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ABSTRACT
Recent studies demonstrate the potential and importance of chil-
dren’s speech processing in the detection of language delay and early
communication disorders, automated reading tutoring, or emotional
state assessment. In order to design and improve performance of
such applications, good understanding of the children’s speech struc-
ture and its development over time is necessary. This study tries to
contribute to this domain by analyzing speech production parame-
ters in longitudinal data acquired from female infant subject within
the interval of 11 to 35 months of age, sampled with a step of 4
months. The analyzed parameters include fundamental frequency,
formants, vocal tract length, average spectrum, spectral slope, du-
ration of voiced segments, number of voiced segments in conversa-
tional turn, and recently proposed pitch micro-contour patterns. In
addition, a simple automatic age classifier utilizing cepstral coding
of speech and Gaussian mixture models (common techniques in au-
tomatic speech processing) is designed and shown to reach an accu-
racy of 70.6 % in the speaker-dependent open test task. The capabil-
ity of the classifier to distinguish between the individual age models
demonstrates that current speech acoustic modeling schemes used in
automated systems are strongly age-dependent. It is believed that
understanding the speech production changes during growing, com-
bined together with a reliable age detection will strongly benefit the
design of robust children speech processing systems.

Index Terms— Infant speech production, longitudinal data,
pitch patterns, age classification

1. INTRODUCTION

Speech-based interfaces represent an attractive way of human–
machine interaction, with an application in automated online reser-
vations, information retrieval, voice controlled home appliances, or
automated dictation. Speech processing technology contributes also
to the domains of security and forensics (speaker identification),
and medical research (cochlear implants). While the major portion
of speech research has been focused on adults, recent studies show
the potential of children’s speech processing in tasks such as the
detection of language delay [1] and early communication disor-
ders [2], automated reading tutoring (detection of reading miscues,
text comprehension) [3], or emotional state assessment [4]. Current
speech systems are prevalently targeted on adult speakers and ex-
hibit a performance reduction when exposed to children due to the
acoustic differences in the children and adult speech production [5].
To improve accuracy and robustness of such systems, it is necessary
to understand and address the specifics of children speech and its
development over time.

Analyses of children speech development over time utilize ei-
ther cross-sectional or longitudinal data [6]. In the first case, sam-
ples are collected in a certain time instant from multiple subjects of

different ages [7], [8]. In the latter case, multiple samples per each
subject are collected over a certain time period [9], [10]. The cross-
sectional approach allows for fast data acquisition at the cost of pos-
sible increased variance of the observed trends, as each time sample
comes from different speaker. The longitudinal approach allows for
carrying analysis for each individual speaker, eliminating the inter-
speaker variance. On the other hand, collection of such data is very
time consuming.

This study presents initial analysis of speech production param-
eters on a small subset of a children speech database acquired by the
LENA Foundation. The database comprises more than 65.000 hours
of recorded data. Subjects in the database are recorded starting from
2 months through 36 months of age [1]. The recordings are obtained
in 16 hours sessions while the children carry the recording system in
the pocket of a custom-made clothing [11]. Each recording is con-
ducted during an ‘ordinary’ day in the child’s natural environment.
The subset analyzed in this study comprises longitudinal data from a
healthy female infant acquired within the interval of 11 to 35 months
of age, with a sampling step of 4 months. The analyzed param-
eters include fundamental frequency, formants, vocal tract length,
average spectrum, spectral slope, duration of voiced segments, num-
ber of voiced segments in conversational turn, and recently proposed
pitch micro-contour patterns [12]. In addition, simple age classifier
that exploits the age dependency of speech parameter distributions is
proposed and evaluated in the open test set task.

The remainder of the paper is organized as follows. First, results
of the speech production analyses are presented are confronted with
the literature. Second, an age classifier is proposed. Efficiency of
several front-end processing schemes are evaluated and compared.
Final part summarizes outcomes of the study.

2. ANALYSIS OF SPEECH PRODUCTION PARAMETERS

The analyzed data set comprises 7 recordings acquired at the age of
11, 15, 19, . . ., 35 months. For each age sample, segments contain-
ing child’s utterances were selected, yielding 5 minutes of speech
per age. The recordings are stored in 16 kHz/16 bit format.

2.1. Fundamental Frequency

Past studies on average fundamental frequency (F0) in children ob-
served the following:

• Age 0–5 months: F0 increases in both cry and non-cry utter-
ances [13],

• Age 0–12 months: F0 increases in hunger cries [14],

• Age 3, 6, 9 months: F0 slightly increases at 6 months, fol-
lowed by slight decrease at 9 months,



• Age 8–26 months: not significant changes of F0 in monosyl-
lables and bisyllables,

• Age 8 months–3.5 years: difficult to track any significant lon-
gitudinal trends in F0 [7],

• Age 5–17 years: males – significant F0 drop starting from 11
to 15 years, no significant change later; females – significant
drop at 7–12 years, no significant change later [15],

• Age 8.5–11.5 years: F0 in females decreases.

In our study, F0 was extracted using cross-correlation RAPT algo-
rithm [16]. As shown in Fig. 1, average F0 displays an increasing
trend in the interval of 11–35 months (slope a = 1.64 Hz/month,
correlation coefficient R2 = 0.56). Note that the vertical bars repre-
sent 95% confidence intervals.
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Fig. 1: Average fundamental frequency as a function of age. Vertical
bars – 95% confidence intervals.

2.2. Formants

The following can be found in the literature on average formant fre-
quencies:

• Age 4–60 months: F1 decreases in females, F1 decreases in
males till approx. 30 months; F2 decreases in both females
and males in 4–18 months for some vowels, increase in other
vowels [17],

• Age 8–18 months: F1 decreases between 10–19 months in
Canadian French speakers, no clear trend in Canadian En-
glish; F2 decreases in Canadian English in 10–18 months,
rather steady in Canadian French [18],

• Age 15–36 months: F1, F2 relatively unchanged till 24
months; significant decrease in 24–36 months [19],

• Age 5–16 years: F1, F2, F3 decrease in most of the analyzed
vowels [15],

• Age 8.5–11.5 years: F1 mostly decrease between 10 and 11.5
years, F2 mostly decreases between 8.5–10 years, F3 consis-
tently decreases in 8.5–11.5 years [7],

Formant center frequencies in our study were estimated using an
algorithm that combines linear prediction of spectral envelope and
dynamic programming [20]. As shown in Fig. 2, average F2 dis-
plays descending trend with age. Similar was observed also for
F1 and F3 (F1: slope aF1 = −2.21 Hz/month, correlation coef-
ficient R2 = 0.22; F2: aF2 = −8.56 Hz/month, R2 = 0.71; F3:
aF3 = −5.90 Hz/month, R2 = 0.48). Note that F2 trend is steep-
est and most linear over time. It can be seen that the correlation
coefficients of the F2 and F3 trends are considerably higher than in
F1. The reduction in average F1–F3 over time is somewhat intuitive
since the formant frequencies (vocal tract resonances) are inversely
proportional to the vocal tract length (which extends with age).

y = -8.5619x + 1774.8
R2 = 0.7126, MSE = 1891.9
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Fig. 2: Average second (F2) formant frequency as a function of age.
Vertical bars – 95% confidence intervals.

2.3. Vocal Tract Length

Studies employing resonance imaging (MRI) report typical values of
vocal tract length (VTL) ranging from 7 cm in new-born babies to
13–18 cm in female and male adults, and an accelerated VTL growth
between birth and 18 months [21]. The location of higher formant
frequencies is believed to be more correlated with VTL compared to
the lowest formant frequencies, which are strongly dependent on the
rate of the jaw opening and vertical position of the tongue [22]. In
the original version of the vocal tract length normalization (a popular
technique used for normalizing inter-speaker vocal tract differences
to improve accuracy of automatic speech recognition) [23], the warp-
ing parameter proportional to VTL differences is estimated from the
inverse of higher formant frequencies; in particular, F3 is typically
used [24].

In our study, F3 is chosen as the parameter for the estimation of
the VTL changes. While VTL varies with the production of distinct
phones and so does F3, we assume that averaging F3 over longer
speech segments (utterances) will provide a reasonable estimation
of the average, phone independent VTL. The inverse of average F3

over time is shown in Fig. 3. It can be seen that 1/F3 displays fast
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Fig. 3: Inverse of third formant.

increase between 11 and 15 months, while later, till 27 months, re-
mains almost steady. Despite the obvious accuracy limitation of this
technique compared to MRI, the observed trend seems to correlate
well with the accelerated VTL growth reported for the early months
after birth [21].



2.4. Average Spectrum and Spectral Slope

In this section, average spectra of the infant subject are compared
with the average spectrum extracted from the spontaneous speech of
23 US native adult female subjects from the UTScope database [25]
(average age μ = 22.2 years, standard deviation σ = 3.6 years).
For all sets, the average spectrum is extracted from a 25 ms win-
dow shifted with a skip rate of 10 ms. In addition, complementary
average spectral slopes are extracted on the frame basis by fitting a
straight line into the short term amplitude spectra in log frequency–
log amplitude domain by means of linear regression. It can be ob-
served that with increasing age, the number of local minima and
maxima in the spectral envelope decreases (envelope smoothing) and
the contours slowly approach those of adult speakers (see Fig. 4).
Spectral slope in the infant (see Table 1; ‘Duration’ stands for the
total duration of voiced speech segments in the age sample data)
is considerably flatter than the one usually seen in adult speakers
(typically around -6 to -10 dB/oct), and its tilt increases with age,
progressing towards adult values.
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Fig. 4: Average spectra of 11, 23, and 35 months old subject ver-
sus average spectrum of adult female speakers extracted across 23
subjects.

Age
(Months) 

Duration 
(s)

Slope
(dB/oct) 

Slope
(dB/oct) 

11 117.4 -2.0 1.9 
15 89.6 -2.4 1.6 
19 108.1 -2.4 1.6 
23 99.1 -3.2 1.5 
27 119.5 -3.9 1.6 
31 152.4 -2.8 1.6 
35 105.3 -3.5 1.3 

Table 1: Average spectral slope in voiced speech segments.

2.5. Voiced Segment Durations and Frequencies

It has been observed that in children (typically 5 years and older),
the duration of vowels, consonants [26], syllables [10], and sen-
tences [15] tend to reduce with age and approach the one seen in
adults. In our study, the duration of voiced speech segments is ana-
lyzed. Voiced segments are formed by a non-interrupted sequence of
voiced frames. Voiced frame is identified using the output of the F0

tracking algorithm; each frame that is assigned non-zero F0 value
is considered voiced. To obtain a further insight into the structure
of the infant phrases, also the average number of voiced segments
per conversational turn is counted (see Table 2). It can be seen that
unlike reported for older children, the durations tend to increase for
our subject, while the number of voiced segments per conversational
turn either remains steady or reduces.

 Age (Months) 
Average 11 15 19 23 27 31 35 

Segment Duration (s) 0.31 0.22 0.32 0.33 0.32 0.43 0.37

# Segments/Turn 2.3 2.5 2.0 1.8 1.8 2.4 2.1 

Table 2: Average voiced segment duration and average number of
voiced segments in conversation turn.

2.6. Pitch Micro-Contour Patterns

In [8], inspection of F0 contours during vocalization in infants re-
vealed frequently repeating intonation patterns. The authors defined
7 basic pattern shapes where each pattern was requested to have du-
ration longer that 100 ms but shorter than 2 s. The patterns were
subsequently used for analyzing pitch contours by means of count-
ing frequency of the pattern occurrences. Recently, a novel pattern-
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Fig. 5: Codebook of pitch micro-contour patterns.

based approach to pitch contour analysis and modeling was proposed
in [12] for the purpose of dialect distance assessment. Similarly
to [8], a small set of elementary patterns is defined, see Fig. 5. Un-
like in [8], the patterns are not used to interpolate a large number of
pitch samples but are rather fit into adjacent pitch sample values in
order to describe the pitch contour micro-structure. By using com-
mon language modeling techniques, pattern bigram probabilities (a
probability that a given pattern will be followed by another partic-
ular pattern) as well as higher order probabilities can be calculated
and used to model complex pitch contour macrostructure from the
elementary pattern units. In the present study, only the frequency
of elementary patterns occurrence is analyzed and compared across
age sets (see Fig. 6). Note that the x and y coordinates in Fig. 6



correspond to the x and y coordinates in circles in Fig. 5. For exam-
ple, the center bar in Fig. 6 has coordinates [2; 2] and corresponds
to the ‘flat’ pattern, while the bar in the bottom-right corner of the
plots in Fig. 6 corresponds to the reversed ‘V’ pattern. It can be seen
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Fig. 6: Normalized histograms of children’s pitch micro-contour pat-
terns versus adult histogram extracted across 23 female subjects.

that while in the adult histogram the ‘flat’ pattern dominates, the pat-
tern distribution in early infant speech is way more uniform. With
increasing age, the ‘flat’ pattern becomes gradually more and more
pronounced and the whole distribution approaches the one seen in
adults.

3. AUTOMATIC AGE CLASSIFICATION

The previous sections have demonstrated the impact of age on the
infant speech production. Intuitively, the observed production vari-
ations can be expected to have a direct impact on coding commonly
used in speech systems. To evaluate this hypothesis, we train sep-
arate acoustic models for each age sample set, yielding 7 models
representing 11-months speech, 15-months speech, . . ., 35-months
speech. If the speech coding is age-sensitive, the models will capture
age-dependent speech characteristics and can be used for speaker-
dependent automatic age classification.

In the design of the age classifier, Gaussian mixture models
(GMM’s) are chosen to represent speech probability density func-
tions (pdf’s). The probability of speech observation vector ot being
generated by the j-th age GMM is calculated as:

bj (ot) =

MX

m=1

cjmp
(2π)n |Σjm| · e

− 1
2 (ot−µjm)T

Σ−1
jm(ot−µjm),

(1)
where m is the index of the Gaussian mixture component, M is the
total number of mixtures, cjm is the mixture weight such that:

MX

m=1

cjm = 1, (2)

n is the dimension of ot, Σjm is the mixture covariance matrix, and
μjm is the mixture mean vector. During the age classification task,

the sequence of acoustic observations extracted from the incoming
utterance is scored against all acoustic models and the model that
maximizes the probability in Eq. (1) is selected.

Efficiency of several speech coding strategies is compared.
Common Mel frequency cepstral coefficients (MFCC) [27], percep-
tual linear prediction (PLP) cepstral coefficients [28], their alterna-
tives with altered LPC–DCT stages denoted ‘MFCC LPC’ and ‘PLP
DCT’, and Expolog-based features [29] (PLP front-end with Ex-
polog filterbank – ‘Expolog LPC’; MFCC front-end with Expolog
filterbank – ‘Expolog DCT’) are evaluated. In each setup, static
(c0–c12), dynamic, and acceleration coefficients form the feature
vector. To allow for classifier training and evaluation on separate
data sets, the available data for each age spot are divided into two
halves, one assigned to the train set, other to the open test set.

In the initial classification trial with the MFCC front-end, the
age classification accuracy reached Acc = 52.2 %, proving the age
dependency of speech coding and acoustic models (chance = 1/7 x
100 = 14.3 %). Subsequently, in an effort to obtain more meaningful
system, the task was modified from ‘pick 1 age from 7 possibilities’
to ‘select 2 adjacent neighbors from 6 possible neighbor pairs’. In
this case, the classification is successful if one of the selected model
pairs matches the actual age in the test data. In this task, the MFCC
system performance increased to 68.8 %. Performance of all tested
setups in the ‘2 neighbors’ task is compared in Table 3. It can be
seen that the best performance is reached by the ‘PLP DCT’ system
(Acc = 70.6 %).

Front-End 

MFCC MFCC
LPC PLP PLP

DCT
Expolog 

LPC
Expolog 

DCT
68.8 66.0 64.6 70.6 67.1 64.1 

Table 3: Comparing front-end performance in age classification.

4. CONCLUSIONS

This study has presented an initial analysis of speech production de-
velopment in a healthy female infant subject conducted on the lon-
gitudinal data spanning 11–35 months of age. Trends in the reduc-
tion of formant frequencies and extending vocal tract length with
age confirm our intuition and observations presented in the literature.
On the other hand, the observed gradual increase of F0 after the 12
months of age, together with the increase of average voiced segment
duration and reduction of voiced segments in conversational turns
are somewhat surprising. Novel approach to children pitch contour
analysis and modeling utilizing a codebook of pitch micro-contour
patterns has been presented and shown to capture additional aspects
of speech production maturing. Finally, age dependency of com-
mon speech coding strategies has been exploited in the design of a
speaker-dependent automatic age classifier.

Some of the observed differences between the child’s and adult
speech production can be directly utilized in improving current
speech processing techniques. For example, linear prediction-based
(LP) spectral analysis typically incorporates a pre-emphasis of
+6 dB/oct in order to compensate for the average spectral tilt in
neutral adult speech. As shown in this paper, LP analysis conducted
on children should use pre-emphasis that will compensate for the
actual, flatter spectral tilt.

In the next step, the gradual development in the infant’s speech
sounds’ articulation will be studied. Groups of syllable-like and



phone-like sounds will be searched using stochastic modeling and
unsupervised clustering techniques. It is expected that the analysis
may bring a further insight into the early language acquisition pro-
cess.
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