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ABSTRACT

Adverse environments impact the performance of automatic speech
recognition systems in two ways – directly by introducing acoustic mis-
match between the speech signal and acoustic models, and indirectly
by affecting the way speakers communicate to maintain intelligible
communication over noise (Lombard effect). Currently, an increasing
number of studies have analyzed Lombard effect with respect to speech
production and perception, yet limited attention has been paid to its
impact on speech systems, especially within a larger vocabulary con-
text. This study presents a large vocabulary speech material captured in
the recently acquired portion of UT-Scope database, produced in sev-
eral types and levels of simulated background noise (highway, crowd,
pink). The impact of noisy background variations on speech parameters
is studied together with the effects on automatic speech recognition.
Front-end cepstral normalization utilizing a modified RASTA filter is
proposed and shown to improve recognition performance in a side-by-
side evaluation with several common and state-of-the-art normalization
algorithms.

Index Terms— speech recognition, Lombard effect, cepstral com-
pensations, RASTA, UT-Scope database

1. INTRODUCTION

Lombard effect (LE) is known to impact a number of speech production
parameters [1]–[5]. Depending on the extent of the production varia-
tions, which are often proportional to the level of noise [6], Lombard
effect may cause a severe degradation in automatic speech recognition
(ASR) performance. This is due to the fact that current speech descrip-
tors (features) used in ASR are highly sensitive to not only linguistic
content, but also talking style, emotions [7], and other information cap-
tured in the speech signal [2], [8].

Efforts to improve ASR under LE span areas of robust front-end de-
sign, equalization of LE speech features towards neutral, improved train-
ing methods, and acoustic model adjustments and adaptation; see [2], [5]
for overviews. Unfortunately, most approaches assume that sufficient
amount of Lombard speech data is available for training the compensa-
tions or acoustic models. This may not be realistic in the case of real
world applications where the level of background noise and Lombard
effect can vary continuously. So far, a majority of studies considering
the impact of Lombard effect on speech systems were focused on small
vocabulary corpora [2], often collected in a fixed type and level of back-
ground noise [1], [5]. The present study focuses on recently acquired
large vocabulary speech material – a Lombard portion of the UT-Scope
database [9] – collected in several types and levels of simulated back-
ground noise. The goal is to analyze speech production variations as a
function of type and level of noise, and their impact on automatic speech
recognition, with a particular focus on the evaluation of efficiency of
currently available and newly proposed cepstral compensation strategies
in large vocabulary continuous speech recognition (LVCSR). All com-
pensations considered here make no assumptions about the level and
type of background noise or talking style, which makes them candidates
for a broad range of applications.
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The paper is organized as follows. First, the UT-Scope speech cor-
pus is introduced. Second, results of speech production analysis are
presented and discussed. Third, performance of an LVCSR system on
speech produced in varying types and levels of noisy background is eval-
uated and the efficiency of several common and state-of-the-art cepstral
normalization strategies are compared together with a newly proposed
normalization utilizing a modification of a filter used in the popular
RASTA (RelAtive SpecTrA) speech processing procedure [10].

2. LOMBARD PORTION OF UT-SCOPE CORPUS

The UT-Scope corpus [9] consists of speech produced under cognitive
and physical stress, emotions, and Lombard effect. The current Lom-
bard portion comprises recordings from 58 subjects, of which 31 are
native speakers of US English. All subjects participated in noisy condi-
tion recording, where they were exposed to background noise samples
through open-air headphones, and also in ‘clean’ condition recordings
with no noise exposure in an ASHA certified sound booth. Three types
of noisy backgrounds were used: (i) noise recorded in the car traveling
at 65 mph on a highway with windows half open, (ii) large crowd noise,
and (iii) pink noise. Highway and crowd noises were produced at the
levels of 70, 80, and 90 dB SPL; pink noise was produced at 65, 75,
and 85 dB SPL. Each speaker was subjected to a pure-tone hearing test
in the range of 100 Hz–8 kHz according to ASHA standards to rule out
any subjects with hearing loss. Speech was recorded using three micro-
phones – throat microphone, close-talk Shure Beta-54 microphone, and
far-field microphone Shure MX391BP/S with a preamplifier MX1BP,
with all recordings sampled at 44,100 Hz.

Each speaker session comprises 100 phonetically balanced read sen-
tences from the TIMIT database [11] produced in clean conditions, and
20 TIMIT sentences produced in each of the nine noise type/level con-
ditions. In addition, each condition contains 5 repetitions of 10-digit
strings and approximately one minute of spontaneous speech where sub-
jects had to describe the content of a picture presented on a computer
screen.

In this study, only sessions from the 31 US-born subjects (25 fe-
males, 6 males) are utilized to eliminate the impact of foreign accent
on analysis and recognition tasks. All experiments are conducted on
TIMIT-type sentences. While spontaneous segments are undoubtedly
valuable since they are expected to represent more natural speech, the
authors have observed that subjects tended to be at times unsure of them-
selves when asked to ‘be creative’ during the spontaneous recording.
To reduce the impact of these arbitrary effects, the spontaneous speech
segments are not considered in the present study. The close-talk mi-
crophone channel providing high SNR speech recordings is used in all
presented experiments. Finally, since Lombard effect was produced via
noise exposure through open-air headphones, all speech recordings rep-
resent a ‘clean’ speech signal.

3. SPEECH PRODUCTION UNDER LE

Initial analyses of speech parameters in the Lombard portion of UT-
Scope were presented in [9]. In particular, the following parameters
were analyzed: sentence duration, duration of silence in speech, dura-
tions of broad phoneme classes, low/mid/high energy frame distribu-
tions in three noise levels, and spectral tilt. In this section, complemen-
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tary speech production parameters that have direct impact on encoding
in speech systems are analyzed: signal-to-noise-ratio (SNR), mean fun-
damental frequency in utterances, and vowel formant frequencies and
durations. SNR, which is estimated using an arithmetical segmental
algorithm [12], is expected to reflect vocal intensity changes indepen-
dently of possible microphone pre-amp gain adjustments, as such ad-
justments would affect equally the level of speech and background noise
in the recordings and preserved their ratio constant. WaveSurfer is used
to extract both fundamental frequency (RAPT algorithm) and formant
center frequencies (combination of linear predictive modeling of spec-
tral envelope and dynamic programming). Phone boundaries used in
the extraction of vowel durations and locations in the formant space are
estimated by forced alignment [13] via speech recognizer from Sec. 4.
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Fig. 1: Speech SNR distributions for various levels of simulated back-
ground noise; close-talk microphone.

Analysis of SNR distributions (see example for highway noise
‘HWY’ in Fig. 1) confirms the observations of past studies that vocal
intensity in subjects increases with the level of background noise. A
relationship between noise level and speech intensity, called Lombard
function [14], was estimated by fitting a straight line into the SNR dis-
tribution means in the SPL (noise sound pressure level in dB)–speech
signal SNR plane by means of linear regression. Similar slopes of
Lombard function were observed in females (F) and males (M) for
the highway noise (aF = 0.2, aM = 0.3) and large crowd noise
(aF,M = 0.1); in pink noise, the slope was flat in females while in-
creasing in males (aF = 0.0, am = 0.1). Similar values of Lombard
function, ranging from 0.1 to 0.5 were observed in [14].

A consistent increase of mean utterance fundamental frequency
(F0) with the level of noisy background was observed for all three types
of noise (see Table 1; mean values followed by standard deviations in
brackets). Results of correlation analysis in Table 2 suggest a strong
correlation between noise presentation level and mean F0 (a – slope,
R2 – correlation coefficient, MSE – mean square error).

  HWY (dB)  CRD (dB)  PNK (dB) 

Gend CLN 70 80 90  70 80 90  65 75 85 

F 199.8 
(52.7) 

207.4 
(53.2) 

216.3 
(53.4) 

226.2 
(55.8) 

207.9 
(52.0) 

215.3 
(52.2) 

224.0 
(54.2) 

205.8
(52.4)

213.0
(51.6)

217.7
(51.8)

M 118.2 
(26.2) 

122.6 
(26.3) 

134.1 
(27.5) 

146.5 
(29.5) 

122.6 
(23.9) 

133.5 
(25.0) 

144.0 
(27.6) 

118.8
(25.7)

124.0
(24.8)

134.6
(27.5)

Table 1: F0 distributions in varying noise types and levels.

Vowel locations in the first and second formant space F1–F2 were
estimated by combining formant tracks and phone boundaries obtained
from forced alignment. Systematic shifts of vowels in the F1–F2 space

 HWY (dB)  CRD (dB)  PNK (dB) 

Gend 70 80 90  70 80 90  65 75 85 

F a=0.938, R2=0.999 
MSE=0.068 

a=0.808, R2=0.998 
MSE=0.083 

a=0.596, R2=0.984 
MSE=0.380 

M a=1.195, R2=1.000 
MSE=0.039 

a=1.073, R2=1.000 
MSE=0.011 

a=0.786, R2=0.962 
MSE=1.634 

Table 2: Correlation analysis: sound-pressure-level (SPL) vs. F0.

were observed (e.g., Fig. 2 shows female vowels extracted from speech
produced in highway noise). The bars in Fig. 2 represent intervals of
one standard deviation for clean ‘cln00’ and 90 dB SPL highway noise
recordings. Formant shifts due to LE were previously observed in low
vocabulary corpora [1], [2], [5].
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Fig. 2: Vowel shifts in F1–F2 space induced by perceived background
noise. Mean vowel locations are interconnected by lines to visualize
vowel-space transformation due to articulation in noise.

Finally, vowel durations in varying noise type and level were an-
alyzed. A consistent increase in duration with the level of noise was
observed for some vowels (especially /ae/ and /ao/), however, given the
number of subjects, the effects of specific noise types and levels could
not be proven to be statistically significant.

4. LVCSR UNDER LOMBARD EFFECT (LE)

We have illustrated the impact of LE on selected speech production
parameters in UT-Scope. In this section, the sensitivity of automatic
speech recognition (ASR) to such variations is studied. A triphone
recognizer combining Hidden Markov Model Toolkit (HTK) based
acoustic modeling and trigram language model (LM) implemented with
the SRI Language Modeling Toolkit (SRILM) is trained on the TIMIT
database (16 kHz) [11]. 13 static mel frequency cepstral coefficients
(MFCC), including c0, and their first and second order time derivatives
form the feature vector. At the end of the training phase, 32-mixture
triphone models are adapted towards UT-Scope channel/acoustics using
combined maximum likelihood linear (MLLR) adaptation and max-
imum a posteriori (MAP) adaptation on a subset of neutral speech
UT-Scope recordings (the database was downsampled from 44.1 kHz
to 16 kHz). Speakers from the adaptation set are excluded from the
open test set, which contains sessions from 3 male and 19 female
subjects. Complete lexical overlap of the open test set and the LM
training set eliminates the occurrence of out-of-vocabulary words [15].
Performance of the baseline MFCC system (incorporating cepstral
mean/variance normalization – CVN) on the open test set produced in
neutral conditions (no noise exposure for speakers) reaches 8.3 % word
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error rate (WER). A complementary system utilizing perceptual linear
prediction (PLP) front-end yielded similar performance – 8.9 % WER.
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Fig. 3: Performance of baseline LVCSR (MFCC–CVN) as a function of
type and level of highway background noise; clean speech signal; word
error rates (WER) from acoustic model decoding, LM not engaged.

For the remainder of this paper, only the MFCC system is ana-
lyzed. Our preliminary experiments have confirmed a known fact that
the recognition performance can be varied drastically based on the LM
adjustments. Our goal is to analyze performance of the acoustic front-
end rather than optimizing the LM, hence, all results in the rest of the
study represent WER’s of acoustic model decoding to eliminate the im-
pact of LM. Performance of the MFCC–CVN system on neutral (sce-
nario ‘None’) and Lombard (highway – ‘HWY’, large crowd – ‘CRD’,
pink noise – ‘PNK’) sets is shown in Fig. 3, where ‘Low, Medium, High’
denote noise presentation levels (no noise exposure in the ‘None’ set). It
can be seen that speech variations observed in previous section result in
significant recognition degradation, and that the degradation is propor-
tional to the noise presentation level (error bars denote 95 % confidence
intervals). Note that these data sets represent clean speech recordings
(see example SNR’s in Fig. 1). Since some speech variations under LE
can be partly viewed as convolutional distortions (spectral slope flatten-
ing, formant shifts, intensity changes), the following paragraphs inves-
tigate the efficiency of cepstral compensation methods that incorporate
blind deconvolution.

Efficiency of the following cepstral compensations are compared on
clean/noisy neutral/LE data sets: cepstral mean normalization (CMN),
CVN, RASTA filtering (RASTA) applied in cepstral domain, cepstral
gain normalization (CGN) [16], feature warping (Gaussianization) [17],
histogram equalization [18], and recently proposed quantile-based cep-
stral dynamics normalization (QCN) [5]. CGN is similar to CVN where
the variance normalization is replaced by dynamic range (estimated
from minimum and maximum samples) normalization, and was re-
ported to be effective on noisy signals. QCN builds on the concepts
of CVN and CGN; dynamic range of cepstral sample occurrence is
estimated from histogram quantiles and subsequently, the histograms
are centered to the quantile mean and their variance is normalized to a
unit inter-quantile interval:

cQCNj
n,i =

cn,i −
`
qCn

j + qCn
100−j

´
/2

qCn
100−j − qCn

j

, (1)

where qCn
j and qCn

100−j are jth and (100− j)th quantile estimates in the
nth cepstral dimension. The quantile estimates are obtained on the utter-
ance level. QCN was shown to provide good performance in small vo-
cabulary task on neutral and LE speech in car noise [5]. Feature warping
(FW) and histogram equalization (HEQ) alter sample values to match
Gaussian or a selected target distribution, respectively, and have the po-
tential to compensate for cepstral distribution variations due to acous-
tics/channel and additive noise. While HEQ may be more popular in

ASR than FW, the concept of Gaussianization preceding GMM-HMM
ASR back-end has been previously proven successful in the context of
bottleneck features [19]. In our implementation of FW and HEQ, the test
utterance cepstral samples are sorted by amplitude in each dimension
from smallest to highest, and their amplitudes are subsequently adjusted
to match the target cumulative distribution function (CDF). For FW, the
target Gaussian CDF is resampled for each test utterance to match the
number of frames; for HEQ, the target distribution is provided in a pre-
calculated look-up table at various sample lengths and the closest length
matching the test utterance is selected (see [5] for details). The target
cepstral distributions for HEQ used in this study represent the TIMIT
train set distributions.
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Fig. 4: Dash line – filter approximating low-pass function of original
RASTA filter (solid line); unit circle – zeros and poles of proposed low-
pass.

Band-pass filtering in RASTA eliminates slow-varying components
(including DC) as well as components varying faster than typical for
speech. In that sense, RASTA can be seen as CMN combined with low-
pass filtering. Other compensations were shown to be superior to CMN
in number of applications and hence, it would be convenient to have the
option to replace CMN in RASTA by a normalization of choice. Note
that engaging other cepstral compensation before RASTA filtering will
keep CMN in effect (which will hurt normalizations that align cepstral
distributions towards other distribution parameters than mean), and em-
ploying them after RASTA may corrupt the previous low-pass smooth-
ing (e.g., adjusting sample amplitudes towards a target distribution may
introduce further discontinuities in the coefficient time trajectories). For
this reason, we propose a modified filter that approximates the low-pass
functionality of RASTA while preserving the slow varying components
(see Fig. 4). In that case, any cepstral compensation can be conveniently
performed in advance to RASTA without CMN being engaged. The co-
efficients of the second-order infinite-impulse response (IIR) filter

H (z) =
MX

m=0

bm

,
NX

n=0

an (2)

were obtained from a Butterworth approximation and, assuming stan-
dard 10 ms window step, have the following values: B = [b0, b1, b2] =
[0.10408, 0.20816, 0.10408], A = [a0, a1, a2] = [1, - 0.90342, 0.31973].
This filter approximates the side lobe region of the original filter charac-
teristics by a smoothing function. When informally inspecting cepstral
tracks filtered by the two filters, the proposed low-pass filter exhib-
ited significant reduction of transient effects compared to the original
RASTA filter. The new low-pass filter is combined with QCN, yielding
a compensation called QCN RASTA.

The front-ends were evaluated on two tasks: (i) clean recordings –
high SNR signals, neutral speech and noise-free Lombard speech pro-
duced in 90 dB SPL of highway and crowd noise, and 85 dB of pink
noise; (ii) noisy recordings – neutral speech and speech produced in
90 dB SPL of highway noise, both mixed with the NOISEX’92 ‘Volvo’
noise at 15 dB and 5 dB SNR. Ten 15 sec samples were cut from the
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original 4min sample and cyclically mixed with the test files to assure
variability of the noisy background. The neutral speech open test set
comprise 1271 utterances (15489 words) and each presentation noise
type/level open test set contains approximately 400 utterances (3500
words). Average WER’s for the front-ends on these two tasks are shown
in Table 3. It can be seen that all cepstral compensations provided per-
formance improvement over the baseline front-end with no compensa-
tion (‘none’). The best performance on task i was reached by QCN9
(QCN utilizing 9th and 91st quantiles), followed by QCN4 RASTA
(QCN employing 4th and 96th quantiles). Note that ‘plain’ QCN4 was
outperformed by several compensations and the newly proposed scheme
employing low-pass RASTA filtering significantly improved the QCN4
performance. Original RASTA was outperformed by CMN. A close in-
spection of the cepstral coefficient time trajectories revealed transient
effects caused by the band pass filter. The effects were most prominent
in the lowest cepstral coefficients and were most probably the cause
of performance degradation compared to plain cepstral mean normal-
ization. A total of 26K words forming the complete evaluation set
assures the statistical significance of the observed performance differ-
ences. Only the 5 best performing normalizations on clean neutral and
LE speech were evaluated together with the baseline on the noisy record-
ings in task ii. Here, histogram equalization displayed the best perfor-
mance, followed by CGN and QCN4 performance. The biggest gains
of histogram equalization were observed at lowest SNR’s (5 dB) while
its superiority gradually reduced with increasing SNR. It can be seen
that while especially CGN, histogram equalization, QCN, and newly
proposed QCN RASTA provide significant performance gains in chan-
nel/noise/talking style mismatched conditions (see the mismatch in c0
and c1 distributions extracted from full-size train/test sets in Fig. 5)
over the baseline – in average 10 % absolute WER improvement on both
high SNR and noisy recordings, there is no single winner across all con-
ditions representing multiple sources of distortion.
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Fig. 5: Cepstral distributions in training and test sets.

5. CONCLUSIONS

This study analyzed the impact of varying types and levels of back-
ground noise on speech production parameters in the UT-Scope database
and the corresponding consequences for large vocabulary automatic
speech recognition. A number of speech parameters were found to vary
with the type and level of background noise, which is an observation
consistent with earlier studies. A surprisingly strong linear relationship
between noise presentation level and mean pitch (in Hz) was observed
for large crowd and highway noises. A new version of recently estab-
lished quantile-based cepstral normalization (QCN) utilizing modified
RASTA filtering was presented and shown to improve the original per-
formance. A number of cepstral normalizations were compared in the
task of talking style and noisy background mismatch (combined with
artifacts of training/testing database mismatch). Especially CGN, his-
togram equalization, QCN, and newly proposed QCN RASTA provided
significant performance gains in channel/noise/talking style mismatched
conditions, however, none of the normalizations managed to outperform

Clean Recordings 
Cepstral
Comp.

Across
Cond.

none 62.0 
RASTA 60.0 

warp 55.7 
CMN 54.3 
QCN4 54.3 
HistEq 53.9 
CVN 53.3 
CGN 52.8 

QCN4_RASTA 52.6 
QCN9 51.1 

Noisy Recordings 
Cepstral
Comp.

Across
Cond.

none 77.8 
QCN9 69.2 
CVN 68.5 

QCN4_RASTA 68.4 
CGN 67.0 

HistEq 64.4 

Table 3: Performance of cepstral compensations on clean recordings
(left) and noisy recordings (right); WER (%) averaged across conditions,
LM not engaged.

others in all conditions considered.
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[19] F. Grézl and P. Fousek, “Optimizing bottle-neck features for LVCSR,” in
Proc. of ICASSP‘08, Las Vegas, NV, April 2008, pp. 4729–4732.

4475


