as possible in order to generalise the

optimised enhancement parameters. This is in conflict with the majority of SDS

which promote simpler linguistic structures than human conversation and are

therefore unlikely to be phonetically balanced. Thus, a separate utterance unre-

lated to the dialogue transaction is required which is likely to be seen by the user

as an inconvenience, and is therefore another reason why calibration frameworks

are impractical for use in this particular application.

Despite the impracticalities described in this section, calibrated frameworks

are the most simple LIMA framework to implement. In Section 6.4, calibration is

performed on a speaker-by-speaker basis, noise-by-noise basis and also a combina-

tion of the two (i.e. as per the experimental procedure in Chapter 5). Calibrating

on a speaker-by-speaker basis cuts down the number of adaptation sessions per

1These phenomena were studied during an internship at the University of Texas at Dallas
and results are presented in [65].
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speaker, however it does lead to mismatches in the noise conditions used for adap-

tation and operation. Performing calibration for each noise condition avoids the

problems of noise mismatch, but fails to incorporate speaker variabilities in speech

production in these environments. Combining speaker and noise calibration cap-

tures both speaker and noise variation and is therefore expected to provide the

best ASR performance, but is the least practical approach.

6.2.2 Unsupervised

An unsupervised LIMA framework was also proposed in [127] whereby online op-

timisation takes place on an utterance-by-utterance basis using the hypothesised

transcription w as opposed to the true transcription wC (i.e. there is no a priori

knowledge of the transcription). Whilst this approach removes the restriction of

a calibration session and makes the adaptation process transparent to the user,

it is highly reliant on the accuracy of the state sequence generated by Viterbi

alignment since the word transcription is unknown. In other words, the frame-

work is reliant on the effectiveness of the underlying acoustic models and speech

recogniser.

Since the true transcription wC is unknown, it is possible that states in the

hypothesised transcription w are incorrect due to misrecognition and frame align-

ment errors (N.B. frame alignment errors will occur even when the transcription

is known a priori, but should be limited to only a few). These inaccurate states

are likely to lead to the resulting enhancement parameters being sub-optimal

since optimisation is performed on the wrong state model. In turn, sub-optimal

enhancement parameters could lead to further decreases in accuracy in the sub-

sequent decoding stage. This effect is particularly likely when the number of

incorrectly labeled frames is greater than the correctly labeled frames.

Although there is not a 1:1 relationship between word accuracy and state

accuracy, an ASR system which performs poorly in terms of word accuracy will

also generate highly inaccurate state alignments. In Chapter 4, it was shown

that word accuracy performance was as low as 31% even after speech enhance-

ment was applied. It is for this reason that the unsupervised LIMA framework is
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not assessed in this dissertation as the overall performance of the speech recog-

niser is low (less than 50% average word accuracy across all noise conditions on

the AVICAR database), which will make the hypothesised transcriptions – and

therefore the optimised parameters – highly unreliable.

6.3 Dialogue-Based LIMA Framework for In-Car

Applications

Having identified the problems with both the calibrated and unsupervised LIMA

frameworks in Section 6.2, it is proposed to drive the optimisation process by

exploiting the need for user confirmation in a dialogue system. A block diagram

of the proposed framework within the dialogue exchange is shown Fig. 6.2. The

proposed system mimics the calibrated and unsupervised frameworks by perform-

ing an initial decode using default enhancement parameter values in the feature

extraction stage. Instead of immediately performing optimisation however, the

hypothesised word sequence is first verified through the grounding process which

is required in SDS in order to detect any misrecognition errors which need to be

corrected prior to executing a desired action such as determining route navigation.

Since it is cumbersome for the dialogue manager to request confirmation from

the user after each response, grounding often occurs once the dialogue system

has gathered a number of pieces of information, for example the suburb, street

name and number of a destination address. In the case where the user states the

information is incorrect, the dialogue manager will attempt to recover from these

errors by either asking for corrections to specific information, or restarting the

dialogue transaction altogether. The former method is preferred in modern-day

systems as it reduces the total dialogue transaction time. In this instance, the

enhancement parameters are left unaltered.

When the user confirms the information to be correct, this affirmation is fed

back to the dialogue manager for further processing (e.g. a call to an external

information source such as the navigation system), but also triggers the opti-

misation of the enhancement parameters. In order to interface the optimisation

process with the grounding procedure, it is required to store the user responses as
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Figure 6.2: Proposed LIMA speech enhancement framework for in-car speech
dialogue systems.
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well as the hypothesised state sequences – this is shown in Fig. 6.2. On confirma-

tion, this stored information is used in the optimisation process; if rejected, the

stored state sequence is therefore unreliable, and so the memory can be cleared

in preparation for responses in the error recovery stage.

The primary advantage of this proposed dialogue-based LIMA framework

is that optimisation never takes place on inaccurate transcription hypotheses,

which overcomes the limitation of the unsupervised framework described in Sec-

tion 6.2.2. The other advantage of this framework is the ability to continually

update the enhancement parameters as the noise conditions inside the vehicle

change. This is achieved by maintaining the previous enhancement parameters

until the next successful dialogue transaction, by which time the noise conditions

may have changed. As a result, the dialogue-based system is able to overcome the

need for matched noise conditions required for calibrated operation to be fully

effective.

It should be noted that this framework is similar to the supervised LIMA

framework proposed in [10] which was published at the same time as the pub-

lication which arose from this research [69]. The discussion in this dissertation

is directed towards full practical application of this framework and is therefore

more thorough in this regard than the description made by BabaAli et al. [10].

6.4 Experiments & Discussion

Following the findings of Chapter 5, experiments in this chapter are focused solely

on the AVICAR database which showed consistent improvements in word accu-

racy when using clean speech acoustic models. This database enables analysis of

LIMA frameworks based on speaker or noise calibration, as well as a combina-

tion of both. Therefore, in this evaluation the following LIMA frameworks were

tested:

1. Calibrated LIMA framework using optimisation on a noise-by-noise basis;

2. Calibrated LIMA framework using optimisation on a speaker-by-speaker

basis under a single, randomly chosen noise condition (i.e. mismatched con-

ditions between calibration and testing);



6.4. Experiments & Discussion 117

3. Calibrated LIMA framework using optimisation for each speaker in each

noise condition (i.e. matched conditions);

4. Proposed dialogue-based LIMA framework without initial calibration;

5. Proposed dialogue-based LIMA framework with a single calibration utter-

ance in a randomly chosen noise condition; and

6. Proposed dialogue-based LIMA framework with a single calibration utter-

ance in the idle noise condition.

As stated in Section 6.2.2, the unsupervised LIMA framework was not evaluated

in this research due to the relatively low overall performance of the baseline speech

recognition system.

Each calibrated LIMA framework used a single, randomly generated utter-

ance treated as the adaptation session. For the noise-only calibration framework,

a random utterance from a random speaker was chosen for each experimental

fold in the evaluation protocol. For speaker-based calibration (applied in both

calibrated and dialogue frameworks), a single utterance from a random noise con-

dition was used for each speaker, with the remaining utterances ordered randomly

to simulate continually changing noise conditions in the vehicle.

The proposed dialogue-based system was run using no prior calibration and

optimisation occurred every time the decoder correctly recognised all 10 digits in

the phone number. Utterances which occur prior to the first optimisation exhibit

the same performance as the static enhancement system (i.e. αl = 1) and are

therefore ignored in the final evaluation (N.B. this is the reason why the baseline

results differ throughout this section).

In order to also simulate a priori knowledge relating to previously optimised

enhancement parameters, the dialogue-based framework was also tested using an

initial adaptation utterance which was either randomly chosen, or from the idle

condition. The idle condition was chosen as this is a likely scenario for users to

first communicate with the in-car SDS – for instance, for entering a destination

address before setting off on the journey. Again, all utterances which occurred

prior to the first subsequent optimisation (excluding calibration) were ignored in

the evaluation.
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Since LIMA is an optimisation problem, over-optimisation of the enhancement

parameters to a specific noise condition, speaker or subset of the acoustic model is

highly possible and should be avoided. Over-optimisation to a subset of acoustic

models was one of the reasons suggested to explain the limited improvements

in ASR accuracy for the triphone-based recognition system used in this research

(refer to Chapter 5). The potential for over-optimisation suggests the number

of optimisation iterations should be limited in order to maintain generality, but

insufficient iterations may result in the LIMA framework operating less effectively

than a standard enhancement system. Considering the need to also limit the total

processing time (which is another important consideration for in-car ASR) also

suggests a limit on the number of iterations.

To address this issue, two experiments were designed to determine a suit-

able balance between ASR performance and minimal processing delays using the

noise-only calibration framework prior to comparing the performance of the six

frameworks listed in this section. This particular framework was used as the be-

lief was that noise conditions have a greater effect on the resulting enhancement

parameters than individual speakers since this research uses speaker-independent

acoustic models (refer to Section 4.3). In the first experiment, the number of

gradient-descent iterations was varied whilst using a single joint optimisation it-

eration (i.e. one full recognition and parameter optimisation cycle). The second

experiment varied the number of joint optimisation iterations whilst the gradient-

descent iterations (determined from the former experiment) were kept constant.

The combined outcomes of these experiments dictated the level of optimisation

used for assessing all six frameworks.

Optimisation was performed only on the oversubtraction factors αl using cep-

stral mean subtraction in the feature extraction; cepstral liftering was not used

as it was shown in the previous chapter not to further improve word accuracy. It

was also decided not to use the combined αl and βl optimisation which showed

the best performance in Section 5.5.3 as this incurs considerable processing over-

heads with little improvements in word accuracy – these characteristics make the

simplified system used throughout these experiments more suitable for the in-car

application.
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Table 6.1: ASR accuracies for increasing gradient-descent iterations used in pa-
rameter optimisation.

# Iter.
ASR Word Accuracy (%)

IDL 35U 35D 55U 55D

Baseline 70.4 48.8 36.2 41.8 23.5

Static MFNS 73.3 47.8 36.8 44.5 26.1

1 73.9 48.7 37.9 44.8 26.4

2 74.2 49.3 37.7 44.8 26.4

3 74.1 49.1 38.1 45.1 26.4

4 74.2 49.5 37.8 45.1 26.1

5 74.1 49.6 38.2 45.0 25.9

10 74.2 49.7 37.7 44.6 26.1

15 74.2 49.8 37.5 44.8 25.6

20 74.2 49.9 37.6 44.7 25.7

25 74.2 49.9 37.6 44.7 25.7

As per Chapter 5, the enhancement parameters were initialised to αl = 1

for all 26 Mel-filterbanks. The noise estimation procedure used in the MFNS

technique in this chapter was a simple average of the initial silence consisting of

N frames. Supporting results in Appendix B show that this method has similar

word accuracy performance to time-recursive averaging with and without SAD

based on a soft decision, but has the added advantage of reducing the processing

delay of the technique which is important for in-car applications.

6.4.1 Optimisation Iterations

Gradient-Descent Iterations: The effect on ASR word accuracy as the number of

gradient-descent iterations increase is shown in Table 6.1. Maximum recognition

accuracies for each noise condition have been highlighted in boldface font for

clarity. Recognition results with no enhancement (Baseline) and MFNS with

static subtraction factors are also shown for comparison.

Analysis of these results shows the optimal number of gradient-descent it-

erations is considerably different for each noise condition. For the more quiet

conditions (idle and 35 mph with windows up), best performance is obtained
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with more than 20 iterations of gradient-descent optimisation. For the noisier

conditions, less than 5 optimisation iterations provide the best performance (par-

ticularly for the 55 mph with windows down noise condition). These three noise

conditions also show clear trends of decreasing word accuracy as the number of

iterations is increased above 5. Since the noise conditions are approximately or-

dered by increasing levels of noise, it can be concluded that as the noise levels in

the vehicle increase (i.e. higher speeds or open windows), the level of gradient-

descent optimisations needs to be reduced in order to avoid over-optimisation of

the enhancement parameters.

The best overall performance across all 5 noise conditions can be seen to be

at 3 iterations. At this level of optimisation, the 55 mph conditions both exhibit

maximum performance, with two other noise conditions (IDL and 35D) being

only 0.1% below their maximum word accuracies. The 35 mph with windows up

condition is the only condition which is well below its best performance (0.8%

absolute), but still provides improvements over the baseline and static enhance-

ment systems. As a result of these observations, 3 gradient-descent iterations

were used for the remainder of the experiments in this chapter.

Joint Optimisation Iterations: Having established the most effective number

of gradient-descent iterations, the number of joint optimisation iterations was

analysed. Table 6.2 shows these results with the best performance across all

noise conditions again highlighted in boldface for clarity.

Apart from the 35 mph with windows up noise condition, the results clearly

indicate that only one joint optimisation iteration is required for in-car speech

recognition. This result indicates that only minor changes are made to the de-

coded state sequences and therefore there appears to be no advantage in perform-

ing more than one joint optimisation iteration. Relating this observation to the

results of the gradient-descent iterations, if the state sequence did not change at

all, the parameter optimisation would continue from exactly the same position

that it finished previously, and therefore over-optimisation is likely to occur as

the number of joint optimisation iterations increased.

This result combined with that of the analysis of gradient-descent iterations

indicate that over-optimisation is a serious issue for LIMA frameworks operating
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Table 6.2: ASR accuracies for increasing joint optimisation iterations.

# Iter.
ASR Word Accuracy (%)

IDL 35U 35D 55U 55D

Baseline 70.4 48.8 36.2 41.8 23.5

Static MFNS 73.3 47.8 36.8 44.5 26.1

1 74.1 49.1 38.1 45.1 26.4

2 74.1 49.4 37.7 44.8 26.1

3 73.9 49.9 37.2 44.8 26.0

4 74.0 50.1 37.2 44.5 26.3

5 74.0 50.3 37.1 44.4 26.1

10 74.1 50.2 37.5 44.1 25.9

in vehicular environments. It is therefore suggested that optimisation iterations

be kept to a minimum in order to keep the enhancement parameters generalised

for future driver responses. The practical advantage of these findings is the ability

to achieve improved ASR performance using LIMA frameworks whilst creating

minimal processing delays due to the need for only a few optimisation iterations.

6.4.2 Evaluation of LIMA Frameworks

The six LIMA frameworks listed at the beginning of Section 6.4 were tested using

the results obtained in Section 6.4.1. Table 6.3 presents the ASR results for all

three calibrated frameworks. The best results for all the frameworks are again

highlighted in boldface for clarity. Regardless of the calibration method used, the

results show a global improvement over an enhancement system which does not

utilise a LIMA framework.

Using matched conditions for speaker-based optimisation (i.e. employing cal-

ibration for each speaker in each noise condition) produces the best results in all

cases in Table 6.3 except idle. Whilst the idle noise condition shows a 0.5% abso-

lute decrease in word accuracy in its matched condition as opposed to optimising

in 55U, the word accuracy performance is still an improvement over the baseline

enhancement case (73.7% versus 73.3%). As a result, this outlier is not regarded

as a significant issue.
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Table 6.3: ASR results for the calibrated LIMA frameworks.

Calibration Framework
ASR Word Accuracy (%)

IDL 35U 35D 55U 55D

Baseline 70.4 48.8 36.2 41.8 23.5

Static MFNS 73.3 47.8 36.8 44.5 26.1

Noise 74.1 49.1 38.1 45.1 26.4

Speaker (Random Noise) 73.6 49.5 38.2 44.9 26.5

Speaker (IDL) 73.7 49.3 37.8 44.6 26.8

Speaker (35U) 73.8 49.9 38.6 45.0 27.0

Speaker (35D) 73.0 49.4 39.2 45.1 26.7

Speaker (55U) 74.2 49.7 37.9 45.5 26.8

Speaker (55D) 73.1 49.1 38.2 44.7 27.1

In order to assess the effectiveness of the proposed dialogue-based LIMA

framework, all utterances occurring prior to the first optimisation (or first op-

timisation after calibration) for each speaker were ignored. This approach was

required since the proposed technique requires 100% word accuracy in order to

trigger optimisation, a result which was achieved on only 3% of all utterances and

mostly in the idle noise condition. This low number of optimisation instances is

due to the relatively low performance of the ASR system and the nature of the

recognition task which requires all 10 digits to be recognised correctly.

The results of this final evaluation are summarised in Table 6.4. It should be

noted that word accuracies in this table are better than previous results because

the analysis procedure removed a lot of utterances which exhibited poor ASR

performance.

Almost all comparisons that could be made on the results in Table 6.4 show

that the proposed dialogue-based LIMA framework provides improved perfor-

mance over the baseline enhancement system. Applying this framework can also

recover losses in word accuracy incurred when using standard Mel-filterbank noise

subtraction (e.g. in the two 35 mph noise conditions).

The results of this evaluation also prove the effectiveness of the proposed

dialogue-based framework when used with or without explicit calibration even

though there is a very low number of optimisation instances. For the case without
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Table 6.4: ASR results for the calibrated LIMA frameworks.

Framework
ASR Word Accuracy (%)

IDL 35U 35D 55U 55D

Baseline 79.1 55.8 42.1 49.8 27.6

Static MFNS 81.8 53.9 41.6 51.7 30.1

Dialogue-Based System 82.6 55.9 42.3 53.1 31.1

Baseline 80.7 55.5 43.3 49.5 28.6

Static MFNS 81.4 53.3 45.3 50.0 33.6

Speaker Calibration (Random Noise) 82.5 55.7 46.4 52.5 33.3

Dialogue-Based System 82.3 57.7 45.5 52.7 32.3

Baseline 80.4 57.7 44.7 53.3 28.4

Static MFNS 82.2 52.5 42.9 53.9 30.3

Speaker Calibration (IDL) 82.4 55.4 44.6 54.9 31.0

Dialogue-Based System 82.9 55.9 46.0 55.5 30.9

calibration – which is the ideal operational behaviour of such a framework since

the user would be completely unaware of the adaptation – global improvements

over both baseline systems can be observed, with the best relative performance

improvement over a system without enhancement being 16.7% in the idle con-

dition. This particular result demonstrates the true potential of the framework

to improve ASR accuracy, since utterances spoken during idle are most likely

to trigger the optimisation process. In comparison to the baseline enhancement

system, the proposed framework shows relative improvements of between 1.2%

and 4.4% in this mode of operation.

There are also noticeable improvements over the calibration-only LIMA frame-

work, particularly one performing calibration during idle. In this case, the relative

improvements range from 1.2% to 2.8% (excluding the marginal decrease in per-

formance in the 55D noise condition). Given that most users will first speak to

the in-car dialogue system when entering their vehicle, this result verifies the po-

tential of the proposed framework to be incorporated with a calibration session

to produce further improvements in system performance.

Considering the operation of the proposed dialogue-system, there is potential

for a loss of generality if a particular noise condition is consecutively optimised;
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this phenomenon was observed when assessing the number of optimisation itera-

tions in Section 6.4.1. The consistent improvements in Table 6.4 indicate however

that this is not an issue within the proposed framework as regular changes in noise

conditions allow the optimisation process to effectively track the noise conditions

inside the cabin and reset the enhancement parameters appropriately.

6.5 Research Directions

The major shortfall of the experimental evaluation in this chapter was the nature

of the test data. In this instance, it was required that all 10 digits of the phone

number were recognised correctly before optimisation was allowed to take place

by the proposed framework. This constraint led to a very low number of opti-

misation instances (3%); nevertheless, it did demonstrate the capability of the

framework for this application. The most obvious scope for future research is to

compare the frameworks with data which constitutes a much simpler recognition

task; performance on such a task is expected to exceed that shown in this chapter

due to increased regularity of optimisation occurrences. Once the issues identi-

fied in Chapter 5 regarding dialect mismatch have been completely resolved, the

commands task of the AEICS corpus would be ideal for this evaluation. Another

advantage of using a simpler recognition task is the increased word accuracy of

the ASR system, which would make comparison against an unsupervised LIMA

framework meaningful.

Despite the proposed dialogue-based framework showing the potential to avoid

parameter over-optimisation, there are situations where this problem may still oc-

cur. For example, consider driving on the highway for an extended period of time.

Since the noise conditions will remain relatively stationary since the speed is kept

constant (barring changes to the internal environment such as opening the win-

dow), successive utterances will lead to further optimisation for the same speaker

and noise condition. To overcome this problem when the state of the environ-

ment changes significantly (e.g. slowing from 100 km/h to 50 km/h), it would

be useful to incorporate knowledge relating to these states in order to appropri-

ately reset the enhancement parameters. Such information could also be used
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to create a system with adaptive numbers of gradient-descent iterations for each

noise condition as it was seen both here and in Chapter 5 that noisier conditions

necessitate less iterations in order to avoid over-optimisation. It was also seen

in Chapter 5 that the baseline performance for the quieter conditions was better

than a static set of enhancement parameters; this information could therefore be

used to change the initial set of enhancement parameters if noise-adapted acoustic

models being used. Given the connectivity of modules in modern-day vehicles,

knowledge about the vehicle speed, climate control status, window status etc.

can be extracted from the already available CAN-bus signals [6]. How best to

separate noise conditions using CAN-bus signals in order to assist speech systems

is a research topic which should gain increased interest in the coming years.

Whilst the proposed dialogue-based LIMA framework has shown the ability

to deal with considerable changes in noise conditions between successive optimisa-

tions, data limitations restricted the analysis to constant noise conditions during

the utterance. BabaAli et al. [10] attempted to evaluate within-recording condi-

tion changes by altering the SNR of white noise and periodic alarm noise; this

procedure performs frequency-independent scaling of the magnitude spectrum,

but in car environments when speed is changed or the air-conditioning system

is turned on, the changes would be frequency-dependent. Analysing the perfor-

mance of speech systems in a full range of in-car conditions will indicate the

scenarios which are most problematic and will assist in developing in-car speech

systems which are effective in all possible driving conditions. In order to conduct

future evaluation of LIMA frameworks in a full range of realistic in-car environ-

ments, data to complement the existing AVICAR database and AEICS corpus

was collected shortly before completion of this dissertation.2

A general drawback of the LIMA framework is the extensive computing re-

quired for gradient-descent optimisation. The dialogue-based system does not

need to run in real-time since optimisation occurs after confirmation of spoken

responses, however it is still practically beneficial to reduce overall processing

costs. Improvements in this respect could be achieved in a number of simple

2The data was collected in collaboration with the UTDrive project [6] during an internship
at the University of Texas at Dallas. Details of this collection can be found in Appendix C.
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ways such as reducing the parameter space, simplifying the acoustic model, or

removing frames deemed unreliable and potentially harmful to the final result.

Parameter reduction through examination of optimised parameter values may re-

veal correlation between parameters or identify parameters which only produce

minor changes to the final result. Reducing the acoustic classes on which the opti-

misation occurs (e.g. from triphone to phoneme) will reduce the model space and

may also lead to additional robustness and improved performance. Finally, frame

masks like those in missing feature techniques (see Section 2.4.3) could reduce

the number of frames on which to optimise by removing unreliable segments alto-

gether which may also increase the accuracy of the optimisation. Suitable masks

could be based on proximity to model boundaries (i.e. to counteract alignment

errors) or the effect of speech production mismatches such as stress on specific

HMMs.

6.6 Summary

This chapter discussed different practical implementations of LIMA frameworks

specifically for in-car speech dialogue systems and identified a number of draw-

backs with the previously proposed calibration and unsupervised frameworks. In

order to overcome these limitations, a new LIMA framework which exploits the

grounding process used in speech dialogue systems was proposed. This frame-

work permits optimisation to occur only when the user has confirmed that the

speech dialogue system has correctly recognised their spoken responses. The ad-

vantages of this framework include the ability to deal with continually changing

in-car noise conditions, as well as ensuring recognised state sequences are reliable

for use in the optimisation process.

An analysis of the number of gradient-descent and joint optimisation itera-

tions revealed that minimal optimisation is required for the best average speech

recognition performance in this application. This observation enables processing

delays to be reduced whilst also providing word accuracy improvements over a

static Mel-filterbank noise subtraction speech enhancement technique.

The proposed dialogue-based framework was evaluated against a calibrated
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LIMA framework operating under a number of different adaptation scenarios.

Experimental results showed the proposed system provides improved recognition

performance over baseline systems with and without enhancement as well as the

calibration-only framework, particularly when it is assumed that the initial cali-

bration occurs when the vehicle is idling. Despite the low number of optimisation

instances, this framework is particularly suited to improve the speech recogni-

tion performance of in-car speech dialogue systems. Future improvements to the

proposed LIMA framework are focussed on reducing the overall processing time

whilst maintaining the speech recognition accuracy which is an important factor

in pushing this technique into the automotive industry.

Both Chapter 5 and Chapter 6 have provided a comprehensive review of

likelihood-maximising speech enhancement for robust ASR. This has included

the practical application of this framework to optimise various parameters of

the enhancement algorithm. In the next chapter, a novel method is presented

which potentially removes the need for parameter optimisation through the use

of complex spectrum subtraction in the frequency domain.
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Chapter 7

The Use of Phase in Spectral

Subtraction

7.1 Introduction

One of the primary aims of this dissertation is to demonstrate that speech en-

hancement techniques designed for human intelligibility are not necessarily op-

timal for use with ASR systems. Spectral subtraction is no exception – it was

initially designed to improve human intelligibility through noise reduction, and

subsequent research has shown that the phase used for signal reconstruction in

the time domain has little effect on human intelligibility. As a result, only the

magnitude spectrum has been used within the subtraction process.

Following the lead of some recent speech enhancement studies which utilise

some form of phase spectrum information (Section 7.2), this chapter examines the

use of the short-time phase spectrum in frequency-domain spectral subtraction. It

is shown in Section 7.3 that the only way to obtain accurate estimates of the clean

speech magnitude (which is used in MFCC feature extraction) is to utilise the

phase spectrum as part of spectral subtraction in the complex frequency domain.

Obtaining estimates of the phase spectrum however, is non-trivial compared

to the techniques used for magnitude spectrum estimation, and has been there-

fore been overlooked in the past. A novel phase spectrum estimation procedure

is presented in Section 7.4 which exploits the assumption of phase stationarity on

129
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sinusoidal waveforms. The effectiveness of this proposed phase estimation proce-

dure as part of Complex Spectrum Subtraction (CSS) is examined for estimating

either clean speech or noise phase spectra (Section 7.5).

The novel contributions contained in this chapter are highly exploratory; they

have been assessed using oracle-type experimentation which allows access to all

spectral information. Therefore, prior to summarising the work contained in

this chapter, Section 7.6 places considerable thought into the research directions

required to make the use of the phase spectrum in spectral subtraction suitable

for integration with state of the art speech recognition systems.

7.2 Phase Spectrum and Speech Enhancement

Despite the use of phase for other speech processing applications (such as features

for ASR [123, 158] or speaker identification [144]), phase information has only

been used in two speech enhancement examples to date. These two techniques –

phase spectrum compensation [135, 137, 149] and multi-channel phase-error fil-

tering [1, 72] – were briefly described in the speech enhancement literature review

in Chapter 3. For the scope of the work contained in this dissertation however,

neither of these approaches are deemed appropriate; PSC requires reconstruction

to the time domain (which is unnecessary and sometimes undesirable for ASR

applications), and PEF is a multi-microphone solution.

Attention is therefore shifted to the use of phase (or rather, lack thereof) in

frequency-domain spectral subtraction. As described throughout this disserta-

tion, the core of spectral subtraction is to subtract an estimate of the noise mag-

nitude spectrum from the noisy speech magnitude spectrum. The noisy speech

phase spectrum is left unaltered, and is utilised only when reconstructing the en-

hanced spectrum back to the time domain. This ignorance of the phase spectrum

is the direct result of studies undertaken in the 1980s which showed that the phase

spectrum provided no perceptual difference to the enhanced signals [109, 143]. In

recent times these claims have been challenged [110] which may result in a shift

of attention in speech enhancement research in the coming years.
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Whilst the early experiments showed that phase was unimportant for per-

ception, it was duly noted that if “using the phase estimate to further improve

the magnitude spectrum, then a more accurate estimation of phase may be im-

portant” [143]. This statement has direct relevance for speech recognition ap-

plications since features for speech recognition are typically derived from the

magnitude of the incoming speech signal (e.g. in MFCCs). Therefore, speech

recognition performance with spectral subtraction could be improved by esti-

mating phase spectrum information and using that information as part of the

algorithm. More recently it has been shown that in order to obtain accurate

estimates of the clean speech magnitude spectrum, estimates of the true phase of

the clean speech are also required [87].

This observation was supported by a recent investigation into the limitations

of spectral subtraction for speech recognition applications [34]. This study specif-

ically looked at the effect on recognition accuracy of three sources of error when

the algorithm is implemented in the power spectrum (i.e. γ = 2). Two of these

errors are directly related to the use of phase – reconstruction phase and the phase

difference between clean speech and noise which is encapsulated in the spectral

cross-terms [87]. It should be noted however, that cross-terms are typically ig-

nored under the assumptions that speech and noise signals are uncorrelated or

that their phasor representations are colinear (i.e. have the same phase).

Figure 7.1 shows the results of this particular study using data from the Au-

rora database [57]. It can be seen that the effect of reconstruction phase errors

(red) only produce minor decreases in word recognition accuracy. Errors due to

the phase between spectral cross-terms (green) become significant at low SNRs

where the decrease in recognition accuracy can be as much as 15%. Whilst the

overall effect of these two errors is small compared to errors in the magnitude

spectrum (compare the blue and purple lines in Fig. 7.1), these results confirm

that neglecting information contained in the phase spectrum can lead to notice-

able losses in speech recognition performance.

Despite the original statement made by Wang & Lim in 1982 [143], and the

recent findings in both [34] and [87], research has so far failed to develop an

appropriate method for estimating either the noise or speech phase spectrum.
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Figure 7.1: ASR word accuracy for the Aurora database with different sources of
errors in spectral subtraction (from [34]).

Motivated by the lack of a suitable solution, the novel contributions contained

in this chapter include a demonstration of the importance of performing spectral

subtraction in the complex frequency domain, and the subsequent realisation of

CSS using an original phase estimation algorithm referred to as Phase Estimation

via DElay Projection; this method can be used to estimate either noise or speech

spectra.

7.3 Incorporating Phase Information into Spec-

tral Subtraction

7.3.1 The Effect of Phase on ASR

Throughout this dissertation, Mel-frequency cepstral coefficients have been used

for speech feature extraction. As described in Chapter 2, MFCCs are calculated

by passing the magnitude spectrum of the signal to be recognised through a se-

ries of filterbanks, taking the log spectrum, and then decorrelating the cepstrum.

Whilst it is intuitive that phase information is not explicitly used in this represen-

tation, it can be shown that phase information is necessary in deriving accurate

estimates of the magnitude spectrum [87].

Traditional magnitude spectral subtraction (i.e. when γ = 1) assumes that
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Figure 7.2: Single-frequency phasor diagram showing the effect on clean speech
magnitude estimates when assuming colinearity of noise and noisy speech signals.

the noisy speech and noise (and subsequently the clean speech) have the same

phase; that is, they are colinear. The shortfall of this assumption is demonstrated

by the single-frequency phasor diagram shown in Fig. 7.2. This figure represents

– in vector form – the spectral subtraction operation which takes place on a

frequency-by-frequency basis.

Under the common assumption of additive background noise, the vectors for

the noise and speech signals (D(k) and S(k) respectively) are added to pro-

duce the observed noisy speech vector Y (k). Assuming that the noise magnitude

estimate accurately represents the instantaneous noise magnitude, the use of con-

ventional magnitude subtraction produces the estimated clean speech magnitude

denoted by “Estimated |S(k)|”. To compare this estimate to the true clean

speech magnitude, the “True |S(k)|” label is rotated about the origin onto the

noisy speech vector to the point “Projected |S(k)|”. It can be seen from this pro-

jection that there is an error between the true magnitude and the clean speech

magnitude estimate (denoted ∆M). Since this example has assumed that there is

no error in the noise magnitude estimate, the error in the resulting clean speech

magnitude is purely due to the phase difference between the clean speech and

noise (denoted ∆θ).

In this example, the noise signal is added to the clean speech signal to produce
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Figure 7.3: The effect on the magnitude error of decreasing the SNR.

the noisy signal. As the noise magnitude is increased (assuming the clean speech

signal remains constant and the phase of the noise signal remains unchanged),

the overall SNR decreases and the influence of the noise signal on the final noisy

speech becomes greater. This effect (shown in Fig. 7.3) results in an increase

in the resulting clean speech magnitude error (i.e. ∆M) as the SNR decreases.

This phenomenon is particularly problematic for in-car environments which can

exhibit SNRs less than 0 dB when using distant microphones [15].

The clean speech magnitude error is also magnified as the difference in phase

between the noise signal and the clean speech is increased. A visualisation of

this type of error is shown on the x-axis of Fig. 7.4, where the negative scale on

the colourmap indicates the magnitude is always underestimated. It can be seen

that for SNRs greater than 0 dB, the magnitude error increases as the noise and

speech signals become increasingly out of phase up to π radians (180o).

It can also be seen that at high SNR (e.g. > 30 dB), the effect of phase

error is much less than around 5 dB where the error reaches its maximum –

−(1 − β)|Y (k)|. For SNR less than 5 dB, large clean speech magnitude errors

(as shown by the blue regions of Fig. 7.4) are spread over a much wider range of

phase differences, with these maxima moving asymptotically towards π
2
and 3π

2
.

An interesting phenomena occurs when the SNR is less than 0 dB – the

magnitude error gets smaller as the noise and speech signals move towards π

radians out of phase. In this instance, the additive assumption results in the

noisy speech signal having phase more closely related to the background noise
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Figure 7.4: Visualisation of the effects of both SNR and difference between noise
and speech phases on the output clean speech magnitude estimate.

than the speech signal; therefore the assumption of colinearity used in traditional

magnitude spectral subtraction is restored.

7.3.2 Complex Spectrum Subtraction

The discussion in Section 7.3.1 highlighted the need to incorporate phase infor-

mation into the spectral subtraction algorithm in order to obtain accurate clean

speech estimates. This section demonstrates how to perform the subtraction on

the complex frequency spectrum by incorporating phase information.

Recall the representation of the noisy speech signal in the complex frequency

spectrum:

Y i(k) = Si(k) +Di(k) (7.1)

where i is the frame index and k is the index of the discrete frequency bin.

Rearranging Eq. (7.1) yields the subtraction rule in the complex spectrum:

Si(k) = Y i(k)−Di(k). (7.2)

If Eq. (7.2) is expanded into individual subtraction rules for both the real and
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imaginary components:

|Si(k)| cos(θS) = |Y i(k)| cos(θY )− |Di(k)| cos(θD)

|Si(k)| sin(θS) = |Y i(k)| sin(θY )− |Di(k)| sin(θD) (7.3)

it can be seen that a number of pieces of information are required in order to

accurately determine the clean speech magnitude. This information consists of

the magnitude and phase spectrum of both the noisy speech and noise signals. The

output of the DFT contains the magnitude and phase information about the noisy

speech spectrum Y i(k), however it is not possible to know the instantaneous noise

spectrum Di(k) exactly, therefore it must be estimated. The magnitude of the

noise |Di(k)| can be estimated by any of the techniques described in Section 3.4

(and many more); in this dissertation magnitude estimation uses a time-recursive

averaging estimation with soft-decision SAD.

Whilst magnitude estimation is a relatively simple task, estimating the phase

spectrum is not as trivial, particularly due to phase wrapping and other signal

processing problems [5]. An averaging process similar to that used for magnitude

estimation is particularly inappropriate as the phase spectrum is circular, existing

in the range −π < θ ≤ π. In this case, a large number of phase samples would

result in a mean of zero – this provides no useful information.

These challenges in finding an appropriate representation of the phase spec-

trum is another reason why spectral subtraction is traditionally performed only

on the magnitude (or power) spectrum. Despite these challenges, it was shown

in Section 7.3.1 that in order to derive the true clean speech magnitude, it is nec-

essary to also include information about the phase spectrum. In Section 7.4, a

novel method for estimating the phase spectrum is presented and used to perform

complex spectrum subtraction as per Eqs. (7.2) and (7.3).

It should be noted that using complex spectrum subtraction removes all re-

liance on the flooring factor β, the oversubtraction factors α, and also the spec-

trum in which subtraction takes place (i.e. γ). Optimal operation of conventional

spectral subtraction techniques requires data-dependent tuning of each of these

parameters [68]. Therefore, CSS is an attractive alternative to magnitude-based

spectral subtraction as it is able to provide an enhancement solution without the
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requirement to tune algorithm parameters.

7.4 Phase Spectrum Estimation

7.4.1 Estimation Domains

Complex spectrum subtraction as proposed in the previous section requires esti-

mation of the noise phase spectrum in order to utilise Eqs. (7.2) and (7.3). There

are two ways in which this could be achieved – direct estimation of the noise

phase spectrum, or estimation of the clean speech phase and interpolating to

deduce the noise phase spectrum (or complex spectral subtraction result) using

geometrical relationships. In this section a new method is proposed to estimate

either noise or speech phase.

To interpolate the noise phase from the clean speech phase estimate, there are

two possible methods which are referred to as the tangent and intersection meth-

ods. These two methods are shown graphically in Fig. 7.5. For both methods it is

acknowledged that the full range of possible outputs from the subtraction process

is represented by a circle with radius equal to the noise magnitude (i.e. D(k))

and centred on the complex representation of the noisy speech signal. In the case

where the noise magnitude is perfectly accurate, one of the points on this circle

will constitute the original clean speech signal.

The tangent method (Fig. 7.5(a)) assumes that the clean speech phase esti-

mate is accurate, and derives the clean speech spectrum using tangents to the

circle from a line drawn from the origin. Since there are two tangents, the fi-

nal result is chosen as the tangent point which most closely matches the clean

speech phase estimate θ̂S. If the clean speech phase estimate lies between the

two tangent points, the subtraction result is taken as the point with the smallest

magnitude where a line drawn from the origin at that phase intersects the circle.

The intersection method (Fig. 7.5(b)) on the other hand, assumes that the

previous estimate of the clean speech magnitude is more accurate than the new

phase estimate θ̂S. In this instance, the clean speech magnitude estimate from

the previous frame (blue) is rotated in order to intersect the circle representing
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Figure 7.5: Two methods for interpolating noise phase from the clean speech
phase – (a) tangent method, and (b) intersection method.

all possible subtraction results (green). The true intersection point (as again

there are two) is taken as the point most closely matching the clean speech phase

estimate in the current frame. In the case that the clean speech magnitude from

the previous frame does not intersect the circle (red), colinear complex spectral

subtraction is performed – i.e. the interpolation reverts to the complex equivalent

of the traditional spectral subtraction implementation.

7.4.2 Estimation Based on Stationarity

Noise magnitude estimates are typically calculated during non-speech periods

and are assumed to remain stationary during speech periods. Here the concept

of stationarity applied to single-frequency sinusoids is utilised to explore the pos-

sibility of deriving phase estimates. The overall aim is to project both the noise

magnitude and phase spectra through periods of speech.

Consider the single sinusoid case shown in Fig. 7.6 which is divided into 32 ms

frames with 10 ms advances between adjacent frames (i.e. common speech pro-

cessing frame rates). At the beginning of “Frame 1”, the sinusoid has a phase of 0

radians, but at “Frame 2” and “Frame 3” this phase has changed. If it is assumed

that this sinusoid is stationary between frames, the expected phase at the start

of each of these successive frames can be inferred if the frequency of the sinusoid
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Figure 7.6: Demonstration of phase changes due to advancing frames on a single-
frequency sinusoid.

is known along with the time delay between adjacent frames τ . Therefore, the

expected phase of frequency f at frame i can be determined as:

φi = φi−n + 2πnτf (7.4)

where n is the number of frames prior to the current frame in which the reference

phase was taken, and τ is the time advance of each frame in seconds. This

estimation approach is termed Phase Estimation via DElay Projection (PEDEP).

PEDEP using Eq. (7.4) is straight forward when only one sinusoid is present,

however speech signals contain a mixture of sinusoids each with a different fre-

quency. A few assumptions are therefore required in order to explore PEDEP as

a useful estimation technique.

The DFT accumulates sinusoidal components into discrete frequency bands

with centre frequencies which are determined by the sampling rate fs and the

length of the analysis window. Sinusoidal components contribute largely to the

frequency band which encompasses their true frequency, however it is highly

unlikely that the true frequency is exactly equal to a particular DFT centre

frequency. The consequence of this deviation is a smearing effect across a wider

range of frequencies. This smearing effect is demonstrated in Fig. 7.7 which

shows the magnitude spectrum of two sinusoids – one at 1000 Hz which matches
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Figure 7.7: Demonstration of the effect of spectral smearing when sinusoidal
frequencies differ from DFT frequencies.

a DFT frequency, and one at 4015 Hz which deviates from the nearest centre

frequency by 15 Hz. Both signals cause smearing across adjacent frequencies,

however the higher frequency signal has a greater effect across a much wider

range of frequencies. Despite this smearing effect, PEDEP assumes that this

effect is minimal on the final frequency representation, and therefore frequencies

can still be analysed independently.

PEDEP also assumes that the signal in each independent frequency band

remains stationary (or very close to) from one sampling frame to the next. In

this way, it is inherently assumed that no other sinusoidal components are added

or removed between these instances in time.

7.5 Experiments & Discussion

7.5.1 Investigation

To determine the validity of the PEDEP approach, it was required to study

the stationarity behaviour (as described in Section 7.4.2) of typical noise and

clean speech phase spectra under the experimental configuration used in this

dissertation. Clean speech phase samples were generated from 100 randomly
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chosen TIMIT test sentences [42], whilst samples of car noise from the NOISEX

database [140] and randomly generated Additive White Gaussian Noise (AWGN)

were used as examples of noise phase spectra.

To best visualise the stationarity behaviour, histograms describing the rela-

tionship of observed phase spectra in adjacent frames were generated for each

DFT centre frequency. To do this, true differences in phase between adjacent

frames were calculated and then normalised for the expected delay due to the

observation sampling. This calculation equates to a modified version of Eq. (7.4):

∆φ = φi − φi−1 − 2πτf (7.5)

where each value of ∆φ was wrapped to the range −π < ∆φ ≤ π. By removing

the effect of the observational delay, the histograms identify the accuracy of the

stationarity assumption which is pivotal to this phase estimation technique.

Figure 7.8 shows the average distributions for all frequencies of actual phase

differences between adjacent frames for AWGN (Fig. 7.8(a)), car noise (Fig. 7.8(b))

and clean speech (Fig. 7.8(c)). Each histogram is compared against the ideal dis-

tribution which reflects the assumption of perfect signal stationarity between

frames (i.e. ∆φ = 0). It can be observed that the distributions of the three

different signals are very similar, as is their behaviour as the frame advance is

decreased. This similarity in behaviour suggests that the PEDEP approach will

be suitable for a wide range of noise and speech signals.

In general, the histogram for the standard speech processing frame rate of

10 ms exhibits main peaks at approximately ±π
4
, and only a minor peak at 0

radians which makes it significantly different in shape to the desired distribu-

tion. This observation led to decreasing the frame advance in order to improve

the distribution. The motivation for increasing the frame rate was that as the

observation points become closer, the more likely the signal remains stationary;

in other words, there is less time for sinusoidal components change.

Examining Fig. 7.8, it can be noted that as the frame advance is reduced, the

distribution slowly changes to become more and more like the ideal histogram,

with dominant peaks appearing at 0 radians for frame advances less than – and

including – 2.5 ms. Just as importantly, the secondary peaks around ±π
4
are
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Figure 7.8: Histograms showing normalised phase differences between adjacent
frames for (a) AWGN, (b) car noise, and (c) clean speech.
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attenuated, but they also shift towards ±π
6
. As the frame advance is continually

decreased to 1 ms, only minor improvements are observed in the histograms

which suggests only minor improvements in the accuracy of the phase estimation

procedure would be observed.

It should also be noted that whilst only the average distributions across all

DFT frequencies have been shown here, the behaviour of individual frequencies

was found to be very similar to that observed in Fig. 7.8. Thus, it will be possible

to use the outcomes of this investigation to perform PEDEP on a frequency-by-

frequency basis as required by complex spectrum subtraction.

In summary, these histograms verify the assumption of stationarity necessary

for the proposed PEDEP approach to be effective for integration with complex

spectrum subtraction. In particular, this assumption is more closely approxi-

mated as the frame advances become smaller (i.e. the frame rate is increased).

7.5.2 “Oracle-style” ASR Experiments

Having determined that the underlying assumption of the PEDEP approach can

be better approximated when using larger frame rates, it was also necessary to

evaluate the performance of complex spectrum subtraction using PEDEP on an

ASR task. A number of oracle-based recognition tests were designed to:

1. Predict an upper bound on ASR performance if perfect phase estimation

was possible;

2. Determine the effects on ASR performance of different frame advances re-

quired by the PEDEP approach;

3. Compare the ASR performance using directly estimated and interpolated

phase spectra; and

4. Compare the proposed phase estimation technique and CSS with conven-

tional magnitude spectral subtraction.

This experiment used the same baseline speech recogniser detailed in Sec-

tion 4.3. For all experiments, noise magnitude estimates were derived using
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the time-recursive averaging method with soft-decision SAD as described in Sec-

tion 3.4. Test data consisted of the same 100 TIMIT test sentences used for

generating the histograms in the previous section. Each utterance was corrupted

with varying levels of car noise from the NOISEX database as well as randomly-

generated AWGN to satisfy a range of target SNRs from 20 dB to -5 dB. Using

synthesised test data ensured clean speech, noisy speech and noise signals were

all available to the oracle framework.

An explanation of the baseline and enhancement approaches compared in this

oracle-based evaluation is as follows:

• Clean Speech: baseline ASR using the original TIMIT sentences.

• Noisy Speech: baseline ASR using the noise-corrupted TIMIT data over a

range of SNR.

• Magnitude Spectral Subtraction: traditional magnitude spectral subtraction

(i.e. γ = 1) incorporated into the front-end. For this experiment, the noise

magnitude estimate was considered to be accurate, therefore α = 1.

• True Phase CSS : complex spectrum subtraction using the true noise phase

spectrum but estimated magnitude spectrum. This scenario simulates the

upper bound on ASR performance when using CSS with perfect phase es-

timation in the ASR front-end.

• Colinear CSS : complex spectrum subtraction assuming the noise and speech

signals are in-phase. This is the equivalent of magnitude spectral subtrac-

tion without the spectral flooring operation.

• Direct CSS with PEDEP : complex spectrum subtraction using PEDEP to

estimate the noise phase spectrum.

• Interpolated CSS with PEDEP : complex spectrum subtraction using PEDEP

to estimate the clean speech phase spectrum and interpolating using the tan-

gent method described in Section 7.4.1. In frames deemed to be noise, the

colinearity assumption was used to generate the subtraction result. The

intersection method was not evaluated in this thesis as there is concern
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over error propagation since the method relies on the previous clean speech

magnitude estimate which will have some level of error associated with it.

For both CSS configurations incorporating PEDEP, estimates were derived

for a range of frame advances from 1 ms through to the standard processing rate

of 10 ms. In order to maintain the 10 ms frame rate for ASR feature generation,

only frames which correspond to those of the standard 10 ms advances are used –

these frames are referred to as the analysis frames. For example, in the 1 ms frame

advance case, every 10th frame is considered an analysis frame. For each analysis

frame, complex spectrum subtraction was performed using the phase estimate

derived by projecting forward the true phase from the previous frame (regardless

of the frame advance). This oracle experiment was designed to explore whether

the PEDEP approach provides useful information for CSS when operating in its

most accurate form (i.e. propagation errors are eliminated by projecting the phase

forward one frame as opposed to n frames).

Whilst the effect of projecting the phase over multiple frames was not explic-

itly considered in the experiment design, some indications of the performance in

this scenario exist within the results presented in this section. For example, using

a 1 ms frame advance and projecting forward 2 frames is equivalent to using a

2 ms frame advance and projecting forward 1 frame.

Complex Spectrum Subtraction Proof of Concept

The results of an initial proof-of-concept recognition experiment are provided in

Fig. 7.9 for a range of SNR for both additive white Gaussian noise and car noise.

The results for both types of noise indicate that if the phase spectrum of the

noise signal is known, large improvements in speech recognition accuracy can

be achieved compared to using just the magnitude information as in magnitude

spectral subtraction. This result is true for all SNR, but is particularly noticeable

for moderate SNR (5-15 dB) for AWGN and for low SNR (less than 5 dB) for

car noise. At 5 dB, the relative improvements in word accuracy are 14.5% and

18.3% for AWGN and car noise respectively. The average relative improvement

for both noise types are around 9.5% for all SNR.

It should also be noted that complex spectrum subtraction is able to recover
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Figure 7.9: Proof-of-concept speech recognition results for complex spectrum sub-
traction using known (i.e. true) phase and assuming speech and noise colinearity
for (a) AWGN and (b) car noise.
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some of the performance loss which is brought about by distortion introduced

by magnitude spectral subtraction in clean environments. Distortion arises due

to the use of a noise magnitude estimate instead of the true instantaneous noise

magnitude, as well as the spectral flooring process. Both of these factors are

contributors to musical noise – a well-known artefact of spectral subtraction. By

using CSS, the removal of the flooring process as well as the introduction of phase

information is able to reduce these levels of distortion.

Utilising the colinearity assumption to generate the phase information (and

thereby removing the flooring process) provides similar performance – generally

within 1% – to magnitude spectral subtraction. In some instances, such as for

AWGN, colinear CSS outperforms magnitude subtraction for SNR between 20 dB

and 5 dB, but is inferior for additive car noise at SNR greater than 10 dB.

Despite the different characteristics for the two different noise types, this result

tends to suggest that the computationally expensive noise flooring operation can

be removed by utilising colinear spectrum subtraction. This alteration may be

highly beneficial for hardware implementations of spectral subtraction.

This proof-of-concept experiment justifies the proposal to perform subtrac-

tion in the complex frequency domain by demonstrating the ability to at least

match the performance of traditional magnitude spectral subtraction. The noise

phase information used in these experiments represent two extremes of the phase

estimation problem – true phase information represents the objective of perfect

estimation, however colinear phase provides a reasonable starting (as well as fall-

back) position from which phase estimates can be improved.

Phase Estimation

Having justified the complex spectrum subtraction approach using known phase

information, the proposed PEDEP estimation technique was evaluated using the

same noisy test data from the previous experiment. The typical recognition

characteristics as the frame advance is increased from 1 ms to 10 ms are shown

in Fig. 7.10 for 15 dB SNR. Similar characteristics for other SNR are provided in

Appendix B.

For both types of additive background noise, the recognition characteristics
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Figure 7.10: ASR performance of the proposed PEDEP phase estimation tech-
nique for increasing frame advances using (a) AWGN and (b) car noise at 15 dB
SNR.
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across the range of frame advances are very similar. In general, as the frame

advance is increased (i.e. the frame rate is decreased), word accuracy using direct

estimation of the noise phase decreases (green line), whilst the accuracy using

estimation of the speech phase and interpolating the subtraction result using the

tangent method increases (magenta line). This commonality between different

noise types suggests that proposed phase estimation technique is applicable to a

wide range of background noise and therefore suitable for a wide range of speech

recognition applications.

The results of the investigation in Section 7.5.1 showed that the stationarity

assumption is better approximated as the frame rate is increased for both speech

and noise signals. Therefore, it is anticipated that as the phase estimate using

PEDEP becomes more accurate, so too will the resulting clean speech magnitude

(N.B. the noise magnitude estimate is the same for all frame rates as it only

applies to the 10 ms analysis frames). From the results presented in Fig. 7.10,

it is clear that this is the case when using PEDEP to directly estimate the noise

phase. In this case, the ASR performance is inferior to both traditional mag-

nitude spectral subtraction and colinear complex spectrum subtraction for the

longer frame advances (more than 5 ms) where the stationarity assumption was

seen to exhibit considerable sidelobes at phase differences of π
4
. When the frame

advances are decreased to 2.5 ms and below, direct CSS with PEDEP begins to

outperform both reference methods in all SNR which suggests the phase esti-

mates are sufficiently accurate to justify the use of CSS. Applying a 2.5 ms frame

advance (i.e. 400 Hz frame rate), the proposed estimation technique produces

average relative word accuracy improvements for all SNR of 6.7% and 4.8% com-

pared to magnitude spectral subtraction in white noise and car noise respectively.

If the frame rate is further increased to 1000 Hz (1 ms frame advance), these rela-

tive improvements increase to 9.4% and 7.4% respectively, however for this small

dataset this increase required approximately six times the processing time com-

pared to a 400 Hz frame rate. Therefore, a 2.5 ms frame advance is seen as an

appropriate trade-off between processing time and the resulting improvements in

ASR word accuracy.

Using PEDEP to estimate the clean speech phase and interpolating to obtain
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Figure 7.11: Frequency analysis of the average phase error between the true and
estimated clean speech phase.

the subtraction result behaves opposite to what was expected given the speech

phase characteristic between adjacent frames observed in Fig. 7.8(c). In order to

determine the cause of this behaviour, first the accuracy of the estimated clean

speech phase was determined. Ten of the noise-corrupted TIMIT test sentences

at 10 dB were used to determine the average error between the estimated and

true clean speech phase for each frequency. Figure 7.11 demonstrates that the

accuracy of the clean speech phase estimate is increasing as the advance between

frames is decreased; this is the behaviour which was expected given the results of

the previous investigation. Therefore, the cause of the recognition performance

seen in Fig. 7.10 is due to the method of interpolation and not the accuracy of

the proposed delay-based phase estimation.

Further investigation of the tangent interpolation method reveals a significant

flaw in the underlying assumptions. As described in Section 7.4.1, when the

speech phase estimate falls between the two circle tangents, the subtraction result

is taken as the point which corresponds to the estimated clean speech phase but

has the smallest magnitude. This operation was based on the assumption that

the magnitude of the resulting enhanced signal should be less than the noisy

signal magnitude – this assumption is the basis of traditional magnitude spectral
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subtraction. The shortfall of this operation occurs when the noise and clean

speech signals are significantly out of phase. In this specific case, the original

mixing procedure can cause the noisy speech vector to have a smaller magnitude

than the clean speech; these cases require “spectral addition” in order to obtain a

truer estimate of the clean speech magnitude. This effect was previously explained

in Section 7.3.1 and was demonstrated graphically in Fig. 7.4.

Given the shortfalls of this interpolation method when estimating the clean

speech phase, direct noise phase estimation appears more reliable for improving

speech recognition accuracy at this stage. Improvements to the current tangent

interpolation method to cater for cases where the speech and noise phase are

considerably out of phase may enable further improvements in word recognition

accuracy than what has been shown in these experiments. This is described

further in Section 7.6.

7.5.3 “Real-World” ASR Experiments

The oracle experiments in the previous section demonstrated that directly es-

timating the noise phase spectrum using PEDEP improved ASR performance

compared to traditional magnitude spectral subtraction for all frame rates greater

than 400 Hz. In those experiments, the true noise phase was always projected

forward to the next frame, however this procedure is not possible in “real-world”

scenarios where the nature of the additive background noise (and therefore the

true noise signal) is unknown.

To implement PEDEP on realistic data, the following algorithm is required.

Algorithm 1 Practical Implementation of PEDEP for Complex Spectrum Sub-
traction
1: Initialise noise phase reference for each frequency using phase of first frame which should contain only noise.
2: Initialise reference frame numbers to 1 for each frequency.
3: for all subsequent frames do

4: Perform soft-decision SAD on each frequency.
5: if frequency contains only noise then

6: Update reference phase to phase of current frame.
7: Update reference frame number to current frame.
8: else

9: Project phase from most recent reference frame forward to current frame.
10: if current frame required for analysis then

11: Perform complex spectrum subtraction.
12: end if

13: end if

14: end for
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Table 7.1: Speech recognition performance of the practical implementation of the
PEDEP phase estimation for complex spectrum subtraction.

ASR Word Accuracy (%)

20 dB 15 dB 10 dB 5 dB 0 dB -5 dB

AWGN

No enhancement 51.2 21.6 8.4 3.6 3.2 1.9

Magnitude Spec Sub 61.0 38.3 16.3 5.2 7.5 2.4

Direct CSS + PEDEP 61.7 42.3 18.6 6.5 4.7 2.5

Car

No enhancement 65.4 56.9 42.4 24.1 5.8 1.7

Magnitude Spec Sub 68.9 65.0 57.5 33.2 18.9 3.4

Direct CSS + PEDEP 67.1 64.5 56.8 35.1 19.0 3.6

This algorithm was used with a frame rate of 400 Hz, with analysis frames

taken every 10 ms. This frame rate was chosen as the previous discussion deemed

it a suitable trade-off between processing time and improvements in ASR word

accuracy. The soft-decision SAD is the same as that which has been used to

update the noise magnitude estimation throughout this dissertation.

To determine the realistic performance of the PEDEP phase estimator us-

ing this intermediate frame rate, the same 100 noise-corrupted TIMIT sentences

were used for the speech recognition task. The results for AWGN and additive

car noise are shown in Table 7.1. From these results it can be seen that the

proposed complex spectrum subtraction with delay-based phase estimation im-

proves word recognition accuracy in comparison with a baseline system without

enhancement. Further, in approximately 66% of test SNR across the two different

noise types (highlighted bold) the proposed method is able to outperform tradi-

tional magnitude spectral subtraction. For white Gaussian noise in particular,

the proposed method is superior in most SNR, with the only exception being

0 dB. At 15 dB, the relative improvement in word accuracy for AWGN is 6.5%;

this is the maximum improvement of all SNR cases.

Low signal-to-noise ratios are extremely common in vehicular environments

due to the use of distant microphones [15]. The proposed CSS technique with

phase estimation also shows promise in these environments as it can be seen to

outperform magnitude spectral subtraction for SNR ≤ 5 dB. At 5 dB, the relative

improvement in accuracy is 2.8%.
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Whilst the proposed technique fails to outperform magnitude spectral sub-

traction in all environments, these results confirm that the approach described in

Algorithm 1 is suitable for improving ASR performance by using complex spec-

trum subtraction in the ASR front-end. This result combined with those reported

previously demonstrates the use of phase information in spectral subtractive-type

speech enhancement can improve clean speech magnitude estimates which ulti-

mately improves ASR performance.

The results presented throughout this section verify the benefits of the pro-

posed PEDEP algorithm and its integration with complex spectrum subtraction

in order to improve the performance of traditional spectral subtraction techniques.

7.6 Research Directions

The novel contributions contained in this chapter provide the first step to using

phase spectrum information in spectral subtraction, and there are a number of

research directions which can be taken to make this approach more effective.

As far as the work contained in this chapter is concerned, there were a couple

of questions raised within the discussion that necessitate further investigation.

The first of those is the secondary peaks at π
4
observed for the longer frame

advances in the phase difference histograms in Fig. 7.8. Of equal interest is

why these peaks tend to decrease in amplitude compared to the main peak at

0 radians as the frame rate is increased, and also why they move towards π
6
.

This phenomenon was not regarded as important for demonstrating the concept

of the proposed delay-based phase estimation, however with extended knowledge

of this occurrence, estimation accuracy may be improved at frame rates closer

to those generally used for speech processing. From the perspective of reducing

computational complexity, this would be an appealing outcome.

Another issue with the assumption that complex spectrum subtraction with

PEDEP can be applied to individual frequencies is the effect of smearing which

occurs when signal frequencies do not exactly match DFT centre frequencies. This

effect was seen in Fig. 7.7. The assumption of independence between frequencies

could be relaxed if the nature of this smearing effect can be determined using
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information obtained by techniques such as pitch and true frequency calculation.

This information could allow for the smearing effect to be reduced, and could

result in more accurate estimates of phase.

In the experiments, it was seen that the speech recognition accuracy when es-

timating the clean speech phase and interpolating the subtraction output behaved

in the opposite manner to that expected given the improved phase estimates as

the frame rate was increased. Further analysis discovered that the method of

interpolation was not suitable when the clean speech phase fell between the two

circle tangent points and the noise and speech signals were significantly out of

phase. Future research goals are to determine an approach whereby this inter-

polation can be improved; this is particularly important during long periods of

speech where the speech phase estimate should be more accurate than a projected

noise phase. The existing interpolation method could be extended to incorporate

either the previous clean speech magnitude estimate or the noise phase esti-

mate. In both cases, this extra information could be used to determine whether

spectral subtraction or spectral addition (i.e. when the signals are significantly

out of phase) is required on a frame-by-frame and frequency-by-frequency basis.

Combining this information could potentially increase ASR performance at the

standard speech processing frame rate of 10 ms, a result which is computationally

attractive.

In this dissertation, speech enhancement performance has been considered

only when it used as part of ASR front-end processing. For human intelligibility

applications, the proposed technique presented in this chapter could also im-

prove signal quality in two ways. The first is the improved magnitude estimates

which result from using this approach – such improvements were seen throughout

the discussion and confirmed by the widespread increase in ASR accuracy when

speech features which rely on the magnitude spectrum are used. Another poten-

tial improvement for intelligibility applications is the use of an enhanced phase

spectrum for reconstruction to the time domain. Traditionally, the noisy speech

phase spectrum is left unaltered for reconstruction purposes; the improved phase

spectrum information which results from complex spectrum subtraction could

be used to improve the reconstruction operation. To test CSS in this particular
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application, the effect of both enhanced magnitude and phase spectra can be

assessed using Perceptual Speech Quality Measures (PSQM). Clean speech and

noise-corrupted data from either the TIMIT test sentences used in this thesis,

or from the more comprehensive Aurora experimental framework [57] would be

appropriate for such an evaluation.

7.7 Summary

Traditional frequency-domain spectral subtraction fails to utilise phase spectrum

information in deriving clean speech magnitude estimates. In this chapter it

was shown that without phase spectrum information, the clean speech magni-

tude cannot be perfectly reconstructed. The errors in the resulting clean speech

magnitude when using traditional magnitude spectral subtraction were found to

be dependent on the phase of both the noise and speech signals, as well as the

instantaneous signal-to-noise ratio.

Given this finding, it was proposed to include phase information into spectral

subtractive-type algorithms, and perform the subtraction in the complex fre-

quency spectrum. The estimated complex clean speech signal can be determined

by directly estimating the noise phase or interpolating the clean speech phase

estimate and combining with the noise magnitude estimate. A novel method

termed Phase Estimation via DElay Projection (PEDEP) for estimating either

phase spectrum was proposed; this approach is based on the stationarity of si-

nusoidal waveforms and the delay between observations. A preliminary investi-

gation showed the underlying assumptions were better approximated as the time

advance between adjacent frames was decreased.

The results of a proof-of-concept experiment demonstrated that the use of

true phase information is beneficial to speech recognition performance when us-

ing spectral subtraction in the ASR front-end. This experiment provided an upper

bound on the possible recognition performance (with this data) if both phase and

magnitude estimation procedures were employed for complex spectrum subtrac-

tion. As the time advance between frames was decreased, ASR word accuracy

was increased when using PEDEP to directly estimate the noise phase, however
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the same was not true for interpolating the clean speech phase estimate. The

latter behaviour was attributed to scenarios where the noise and speech signals

were significantly out of phase; a solution to this problem is sought in future

research.

A final experiment using speech activity detection to assist the noise phase

spectrum estimation demonstrated – in a number of noisy conditions – that com-

plex spectrum subtraction with proposed PEDEP algorithm was able to out-

perform traditional magnitude spectral subtraction. This experiment confirmed

the suitability of the proposed approach for coupling spectral subtractive speech

enhancement with ASR.

The research undertaken in this chapter should challenge the research commu-

nity to reconsider the use of phase spectrum information to further improve both

automatic speech recognition and human intelligibility in adverse environments.

Throughout this chapter and the two chapters prior, constant reference has

been made to the practical implementation of spectral subtractive speech en-

hancement, particularly in terms of computational requirements. In Chapter 8,

these considerations are used to direct a simplification of the traditional frequency-

domain spectral subtraction algorithm to enable a resource-efficient implementa-

tion on FPGA hardware for in-car ASR applications.



Chapter 8

FPGA Hardware Implementation

of Spectral Subtraction

8.1 Introduction

In previous chapters, review of the literature showed significant research effort

devoted to creating novel ways of solving the problem of ambient noise on the

speech signal. For a number of reasons however, much of this research is not

implemented in commercial products. For instance, in the automotive indus-

try, speech solutions need to be effective in a wide range of noise conditions,

realisable in low-cost hardware and maintain real-time operation. The need for

real-time processing makes many speech enhancement techniques unsuitable (in-

cluding some proposed in this dissertation), and multi-microphone systems are

still too expensive for wide-spread industry adoption at this point in time.

In Chapter 3, limited examples of spectral subtraction specifically applied to

noisy signals recorded in an automotive environment were provided however none

of these studies proposed any hardware implementations. Traditional magnitude

spectral subtraction is an appropriate enhancement method for automotive ap-

plications as it requires the installation of only a single microphone, and the

processing can be simplified considerably (Section 8.2) to satisfy low-cost and

real-time requirements.

157
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The majority of existing automotive electronics are powered by low-cost em-

bedded processors that provide services such as car area networking and human-

machine interfaces. To date, Field Programmable Gate Arrays (FPGA) have been

used for only a small amount of these electronics primarily due to their higher

single-unit cost compared to embedded processors. This difference in cost is be-

coming insignificant as multiple instantiations of embedded processors and other

specialised hardware are possible in a single, modest-sized FPGA, making them

suitable for automotive applications. A low-cost implementation of spectral sub-

traction on FPGA based on the simplified algorithm was performed by researchers

at LaTrobe University, Melbourne, Australia (Section 8.3). Verification of this

design and evaluation of its ASR performance are performed with reference to an

equivalent floating-point model in Sections 8.4 and 8.5 respectively.

8.2 Spectral Subtraction for In-Car Applications

The FPGA implementation of spectral subtraction is based on a modified version

of the frequency-domain formulation described in Eq. (3.3):

|Ŝi(k)|γ =











|Y i(k)|γ − ai(k)|D̂i(k)|γ |Y i(k)|γ − ai(k)|D̂i(k)|γ > β|Zi(k)|γ

β|Zi(k)|γ otherwise

(8.1)

where |Zi(k)| is either the instantaneous noisy speech signal magnitude |Y i(k)| or
the noise magnitude estimate |D̂i(k)|. In this instance, the resulting clean speech

magnitude estimate |Ŝi(k)| is recombined with the noisy signal phase ej∠Y
i(k) for

synthesis to the time-domain, which enables the enhanced signal to be used for

playback or as input to further speech processing such as ASR using a commercial

speech recognition engine.

The subtraction process described by Eq. (8.1) requires a lot of real-time mul-

tiplications since the frequency-dependent subtraction factors – and potentially

the noise floor – are calculated on a frame-by-frame basis (i.e. every 10 ms). For

a real-time, low-cost hardware implementation on FPGA the following simplifi-

cations are proposed:
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1. Assuming the noise estimate |D̂i(k)|γ is sufficiently accurate, the frequency-

dependent subtraction factors αi(k) – which are introduced to reduce the

effects of inaccurate noise estimates – are not required. Therefore, αi(k) is

set to 1 for all frames i and DFT frequencies k.

2. Assuming the initial N frames of each recording contain only noise (i.e. no

speech components), the average of these initial silence frames produces a

noise estimate which remains stationary for the remainder of the record-

ing. Therefore, the noise estimate is only calculated prior to any signal

enhancement and can be represented as |D̂(k)|γ (N.B. the relaxation of the

dependency on the frame number i). For simplicity in the hardware design,

8 frames are chosen as sufficient to calculate the noise estimate, allowing a

simple 3-bit shift for determining the average of these frames. In order to

maintain real-time processing, these 8 frames are discarded from the output

waveform to avoid buffering in order to apply spectral subtraction to these

frames after the estimate has been calculated.

3. Having generated a constant noise estimate |D̂(k)|, this estimate can be

used to represent |Zi(k)| in Eq. (8.1) for calculating the noise floor. There-

fore, the noise floor also remains constant for the entire utterance instead of

constantly changing through scaling of the noisy signal magnitude |Y i(k)|.

Following these simplifications to Eq. (8.1), the spectral subtraction equation

used in the FPGA implementation outlined in Section 8.3 is:

|Ŝi(k)|γ =











|Y i(k)|γ − |D̂(k)|γ |Y i(k)|γ − |D̂(k)|γ > β|D̂(k)|γ

β|D̂(k)|γ otherwise

(8.2)

Equation (8.2) leaves only two parameters (γ and β) to be further optimised

for the FPGA implementation. Common values for these parameters were noted

in Section 3.3.1. The values of γ are typically used for their conceptual meaning

as opposed to ASR performance whilst β is often chosen to optimise SNR given

a particular value of γ. In [68] it was established that in-car ASR performance

differs greatly with various combinations of γ and β; therefore these values must

be chosen carefully.



160 Chapter 8. FPGA Hardware Implementation of Spectral Subtraction

0 0.2 0.4 0.6 0.8 1
36

38

40

42

44

46

48

50

52

X: 0.05
Y: 45.13

A
SR

 A
cc

ur
ac

y 
(%

)

X: 0.55
Y: 50.43

X: 0.5
Y: 50.35

β

Figure 8.1: The effect of the noise floor scaling factor, β, on ASR accuracy
averaged over a range of automotive noise conditions.

In order to reduce the processing requirements of the FPGA implementation

in Section 8.3, magnitude spectral subtraction (γ = 1) was chosen. Using this

parameter value avoids the need for the FPGA to perform resource-intensive

square and square-root operations. Further, comparable ASR accuracy can be

obtained for magnitude and power spectral subtraction if the values of β are

optimised for each value of γ.

Using a suitable floating-point model, preliminary experiments similar to those

reported in [68] were performed to determine the optimal value of β to use in the

FPGA implementation. Using the first 5 experimental folds from the AVICAR

evaluation protocol [66], values of β were varied in linear increments through the

range [0, 1] with γ = 1. The average combined results for all noise conditions in

the AVICAR database are shown in Fig. 8.1. It should be noted that the indi-

vidual noise conditions exhibited similar characteristics to Fig. 8.1; this permits

a constant β value to be applied to all in-car noise scenarios.

From this figure it can be seen that a wide range of (but not all) β val-

ues lead to improvements in word accuracy over a system with no enhancement

(shown by the dashed line). Maximum recognition accuracy can be obtained

by setting β = 0.55, however this performance is only marginally better than

at β = 0.5 (less than 0.1%). As a result, a value of β = 0.5 was chosen for

the FPGA implementation as this value is easily and accurately represented in

fixed-point notation.
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8.3 Hardware-Based Speech Enhancement

Researchers at LaTrobe University, Melbourne, implemented the simplified spec-

tral subtraction algorithm presented in Section 8.2 on both a Xilinx Virtex-4 SX

FPGA [146] and a Xilinx XA Spartan-3A DSP 1800A FPGA [147]. The lat-

ter device is the general production equivalent of its Xilinx Automotive cousin;

therefore successful implementation on this device demonstrates the capability

for implementation in an automotive-grade FPGA.

The FPGA design process consisted of the following steps:

1. Development of a MATLAB version of the spectral subtraction algorithm

(Section 8.2) using high-precision, complex floating-point arithmetic.

2. Conversion to a fixed-point (data and operations) implementation in MAT-

LAB, mirroring the major blocks expected in the FPGA implementation.

3. Comprehensive testing of the fixed-point MATLAB design against the floating-

point version, both block-by-block and at the complete system level.

4. Implementation of the fixed-point design as Xilinx System GeneratorTM (XSG)

models.

5. Comprehensive testing of each major block of the XSG design against its

fixed-point MATLAB equivalent, and testing of the complete XSG model

against both the fixed-point and floating-point MATLAB versions.

6. From the completed XSG model a hardware description language represen-

tation was generated, synthesised using Xilinx ISE 9.2 tools, and imple-

mented on the higher-end Xilinx Virtex-4 SX FPGA.

7. Following a check of the FPGA resource usage of the design, the XSG model

was analysed block-by-block to identify resource inefficiencies and refined

to use more appropriate resources.

8. Performance of the Virtex-4 realisation was checked against the XSG and

floating-point models by comparing output waveforms for common input.
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Figure 8.2: Block diagram of hardware implementation of spectral subtraction
algorithm.

9. The validated design was synthesised into the low-end Xilinx Spartan-3A

DSP FPGA, and tested against the Virtex-4 implementation on a sample-

by-sample basis for a range of signal inputs including basic ramps, modu-

lated chirps and speech samples.

Figure 8.2 shows the block diagram of the FPGA implementation of the spec-

tral subtraction algorithm. Specific details of the implementation and optimisa-

tion are not provided here – the reader is directed to the publications resulting

from this work for such details [146, 147].

8.4 Design Verification & Resource Usage

8.4.1 Verification

The accuracy of the FPGA implementation was verified using the USB test har-

ness developed in [146]. Various signals were passed through the FPGA and
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Figure 8.3: (a) Noisy speech signal from AVICAR database, (b) output of spectral
subtraction algorithm, (c) difference between floating-point and initial FPGA
design, and (d) difference between floating-point and optimised FPGA design.

floating-point models, and were compared on a sample-by-sample basis. An ex-

ample of the output waveforms of one such test on a speech sample from the

35 mph with window down noise condition of the AVICAR database is shown in

Fig. 8.3. The original waveform is shown in Fig. 8.3(a), and the corresponding

spectral subtraction output in Fig. 8.3(b). The sample-by-sample differences of

the original FPGA design in [146] and the optimised design in [147] with respect

to the floating-point output are shown in Fig. 8.3(c) and Fig. 8.3(d) respectively.

Observing the waveforms in Figs. 8.3(a)-8.3(b), it can be seen spectral sub-

traction provides noticeable signal enhancement of the noisy in-car speech. Prior

to enhancement, the time-domain structure of the speech signal is not visible –
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Table 8.1: Spartan-3A DSP 1800A FPGA resource usage summary.

Resource Type Available
Usage (%)

Initial Optimised

Slices 16640 1622 (9%) 2196 (13%)

Flip Flops 33280 2581 (7%) 3093 (9%)

4-input Look-Up Tables 33280 2419 (7%) 3010 (9%)

Block-RAM 84 10 (11%) 10 (11%)

Digital Clock Manager 8 1 (12.5%) 1 (12.5%)

DSP48 84 21 (25%) 25 (29%)

after enhancement the regions of speech are more pronounced. This observation

was further validated through analysis of the output spectrograms in [146].

Analysing the difference signals created by the two FPGA designs (Figs. 8.3(c)-

8.3(d)), the average gain of 13.5 dB represents an approximate improvement of

2-bits between the initial and optimised designs. The continued presence of spikes

in the difference signal (e.g. around the 3 second mark in Fig. 8.3(d)) are at-

tributed to the Xilinx FFT block outputting a quantised version of its internal

scaling factor which occasionally leads to larger sample errors. Through optimi-

sation of the FPGA design (i.e. from Fig. 8.3(c) to Fig. 8.3(d)), the frequency of

these spikes was reduced to less than 1 in every 200 samples.

8.4.2 Resource Usage

Table 8.1 shows the total resources required to implement the spectral subtraction

algorithm design in a Spartan-3A DSP FPGA. The “initial” and “optimised”

designs are identical in terms of the design architecture – the only difference is

the bit resolution used within the designs. Overall, the initial design used 9% of

the total (i.e. general FPGA logic fabric) slices available, and 25% of the DSP48

XtremeDSPTM blocks. The larger percentage use of the DSP48 blocks is expected

due to the intensive DSP requirements of the algorithm (namely the FFT/IFFT

block). The percentage use of other key resources, block-RAM and digital clock

manager blocks is of a similar level to the slice usage.

Each sub-block of the original design was optimised so that the number of bits
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used was sufficient for processing a range of types of speech input with minimum

quantization error and no arithmetic overflow. This resulted in a slight increase

in resource usage to 13% of slices and 29% of DSP48 blocks due to the use of

larger bit widths within some sub-blocks.

The relatively low resource usage shown here enables other in-car services

(such as car area networking, human-machine interfacing or other speech pro-

cessing) to be incorporated into the same FPGA which will assist in minimising

overall manufacturing costs for these services.

8.5 Experimental Results & Discussion

To test the true effectiveness of the FPGA implementation for use in in-car speech

recognition, the FPGA processed waveforms were evaluated under the speech

recognition protocols outlined in Chapter 4 and compared to a floating-point

equivalent of the spectral subtraction algorithm. It should be noted that the

results shown here are different from those presented in Chapter 4 since the first

8 frames are removed from all signals in order to reflect the hardware process-

ing during the noise estimation period. Speech recognition results are shown

in Tables 8.2 and 8.3 for the AVICAR and Australian English In-Car Speech

databases respectively. The results for the AEICS corpus are for command and

navigation tasks combined – it was not deemed necessary to separate them for

this validation.

Analysing the results in these tables it can be seen that all versions of the

spectral subtractor provide improvements in recognition performance across the

Table 8.2: ASR results (% word accuracy) for FPGA validation on the AVICAR
database.

ASR Word Accuracy (%)

IDL 35U 35D 55U 55D

No Enhancement 71.5 49.6 37.2 42.8 24.6

Floating-Point 74.8 54.7 40.9 50.7 30.7

Initial FPGA 70.5 54.9 41.6 50.7 30.8

Optimised FPGA 74.7 54.8 40.9 50.6 30.7
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Table 8.3: ASR results (% word accuracy) for FPGA validation on the AEICS
database.

ASR Word Accuracy (%)

C0 C6 C1 C2 C3 C4 C5

No Enhancement 84.9 41.2 69.7 34.1 53.0 53.9 30.5

Floating-Point 86.9 52.8 76.2 48.3 60.6 61.5 45.2

Initial FPGA 86.2 52.8 70.6 47.6 34.2 60.5 45.7

Optimised FPGA 86.9 52.9 76.2 48.4 59.8 61.6 45.4

full range of in-car noise scenarios. Most importantly, the optimised FPGA design

performs closely to the floating-point algorithm, proving this hardware design is

more than suitable for in-car speech recognition systems.

The exception to this observation is the 50-60 km/h with window down con-

dition in the AEICS database. It can be seen that the initial FPGA design failed

to deal with the noise and word accuracy performance reduced by almost 20%

from the no enhancement case. Further analysis showed this noise condition is

highly susceptible to microphone vibration due to wind (from the open window)

which causes very high amplitude values in the low-frequency range (compared

to higher frequencies). These high amplitudes were unable to be handled by the

lower-precision FPGA design due to overflow in some of the hardware blocks,

particularly the FFT/IFFT block. This shortfall of the original design was cor-

rected in the optimised FPGA design where the speech recognition performance

is only 0.8% inferior to the floating-point version but still improves on the case

without enhancement by almost 7%.

8.6 Research Directions

Despite the considerable improvements in speech recognition accuracy provided

by the optimised FPGA design, the greater deviation from the floating-point

model in the 50-60 km/h with driver’s window down (C3) warrants further in-

vestigation. Despite the optimised design considerably reducing the effect of high

amplitudes in the low-frequency components of the signal, it appears that the

output from the FFT block – which has been set to the maximum bit-width
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available from the Xilinx IP core used in this design – is still experiencing some

arithmetic overflow, causing the noise estimation and subtraction processes to

become less accurate.

The spikes observed in the difference between floating-point and FPGA de-

signs (Fig. 8.3(c)-8.3(d)) appear to be another artefact resulting from limitations

of the FFT block. Using the maximum bit-width available has reduced the oc-

currence of these significant deviations, but has not eliminated them. To im-

prove the design further and correct these two problems, a new, higher resolution

FFT/IFFT block would be needed – the implementation of which would require

significantly more FPGA resources. Alternatively, a redesign of the pre-emphasis

filter for greater attenuation at low frequencies could lead to some improvement

at a more modest increase in resources.

Despite the already low resource usage demonstrated in Section 8.4.2, the

spectral subtraction implementation presented in this chapter could be made

even more resource efficient through the use of the colinear complex spectral

subtraction method presented in Chapter 7. This method removes the need for

the flooring operation by assuming the speech and noise signals are in-phase

(i.e. colinear). This method was shown to provide similar speech recognition

performance to traditional magnitude-based spectral subtraction, and could be

used in this application as a way of decreasing FPGA resource usage.

Preliminary experiments with floating-point models have shown that combin-

ing a dual-channel delay-and-sum beamformer with spectral subtraction acting

as a beamformer post-filter can yield even better ASR performance. Work un-

dertaken in parallel with this research successfully implemented a dual-channel

delay-and-sum beamformer in a Xilinx Virtex-4 FPGA [152]. Having shown low

resource usage in each of these two designs, and acknowledging the common

processing blocks between the two enhancement techniques (i.e. pre-emphasis fil-

tering, framing and FFT/IFFT), a low-cost FPGA implementation of this com-

bination will further improve in-car speech recognition.
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8.7 Summary

In this chapter a simplified spectral subtraction algorithm has been presented

which has been designed specifically for low-cost FPGA hardware implementation

in automotive environments. This algorithm uses an initial silence period to

calculate the noise estimate which is assumed stationary and accurate throughout

the speech recording and is also used in the noise flooring operation. Brief details

of the resulting implementation in a Xilinx XA Spartan-3A 1800A DSP FPGA

have been provided, with verification through waveform analysis on in-car speech

samples validating the effectiveness of the design. Speech recognition experiments

further validate the optimised FPGA design; results show it is able to perform

within 0.1% of a floating-point equivalent in almost all in-car noise conditions.

A number of future research directions based on the current implementation

have also been discussed including further analysis of artefacts observed in the

output waveforms, and analysis of the windows down noise condition which causes

the microphones to vibrate. Future implementations could include simplification

of the algorithm through the removal of the noise flooring operation, or incorpo-

ration of this implementation as a post-filter for a dual-channel delay-and-sum

beamformer.

In the previous four chapters, a number of novel contributions in the field

of robust speech recognition using speech enhancement have been presented. A

number of potential future research directions have also been proposed to extend

the work contained in this dissertation. The next chapter summarises the over-

all contribution of this dissertation, and highlights the most significant of the

proposed research directions.
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Conclusions and Future Research

9.1 Introduction

This chapter summarises the work presented in this dissertation. Particular ref-

erence is made to the primary aims and the novel contributions which were intro-

duced in Chapter 1 are highlighted in detail. A summary of the major avenues

for future research is also provided.

9.2 Conclusions

9.2.1 General Findings

The scope of this research was to investigate the performance of single-channel

speech enhancement for robust speech recognition in real automotive environ-

ments. The spectral subtraction algorithm was chosen as the enhancement tech-

nique of interest due to its common usage throughout the speech research com-

munity, and also its computational simplicity which was seen to be important for

in-car hardware implementations.

Within this scope, the primary aims of this dissertation as defined in the

introductory chapter were:

1. To demonstrate that speech enhancement techniques optimised for human

intelligibility are sub-optimal for integration with state of the art speech

recognition systems.

169



170 Chapter 9. Conclusions and Future Research

2. To propose novel techniques which improve current speech enhancement

algorithms when used as part of the front-end processing for in-car ASR.

3. To consider the implementation of speech enhancement algorithms within

the constraints of the automotive environment.

Specific research objectives were also documented in order to achieve each of

the primary aims. Each of these objectives are listed below, along with the major

findings of this thesis:

1. To quantify the word accuracy performance of ASR systems when speech is

collected in real car environments and is therefore corrupted by a wide range

of in-vehicle noise conditions.

The performance of automatic speech recognition in automotive environ-

ments degrades rapidly as the level of noise is increased. In very noisy

conditions (such as driving at 55 mph with the windows down) the word ac-

curacy can drop to as low as 25% which is well below consumer expectation.

Increases in vehicle speed, changes to window positions and air-conditioning

systems were all seen to provide major challenges for in-car environments.

Appropriate microphone placement was judged as an important considera-

tion when attempting to deal with noise from the open window and/or the

air-conditioning vents.

2. To analyse the effectiveness of traditional speech enhancement and model

adaptation techniques for increasing noise-robustness of ASR systems.

Various implementations of spectral subtraction were able to improve the

speech recognition performance of a wide range of in-car noise conditions,

increasing the worst-case scenario to approximately 30% word accuracy.

Model adaptation was found to be a more effective method for robust in-

car ASR, with worst case recognition increasing to approximately 60%.

Combining the two approaches resulted in varying recognition responses;

the conflict between enhancement and adaptation approaches was found to

be particularly problematic for conditions with lower levels of background

noise.
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3. To analyse how subtractive-type enhancement algorithms have been previ-

ously used for speech enhancement and ASR and identify the shortfalls of

these approaches in terms of the resulting ASR performance.

Through an expansive literature review, it was discovered that the majority

of spectral subtractive-type algorithms were designed initially to improve

human intelligibility rather than ASR. This is the direct result of consid-

ering the speech enhancement and recognition systems as separate entities.

In recent studies, and the work contained in this dissertation, it was ob-

served that optimisation for signal-level criteria was sub-optimal for speech

recognition applications. As a result, it was enforced that the nature of

both the enhancement and recognition systems need to be considered when

designing a robust ASR front-end.

4. To propose novel speech enhancement algorithms which directly improve the

performance of the underlying speech recognition engine.

Two separate novel contributions were made within the dissertation to

address this objective – the application of likelihood-maximising (LIMA)

speech enhancement to the more computationally efficient Mel-filterbank

noise subtraction (Chapter 5), and the introduction of phase spectrum in-

formation which incorporates a pioneer phase estimation procedure termed

Phase Estimation via Delay Projection (Chapter 7).

5. To design frameworks which are suitable for integration with existing in-car

speech systems, and where possible, are designed with computational and

hardware requirements in mind.

Two novel contributions were made within the dissertation to address this

objective – LIMA-based speech enhancement which fully utilises the char-

acteristics of speech dialogue system interaction (Chapter 6), and the sim-

plification of frequency-domain spectral subtraction for low-resource imple-

mentation on FPGA hardware (Chapter 8).
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6. To assess each of the proposed techniques and report their performance based

on speech recognition accuracy and computational requirements.

Each of the novel contributions were assessed in terms of their ASR word ac-

curacy performance; each approach demonstrated improvements over base-

line enhancement techniques in a wide range of noise conditions. For LIMA-

based speech enhancement in Chapter 5, a comparative evaluation of the

required processing time for the observed levels of ASR performance was

also performed. Details of both performance aspects can be found in the

relevant contributions in Section 9.2.2.

9.2.2 Summary of Original Contributions

Some of the major findings detailed in the previous section directed the novel con-

tributions which have arisen from this research. These contributions are spread

between Chapters 4-8. The following sections detail each of novel contributions

and provides references back to the relevant chapters/sections.

Major Contributions

1. The collection and validation of the first in-car speech database

recorded with native Australian speakers in Australian driving

conditions.

Prior to this dissertation, no in-car speech data existed within Australia.

Consequently, this dissertation collected the Australian English In-Car

Speech corpus (documented in Section 4.2.2 and [67]) which incorporates

multi-channel recordings of 50 native Australian English speakers (30 male,

20 female) in seven different noise environments common to current Aus-

tralian driving conditions. An evaluation protocol enabling speech recog-

nition experiments on command-and-control and navigation tasks was also

developed. This protocol, which enables model adaptation, development

and evaluation testing was validated experimentally, and it was seen that

acoustic model adaptation from a well-trained American English acoustic

model produced a minimum 8% absolute improvement in ASR performance.
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This corpus will have a major impact on both the Australian spoken lan-

guage community and the automotive industry.

2. Application of Mel-filterbank noise subtraction to a

likelihood-maximising speech enhancement framework specifically

for in-car speech recognition.

Previously, enhancement techniques have been optimised based on signal-

level criteria such as signal-to-noise ratio (SNR) or minimal speech distor-

tion which is sub-optimal for speech recognition applications. The LIMA

approach optimises the parameters of an enhancement technique specif-

ically for improved speech recognition accuracy. In this dissertation, it

was shown theoretically that the application of the LIMA framework to

Mel-filterbank noise subtraction produces a computationally more efficient

solution – O(log(K)) versus O(K)+O(K) – when compared to an equivalent

frequency-domain Multi-band spectral subtraction approach (Chapter 5).1

It was previously reported that varying dynamic ranges of the cepstral coef-

ficients is detrimental to gradient descent optimisation. As a solution to this

problem, cepstral liftering was incorporated into the LIMA framework and

was shown to be computationally inexpensive, however failed to show any

improvements in ASR performance. It was hypothesised that the cepstral

lifter used in this dissertation is not suited to in-car noise environments; the

search for an appropriate lifter is sought in future research.

Unique to previous spectral subtraction implementations within the LIMA

framework, the use of both oversubtraction and spectral flooring factors

(α and β respectively) was proposed and mathematically derived (see Ap-

pendix A) and was shown to provide superior speech recognition accuracy

compared to other parameter combinations. Absolute improvements in

word accuracy performance ranging from 0.5% to 3.4% over an optimised

implementation of MFNS were observed.

Previous application of the LIMA framework has almost solely relied on

1These two LIMA-based systems were unable to be compared experimentally due to imple-
mentation issues.
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a calibration session which – for in-car environments – would be required

for each speaker in each noise condition in order to provide the best ASR

accuracy. For practical implementation in car environments, this disser-

tation identified that a grounding process is necessary in speech dialogue

systems to confirm the desired human responses prior to performing actions

such as route navigation. A new framework was subsequently proposed in

Chapter 6 which utilises this grounding procedure to direct the parameter

optimisation process which avoids the need for an infinitely large number

of enhancement parameter sets. Rather than using an explicit adaptation

session, the dialogue-based framework waits for affirmative feedback from

the driver before optimisation can occur. This mode of operation was seen

to be robust to continually changing noise conditions between utterances; a

scenario which was developed in order to simulate normal operation of the

vehicle. Improvements in ASR word accuracy of between 1.2% and 2.8%

relative to the traditional calibration-style framework were observed despite

optimisation occurring only 3% of the time (due to the 100% accuracy re-

quirement). This framework has the added advantage over calibration-style

frameworks in that optimisation (a lengthly computation) occurs without

the user’s awareness, and optimisation only occurs on state sequences that

are known to be correct rather than hypothesised.

3. The use of the short-time phase spectrum to improve the ASR

performance of frequency-domain spectral subtraction.

For the past 30 years, the phase spectrum in spectral subtractive-type al-

gorithms has been disregarded as it was originally shown to provide no

useful information for human intelligibility applications. Given the focus of

this research being on speech enhancement specifically for ASR, Chapter 7

demonstrates that ignoring the phase spectrum information leads to errors

in the cleaned magnitude spectrum, information which is commonly used

for speech feature extraction in ASR applications (e.g. in MFCCs). It was

shown that clean speech magnitude estimates are particularly sensitive to

decreases in SNR as well as the degree of phase difference between the noise
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and clean speech signals.

Magnitude spectral subtraction was therefore reformulated to be performed

in the complex frequency domain which incorporates both magnitude and

phase information. Oracle-type experiments demonstrated that with per-

fect phase spectrum estimation, average relative improvements in word ac-

curacy of approximately 9.5% could be obtained in both additive white

Gaussian and car noise for a range of SNR on a subset of the TIMIT

database. These experiments justified the need for phase information within

the algorithm.

In order to perform Complex Spectrum Subtraction, it is necessary to esti-

mate either the noise or clean speech phase spectrum; no research to date

has proposed a method for achieving this. Consequently, a novel estima-

tion method termed Phase Estimation via DElay Projection (PEDEP) was

proposed in Section 7.4. This approach uses the assumption of stationar-

ity of sinusoidal signals (which are themselves assumed to be accurately

represented by the DFT centre frequencies) and the known time delay be-

tween adjacent frames to project forward a known reference phase to a new

time instance. This technique was shown to improve monotonically as the

frame advance was reduced from the standard processing rate of 10 ms to

1 ms, demonstrating better approximation of the stationarity assumption.

Speech recognition performance on an oracle task showed that estimating

the noise phase produced average global improvements over optimised mag-

nitude spectral subtraction of 4.8% for car noise and 6.7% for additive white

Gaussian noise when the frame advance was reduced to 2.5 ms. Further im-

provements in ASR performance were observed when further reducing the

frame advance, however the computational overhead incurred was deemed

greater than the improvements in word recognition accuracy. The perfor-

mance of the proposed method when estimating the clean speech phase was

inconclusive, and corrections to the algorithm are sought in future research.

The proposed Complex Spectrum Subtraction incorporating PEDEP algo-

rithm was incorporated with soft-decision speech activity detection in order
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to realise the proposed approach in real-world conditions. The ASR perfor-

mance of this practical implementation was seen to improve on magnitude

spectral subtraction in 66% of the tested noise conditions, with a maximum

relative word accuracy improvement of 6.5% for AWGN at 15 dB.

The proposed technique, whilst incorporating moderate amounts of extra

computation also has the added advantage of removing some of the en-

hancement parameters of traditional spectral subtraction. This makes it an

attractive alternative to algorithms which require careful tuning for every

encountered operating environment.

Other Contributions

1. A speaker-independent, continuous ASR evaluation protocol for

the AVICAR database.

The freely-available AVICAR database is distributed without an accom-

panying evaluation protocol for the continuous speech phone numbers and

TIMIT sentences tasks. This research developed a new protocol for these

two tasks which allows for model adaptation, development and evaluation

testing. The effectiveness of this protocol for speech recognition was con-

firmed experimentally (both Chapter 4 and [66]). Importantly, this protocol

allows for reliable comparisons between both single- and multi-channel en-

hancement techniques which is often difficult with existing easily-available,

large-scale corpora. The evaluation protocol has been made publicly avail-

able to the wider research community.

2. Evaluation of LIMA-based enhancement on test data incorporat-

ing multiple layers of acoustic mismatch.

LIMA-based speech enhancement was previously demonstrated to be suit-

able for use with noise-adapted acoustic models. No studies however, had

assessed the effect of a second level of acoustic mismatch between training

and testing data. In Chapter 5, a second level of mismatch due to unseen

speaker dialects was simulated using the AEICS corpus. It was observed

that for dialect-mismatched clean speech models, the ASR performance of
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the LIMA framework was inferior to an equivalent static enhancement pa-

rameter system in all in-car noise conditions. Even though noise was being

removed through speech enhancement (as this system outperformed the

unprocessed noisy speech), the optimisation process was performed using

unreliable state sequences due to the remaining mismatch between training

and testing dialects. Performing model adaptation to account for this ex-

tra mismatch was unable to correct this performance characteristic due to

insufficient coverage of the triphone model space. The experiments in this

dissertation have demonstrated the sensitivity of the LIMA framework to

a second layer of acoustic mismatch. Correcting this shortfall of likelihood-

maximisation is seen as an important future research direction.

3. Simplification of the frequency-domain spectral subtraction algo-

rithm for cost-effective, real-time implementation in FPGA hard-

ware.

Prior to this work, few reports of implementation of speech enhancement

algorithms in FPGA hardware existed in the research community. This

project – in conjunction with researchers at LaTrobe University, Melbourne,

Australia – developed an appropriate implementation of spectral subtrac-

tion for use in automotive-grade FPGAs.

The work performed in this dissertation focused on reducing the computa-

tional complexity of traditional frequency-domain spectral subtraction and

its associated noise estimation procedure in order to enable a low-resource

FPGA solution. This resulted in a solution which:

• relies solely on the initial silence period for noise estimation;

• assumes the noise estimate to be sufficiently accurate; and

• utilises the constant noise estimate to generate the spectral floor.

The resulting FPGA solution (implemented by LaTrobe University – see

Chapter 8 and [146, 147]) matches the ASR performance of an equiva-

lent floating-point model to within 0.2% in over 90% of the evaluated noise

conditions. Further, this implementation produced global improvements in
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ASR performance over a system without speech enhancement. The over-

all resource consumption on the chosen automotive-grade Spartan-3A DSP

FPGA was less than 30% which enables this solution to be integrated with

other in-car electronics in a single FPGA.

9.3 Future Work

A number of future research directions were proposed at the end of each chapter,

particularly those chapters containing original contributions. In this section it has

been chosen to highlight two major research focuses which extend the work in this

dissertation and which will contribute most to the body of scientific knowledge.

These two areas are derived one each from the work on likelihood-maximising

speech enhancement, and the use of the phase spectrum for spectral subtraction.

1. The sensitivity of the likelihood-maximising approach to the nature of both

the training and testing data was uncovered in this research when a second

type of acoustic mismatch was present. This observation highlighted a con-

cern about the overall sensitivity of this technique to other aspects of the

acoustic model for the LIMA-based enhancement approach. For instance,

how does the performance differ when the basic model units (i.e. triphones,

phones, or broad phonetic classes) are changed? How much test data is

required to provide sufficient coverage of the acoustic model space? How

are the effects of secondary acoustic mismatches counteracted? Such ques-

tions are yet to be answered, with researchers choosing a certain acoustic

model and testing data without a broader perspective of real-world operat-

ing conditions. The work contained in this dissertation is no exception. Full

understanding of these sensitivities is essential to devising a solution which

is applicable to any speech recognition system in any adverse operating

environment.

2. This dissertation highlighted the importance of phase spectrum informa-

tion for estimating the true clean speech magnitude in spectral subtraction.
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An original attempt at estimating phase was investigated and showed sig-

nificant promise in solving this problem. The simplicity of this approach

however, means there is considerable room for improvement. Of particular

importance are methods which can improve the subtraction process during

speech periods, namely by improving the method of interpolating the clean

speech phase to an appropriate spectral subtraction result. Further, the

current state of implementation requires that the frame rate be increased

to 400 Hz (i.e. four times the standard speech processing frame rate) – meth-

ods which can improve the performance of this approach at standard frame

rates are therefore of particular practical and commercial significance.

In general, this dissertation has shown that by closely coupling speech en-

hancement processing with ASR systems, speech recognition performance can be

improved. This method of thinking applies to any speech enhancement tech-

nique, and some approaches to this problem such as the likelihood-maximisation

framework discussed in this dissertation are applicable to almost any enhance-

ment scheme. Adopting a unified approach for improving robust speech recogni-

tion is an essential step forward in reaching the science-fiction dream of speech

recognition systems which meet the expectations of customers in any conceivable

environment.
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Appendix A

Derivation of the Jacobian

Matrix for LIMA-Based

Mel-Filterbank Noise Subtraction

A.1 Introduction

The Jacobian matrix is required for any speech enhancement algorithm applied

under the likelihood-maximisation framework. It consists of the partial deriva-

tives of the observed feature vector o with respect to the set of speech enhance-

ment parameters ξ. In this appendix, the Jacobian elements for Mel-filterbank

noise subtraction are derived for an HMM-based recognition system using MFCC

feature extraction.

The Jacobian matrix J i in frame i is a P × C matrix where P denotes the

length of the set of enhancement parameters ξ = {ξ0, ξ1, ..., ξP} and C denotes

the length of the feature vector o. Therefore:

Ji =
∂oi

∂ξ
=
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Appendix A. Derivation of the Jacobian Matrix for LIMA-Based Mel-Filterbank

Noise Subtraction

To derive the expressions for each Jacobian element, it is necessary to consider

both the feature extraction process and the speech enhancement algorithm. In

this appendix the feature extraction process is MFCCs as described in Chapter 2

and the MFNS speech enhancement algorithm described in Chapter 3.

A.2 Computing the Elements of the Jacobian

Matrix

For any of the enhancement parameters in the MFNS speech enhancement algo-

rithm, the Jacobian elements are calculated as:

∂oic
∂ξ

=
L−1
∑

l=0

Φcl

Ei
Ŝ
(l)

∂Ei
Ŝ
(l)

∂ξ
. (A.2)

In this section, the partial derivative terms
∂Ei

Ŝ
(l)

∂ξ
are derived for both the

subtraction factors α, and the flooring factor β.

A.2.1 Subtraction Factors, αl

In this instance, the set of enhancement parameters ξ is defined as:

ξ = {α1, α2, . . . , αL} (A.3)

where a subtraction factor α is applied to each Mel-filterbank (N.B. in this in-

stance L = P ). Throughout the derivation, all references to the lth filterbank

are dropped for simplicity since the derivation applies to each filterbank indepen-

dently of all other filterbanks.

To calculate the gradient term
∂Ei

Ŝ

∂ξ
, first recall the equation for Mel-filterbank

noise subtraction:

Êi
S =











Ei
Y − αEi

D̂
Ei

Y − αEi
D̂
> βEi

Y

βEi
Y otherwise

(A.4)

To calculate the required partial derivatives, the second case in Eq. (A.4) is
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made to be 0 by subtracting the term βEi
Y from all sides:

Êi
S − βEi

Y =











Ei
Y (1− β)− αEi

D̂
Ei

Y (1− β)− αEi
D̂
> 0

0 otherwise

(A.5)

which has the form of half-wave rectification originally proposed by Boll [14].

Following the lead of [14], the half-wave rectified input-output relationship of the

spectral subtractor has the form:

HR =
H + |H|

2
(A.6)

where H defines the general input-output relationship and its absolute value is

required in order to enforce the rectification. Dividing Eq. (A.5) by Ei
Y and

rearranging, the term for H is found to be:

H =
Êi

O

Ei
Y

= 1− β −
αEi

D̂

Ei
Y

(A.7)

where Êi
O = Êi

S − βEi
Y . The spectral subtraction output equivalent to Eq. (A.4)

but in filter form is:

Êi
S = HRE

i
Y =

Ei
Y (1− β)− αEi

D̂

2
+

|Ei
Y (1− β)− αEi

D̂
|

2
+ βEi

Y (A.8)

The expression for
∂Êi

S

∂ξ
can be determined more easily from this equation as

opposed to the representation in Eq. (A.4). The derivatives for the first and third

terms are trivial, however the second term requires the substitution |X| =
√
X2.

The full partial derivative of Êi
S w.r.t. α is therefore determined to be:

∂Êi
S

∂α
=−

Ei
D̂

2
×
(

1 +
Ei

Y (1− β)− αEi
D̂

|Ei
Y (1− β)− αEi

D̂
|

)

=−
Ei

D̂

2
×
(

1 + sign{Ei
Y (1− β)− αEi

D̂
}
)

(A.9)

since sign{X} = X/|X|. The use of the sign function in Eq. (A.9) instead of the

expanded form is very important as it provides support for the special case when

X = 0. If using the expanded form 0/|0|, a discontinuity would be observed in

the gradient function due to the division by zero; this would be problematic for

gradient-descent optimisation.



184
Appendix A. Derivation of the Jacobian Matrix for LIMA-Based Mel-Filterbank

Noise Subtraction

The gradient function in Eq. (A.9) can be substituted directly into Eq. (A.2)

to form the full expression for each Jacobian element. This gradient derivation

was verified using appropriate tools in MATLAB and was found to provide con-

vergence in the gradient-descent optimisation.

From examination of Eq. (A.9) it can be seen that the gradient function is de-

pendent on the flooring factor β. This dependence and the successful verification

of the gradient leads us to believe the gradient derivation by BabaAli et al. [10]

is inaccurate as it fails to include the flooring factor. In Section A.3, it is shown

that the derivation of the gradient functions for both approaches are equivalent

in the case where β 6= 0.

A.2.2 Flooring Factor, β

In this instance, the set of enhancement parameters ξ is defined as:

ξ = {β1, β2, . . . , βL} (A.10)

where a flooring factor β is applied to each Mel-filterbank (N.B. in this instance

L = P ). Again, reference to the lth filterbank is removed for clarity.

A similar procedure to that of Section A.2.1 can be followed to determine the

expression for the partial derivative of Êi
S w.r.t. the energy flooring factor β from

Eq. (A.8). The gradient expression is found to be:

∂Êi
S

∂β
=
Ei

Y

2
×
(

1− sign{Ei
Y (1− β)− αEi

D̂
}
)

(A.11)

which was also validated using the appropriate MATLAB tools.

A.3 Comparison with Frequency-Domain MBSS

Derivation

The subtraction algorithms for the Mel-spaced Multi-Band Spectral Subtrac-

tion (MBSS) proposed in [10] and the MFNS-based method proposed in this

dissertation are identical except for the domains in which the subtraction takes

place. In the MBSS method, subtraction takes place in the frequency-domain,
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whereas this research performs the subtraction on the Mel-filterbank energies.

Applying the following substitutions to the notation in Eq. (A.4) results in the

same basic algorithm:

Ei
Y ∼ |Y i|2

Ei
D̂
∼ |D̂i|2

Êi
S ∼ |Ŝi|2 (A.12)

except that the subtraction parameters α apply to overlapped filterbanks in the

case of MBSS. This overlapping of subtraction parameters in the frequency-

domain leads to a non-diagonal gradient matrix as opposed to the purely diagonal

matrix resulting from the use of MFNS.
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Noise Subtraction



Appendix B

Supporting Results

B.1 Introduction

This appendix provides tables which support explanations of results which are

provided in the main text. Data contained here was either deemed too large to

be included in the main body of the dissertation, or has only warranted passing

reference within the discussion.

B.2 Tables of Supporting Results

B.2.1 Chapter 5

Table B.1: Performance evaluation of LIMA framework on the AEICS commands
task.

Experiment GD. Iter.
ASR Word Accuracy (%)

C0 C6 C1 C2 C3 C4 C5

Baseline NA 93.1 54.1 85.4 50.5 79.3 81.4 43.8

Static MFNS NA 93.8 73.2 86.4 68.6 88.8 85.1 65.0

Constrained 4 93.8 70.2 87.6 64.0 87.8 85.5 60.7

Unconstrained 4 94.2 69.7 86.6 63.3 87.6 85.5 59.6

187
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Table B.2: Performance evaluation of LIMA framework on the AEICS commands
task with MAP adaptation.

Experiment GD. Iter
ASR Word Accuracy (%)

C0 C6 C1 C2 C3 C4 C5

Baseline NA 98.2 96.7 98.5 95.0 99.0 99.0 95.2

Static MFNS NA 97.8 98.3 98.7 97.6 99.2 98.8 97.3

26× α 1 97.3 98.3 98.5 96.9 99.2 98.8 96.5

26× β 1 97.6 98.7 98.9 98.0 99.2 99.2 97.6

[26× α] + [26× β] 1 97.6 97.8 98.5 97.0 99.2 98.6 96.5

B.2.2 Chapter 6

Table B.3: Performance evaluation of various noise estimation techniques in a
LIMA framework on the AVICAR phone numbers task.

Noise
Experiment

ASR Word Accuracy (%)

Estimator IDL 35U 35D 55U 55D

NA Baseline 70.4 48.8 36.2 41.8 23.5

Initial Silence Static MFNS 73.3 47.8 36.8 44.5 26.1

Initial Silence LIMA 73.8 50.3 38.5 45.6 27.2

TRA Static MFNS 72.5 49.7 37.9 44.1 26.1

TRA LIMA 72.4 50.0 37.6 43.6 26.0

TRA+SAD Static MFNS 73.8 48.3 37.9 44.8 27.2

TRA+SAD LIMA 74.1 50.2 38.5 45.3 27.2
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B.3 Supporting Figures

B.3.1 Chapter 7
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Figure B.1: ASR performance of the proposed PEDEP phase estimation tech-
nique for increasing frame advances using AWGN at SNR of (a) 20 dB, (b) 10 dB,
(c) 5 dB, (d) 0 dB, and (e) -5 dB.
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Figure B.2: ASR performance of the proposed PEDEP phase estimation tech-
nique for increasing frame advances using car noise at SNR of (a) 20 dB, (b) 10 dB,
(c) 5 dB, (d) 0 dB, and (e) -5 dB.



Appendix C

In-Car Speech Data in Changing

In-Car Noise Conditions

C.1 Motivation

The collection of in-car speech data under purposely annotated noise conditions

(including both constant and varying noise environments) was motivated by:

1. A desire to discretely analyse and correlate the performance of speech en-

hancement techniques operating under likelihood-maximisation frameworks

in specific noise conditions. Noise conditions of interest include the long-

term effects produced by changes in speed, window position and the use of

air-conditioning systems.

2. Given that dialect mismatch was seen to be a potential problem when as-

sessing these techniques on the AEICS corpus, this data was required to

validate algorithmic performance observed on the AVICAR database by

recording native American English speakers to complement the data used

for acoustic model training in this dissertation.

3. It is realistic for drivers to communicate with in-car speech systems in any

possible driving scenario, including during heavy acceleration or whilst pas-

sengers make changes to cabin acoustics by opening windows or changing

191
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the status of the air-conditioning system. Speech systems should be suffi-

ciently intelligent to deal with these extreme changes in noise levels, however

a previous lack of in-car speech data recorded under such conditions has re-

stricted ASR evaluations to “constant” noise conditions. This dataset aims

to provide data suitable for conducting pilot studies in these conditions.

4. The UTDrive vehicle is fitted to capture data from a microphone array and

CAN-bus (among others – see [6]). Since CAN-bus and audio signals are

becoming readily available in current generation vehicles, improvements

in speech systems may be possible if CAN-bus information can be used

to assist noise environment classification, alleviating the need for complex

noise estimation procedures. This data collection will also be suitable for

pilot studies into methods for combining these two data streams.

C.2 Collection Description

Driver speech was recorded under a range of different noise conditions using the

instrumented UTDrive vehicle – a Toyota RAV4 Sports Utility Vehicle. This

vehicle is equipped with a number of sensors – for this particular data collection

signals were recorded from a close-talk microphone, a 4-channel microphone array

and the CAN-bus.

In total, 10 native speakers of American English (6 females, 4 males) were

chosen in order to avoid issues with modeling accents in such a small dataset.

Each speaker was asked to complete four circuits of the route shown in Fig. C.1

which originates from the University of Texas at Dallas campus. During each

lap, at specific points on the route drivers were asked to recite one of three phone

numbers which they had previously committed to memory for ease of recall to

minimise the induced cognitive load. The three phone numbers were randomly

assigned to each segment (A1, A2, B or C) on each lap (see Table C.1).

Speech data was collected in nine discrete and constant noise conditions as

shown in Table C.2. The passenger-side window position and air-conditioning

(A/C) system were varied on each lap.

To analyse changes to noise conditions during recordings, a series of realistic
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Figure C.1: Route used for collecting speech data in a range of constant and
changing noise conditions.

Table C.1: ID of phone numbers recalled during each lap and route segment.

Lap No.
Route Segment

A1 A2 B C

1 1 2 3 1

2 2 1 2 3

3 3 1 2 2

4 3 2 1 NA

scenarios were devised and collected across all four laps. These scenarios are

summarised in Table C.3. On all laps, participants were asked to accelerate

heavily from 0-40 mph after stopping at traffic signals or stop signs. On the final

lap, focus was placed on the effects of passengers opening or closing their window

or changing the air-conditioning system whilst the driver is speaking – this was

controlled by the research assistant.
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Table C.2: Constant noise conditions collected in this study.

Segment Lap Car Speed Window Position A/C Status

C

1 15 mph Closed Off

2 15 mph Open Off

3 15 mph Closed On

B

1 25 mph Closed Off

2 25 mph Open Off

3 25 mph Closed On

A1, A2

1 40 mph Closed Off

2 40 mph Open Off

3 40 mph Closed On

Table C.3: Changing noise conditions collected in this study.

Lap Start Speed End Speed Window Position A/C Status

1 0 mph 40 mph Closed Off

2 0 mph 40 mph Open Off

3 0 mph 40 mph Closed On

4 40 mph 40 mph Closed to Open Off

4 40 mph 40 mph Open to Closed Off

4 40 mph 40 mph Closed Off to On

4 40 mph 40 mph Closed On to Off

4 25 mph 25 mph Closed to Open Off

4 25 mph 25 mph Open to Closed Off

4 25 mph 25 mph Closed Off to On

4 25 mph 25 mph Closed On to Off
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