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A B S T R A C T

Recent years have witnessed notable advancements in the areas of speech, speaker and language/dialect re-
cognition. However, many of the emerging scientific principles appear to be drifting to the sidelines with the
assumption that access to larger amounts of data is all that is required to address a growing range of issues
relating to new scenarios. This study surveys several challenging domains in formulating effective solutions in
realistic speech data, and in particular the notion of using naturalistic data to better reflect the potential ef-
fectiveness of new algorithms. Our main focus is on intra-speaker mismatch and speech variability issues due to
(i) differences in noisy speech with and without Lombard effect and a communication factor, (ii) realistic field
data in noisy and increased cognitive load conditions, (iii) speech variability introduced by whispered speech,
and (iv) dialect identification using found data. Finally, we study speaker–environment and speaker–speaker
interactions in a newly established, fully naturalistic Prof-Life-Log corpus. The specific outcomes from this study
include an analysis of the strengths and weaknesses of simulated vs. actual speech data collection for research.

1. Introduction

The field of speech and language processing technology has evolved
significantly over the past several decades. The primary mode of voice
capture is still maybe through voice communications via handheld
smartphones, however voice enabled devices and systems continue to
expand into homes, vehicles, workplaces, and public locations (i.e.,
kiosks, info stations, etc.). Also, video and voice capture via mobile
technology continues to expand at a rapid pace, resulting in a diversity
of audio data never seen or expected by speech and language processing
technologies over the past two decades. As such, it is clear that the
primary challenge in almost any speech, speaker or language processing
and classification task is the ability to formulate a solution that over-
comes mismatch between training and test conditions. Speech feature
extraction, model training and development, and classification strate-
gies have progressed significantly over the past fifty years, yet the
overriding challenge continues to be the ability of speech and language
algorithms to be robust as either speaker, technology (e.g., voice-cap-
ture), or environment based mismatch is introduced. Also, recent ad-
vancements in deep learning for speech recognition have increased the

requirements for use of significantly more training data, requiring many
developers to “lower the bar” on acceptable data in order to train
current discriminating systems. Knowing where, how, and who con-
tributed to the audio data plays a critical role in the resulting acoustic
models, and therefore robustness of the ultimate solutions.

Why should speech researchers be concerned today? The primary
reason is the overwhelming availability of found data in the field. When
expanding in the 1980’s through 1990’s, speech research still focused
on the formulation of carefully collected speech data in order to con-
struct acoustic and language models for effective algorithm develop-
ment. Today, there is an overwhelming and exponentially growing
amount of speech data freely available, and a greater temptation to
simply use whatever data is available to address a specific research task.
The old expression, “you get what you pay for” holds true in this con-
text, since found data typically has limited meta-data information.
However, as this study will show, researchers need to exercise caution,
since mismatch is ever present. Data resource consortia, such as LDC,
take great care in collecting, transcribing and organizing speech and
language data. However, if researchers use data for purposes other than
what a specific corpus was originally collected for, they may in fact be
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constructing an irrelevant solution (e.g., Bořil et al., 2012).
In Fig. 1, we highlight a range of factors that can either individually

or in combination contribute to audio stream mismatch between train
and test. These can be partitioned into three broad classes: (i) speaker
based, (ii) conversation based, and (iii) technology, environment or
noise based. The speaker recognition community has used “intrinsic”
mismatch to reflect speaker based changes, and “extrinsic” to represent
either technology (microphone, recording/data capture, transmission,
etc.) or environment and room factors. Speaker-based variability (SV)
(see Fig. 2) is caused by (a) differences across speakers—inter-speaker
variability, and (b) within-speaker variability—intra-speaker variability,
representing the range of changes in how each individual speaker
produces their speech. Inter-speaker variability can be categorized into
personal variations and sociolinguistic variations (Umesh, 2011). Personal
variations are attributed to physiological differences between subjects
in terms of their speech production systems (e.g., size of the vocal tract
and larynx (Adank et al., 2004)) and auditory systems (e.g., normal-
hearing subjects versus cochlear implant users (Ruff et al., 2017)). So-
ciolinguistic variations, for example dialect (Hirayama et al., 2015) and
accent (Najafian et al., 2014), are affected by such factors as regional
and educational background or gender of the subject (Umesh, 2011).
Another factor that contributes to both personal and sociolinguistic
variations is the age of the subject (Pellegrini et al., 2012; Wagner,
2012; Bořil et al., 2011; Volín et al., 2017).

The major sources of intra-speaker variability include the following:

• Stress—situational task or cognitive—the subject is performing some
task while speaking, such as operating a vehicle; hands-free voice
input which can include cognitive (Bořil et al., 2010) as well as
physical task stress (Hansen, 1996). Some forms of emotion, espe-
cially if they are a mixture, are also typically included in the domain
of “stress” (Zhou et al., 2001; Womack and Hansen, 1999; Bou-
Ghazale and Hansen, 2000; Hansen et al., 2012).

• Vocal effort/style—the subject alters their speech production from
normal phonation in a deliberate controlled manner. This results in
a vocal effort speaking style ranging from whisper (Fan and Hansen,
2013; Zhang and Hansen, 2011; Ghaffarzadegan et al., 2014; 2015)

through shouted speech. Training data is typically neutral, so nat-
uralistic or field data here could contain whisper, soft, loud, or
shouted speech styles (Baghel et al., 2017; Hanilci et al., 2013). Each
speaking style has a significantly different speech production con-
figuration.

• Lombard effect—occurs when speech is produced in the presence of
noise, and can be related to changes in vocal effort but because this
is often a subconscious change in the production space due to the
environment, it is listed separately (Hansen and Varadarajan, 2009;
Bořil, 2008; Bořil and Hansen, 2010). It has also been known that
speech produced in noise results in Lombard effect, but only recently
has it been shown that both noise type and noise level result in
different “flavors” of Lombard effect, which must be addressed for
speech systems (Hansen and Varadarajan, 2009).

• Speaking vs. singing style—it has also been shown that speech pro-
duction variability exists between speaking a specific text sequence
versus singing that same text sequence (Mehrabani and
Hansen, 2013). This impacts both speaker recognition as well as
langauge ID systems.

• Non-speech sounds—studies have also explored speaker recognition
solutions when the audio stream contains non-speech vocalizations
such as screams (Hansen et al., 2017), whistles (Nandwana et al.,
2015), etc. Non-speech sounds represent vocalizations which do not
contain phoneme/text content, and could include coughs, whistles,
screams, lip smacks, or other sounds humans make which are not
speech.

• Emotion—the subject is communicating their emotional state while
speaking (e.g., anger, sadness, happiness, etc.) (Hansen et al., 2000).

• Physiology—the subject has some illness (Lee et al., 2016), or is in-
toxicated (Zhang et al., 2017) or under the influence of medication;
can include aging as well (Frederic Aman and Portet, 2013; Kelly
and Hansen, 2016; Volín et al., 2017).

Conversation-based variability reflects different scenarios with respect
to the voice interaction with either another person or technology, or
differences with respect to the specific language, dialect, or accent
spoken (Sulyman et al., 2014), and can include:

• Human-to-human conversation: two or more individuals interact
(Shokouhi and Hansen, 2017); or one person speaks while addres-
sing an audience. This scenario is affected by personal and socio-
linguistic characteristics of the communicating parties (see inter-
speaker variability discussed earlier in this section) such as their
social status, gender, age, speech and hearing impairment, language
or dialect spoken, if speech is read/prompted (through visual dis-
play or through headphones), spontaneous, conversational, mono-
logue, 2-way conversation, public speech, group discussion. Another
factor is the mode of the communication—a face-to-face commu-
nication, technology-mediated communication (Bordia, 1997) in-
volving audio-visual or only audio channels (Banks et al., 2015).

• Human-to-machine: the subject is directing their speech towards a
piece of technology (e.g., a spoken dialog system via a cell, smart-
phone, landline telephone, computer). This can include prompted
speech—voice input to a computer; or voice input for telephone/
dialog system (Bořil et al., 2010).

Conversational based issues represent additional challenges since
the level of coarticulation will change depending on prompted vs.
spontaneous speech, as well as confrontational style speech such as
debates, etc. where there is an adversarial status between the speaking
participants.

Technology- or external-based variability: includes how and where
the audio is captured and range the following issues.
Electromechanical—transmission channel, handset (cell, cordless, land-
line), microphone (Bořil et al., 2012; Kenny et al., 2007; Auckenthaler
et al., 2000). Environmental—background noise (Rose et al., 1994; Liu

Fig. 1. Mismatch in speech and language processing: (i) speaker, (ii) tech-
nology, environment, noise, (iii) conversation-based.

Fig. 2. Sources of speaker-based variability.
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and Hansen, 2014) (stationary, impulsive, time-varying, etc.), room
acoustics (Jin et al., 2007), reverberation (Greenberg et al., 2010;
Sadjadi et al., 2012), distant microphone (Mirsamadi and
Hansen, 2016). Data quality—duration, sampling rate, recording
quality, audio codec/compression (Bořil and Fousek, 2006; Bořil,
2005).

Technology, environment, and noise factors do not only affect the
process of sensing and transferring of the speech signal but often also
impact the communicating parties. For example, presence of strong
environmental noise will not only corrupt the sensed speech signal but
also induce Lombard effect; delayed auditory feedback due to cochlear
implant processing (Stone and Moore, 2002), strong room reverbera-
tion or a delayed feedback produced by a communication technology
may negatively impact or even completely impair the speaker’s ability
to communicate, etc. For this reason, speaker-, conversation-, and
technology, environment, and noise-based factors and their interactions
need to be studied together to gain complete understanding of the
speech signal variability and its potential mismatch with speech engine
models.

Given the range of speaker, environment, acoustic, and technology
based mismatch, what impact do these issues introduce to speech,
speaker, and language recognition systems, and what steps can re-
searchers do to minimize these issues? The remainder of this paper is
organized as follows. Sections 2 and 3 study intra-speaker variability
introduced by (i) environmental noise, (ii) communication scenarios,
and (iii) emotions in terms of realistic speech acquisition as well as their
impact on speech technology. Several examples of data acquisition
protocols that to a certain extent depart from realistic conditions are
given. Section 4 presents a case study on how poorly controlled or
completely disregarded channel variability during data acquisition may
result in a flawed experimental setup. Section 5 reflects on the number
of issues discussed in the previous sections and presents a case study on
a newly acquired naturalistic speech corpus that captures a range of
real-world speech signal variabilities. Finally, Section 6 concludes the
paper. The text presents a sequence of examples that demonstrate ef-
fects of speech signal variability on speech technology, and highlights
potential departures from realistic conditions seen in some of the recent
database designs.

2. Communication in noise

Recent years have witnessed a massive invasion of portable smart
devices into our daily lives. The ever increasing computational power
and broadband connectivity of these indispensable assistants makes
them an ideal platform for hosting speech-enabled applications and
services. While their portability is attractive and convenient to the
users, it creates great challenges to the designers of the speech engines
due to the enormous variety of conditions captured in the processed
speech as the user transitions between different environments and
communication scenarios.

To reflect the needs of the emerging market for speech technologies,
researchers have been greatly focused on the development of speech
processing techniques that would attain reasonable performance in
adverse real world scenarios. Some of the major factors impacting ef-
ficiency of speech engines are speaker and channel variability, room
reverberation (Kumar et al., 2011; Sadjadi et al., 2012), and environ-
mental noise. While all these factors clearly impact engines running on
portable devices, varying environmental noise may be often the most
disruptive and hard to deal with element in the process (Li et al., 2014).

A design of efficient noise modeling and suppression techniques
demands availability of a rich noisy speech data. The most convenient
and economic way to acquiring noisy material is to mix clean speech
recordings with noise samples. This provides an excellent control in
terms of the desired signal-to-noise ratios and allows for reusing the
same, easily accessible clean speech corpus for producing vast number
of noisy mixtures with different noise samples without requiring the

human subjects to re-record their utterances over and over. Since the
speech component stays intact and only the additive noise is varied, this
approach allows for studying isolated effects of noise separately from
other types of variations that would naturally occur if the speakers had
to reproduce their utterances. This approach to the creation of noisy
speech samples has been widely popular. Some of the most prominent
examples can be found in the speech recognition-oriented Aurora da-
tasets. Aurora 2 was created by artificially contaminating clean TIDigits
(Pearce et al., 2000); Aurora 4 followed the same approach on Wall
Street Journal recordings (Parihar et al., 2004). Aurora 5 returned back
to TIDigits and added simulated distortion factors including a hands-
free microphone channel, transmission through a GSM channel, and
room reverberation (Hirsch and Finster, 2005). Others have followed
this trend to create challenging corpora for other application domains,
such as those seen in the NIST Speaker Recognition campaigns
(Hasan et al., 2013b). The contribution of the Aurora and NIST suites is
undisputed and quite remarkable—they have provided unified devel-
opment and evaluation frameworks for fair and transparent comparison
of speech systems and significantly accelerated the advancement of
speech technology. This being said, and as will be discussed in the
following text, artificially mixing clean speech recordings with noise
leaves out other factors that may be equally detrimental to the system
performance. Solely relying on such data in system evaluations is likely
to provide unrealistically optimistic results compared to real world
adverse recordings and using such data in system design will lead to
suboptimal performance in real world conditions.

2.1. Adding noise versus talking in noise

Clean speech recordings artificially contaminated with noise sam-
ples may provide a reasonable approximation to actual speech distor-
tion by additive environmental noise, however, they will not capture
the effects of noise on speech production. When speaking in noisy en-
vironments, speakers continuously adjust their speech production to
maintain intelligible communication (Lombard effect (Junqua, 1993;
Hansen, 1996)). Lombard effect has a prominent impact on a number of
speech production parameters (Garnier, 2007; Lu and Cooke, 2008;
2009; Bořil, 2008).

During his initial experiments, Etienne Lombard noted that
speakers’ vocal changes in response to noise seemed to be unconscious
(Lombard, 1911). This originated a theory that speech production is an
automatic servomechanism controlled by auditory feedback. This seems
to be supported by Pick et al. (1989) where speakers were unable to
follow instructions to maintain constant vocal intensity across alter-
nating periods of quiet and noise. On the other hand, Lane and
Tranel (1971) observed significant differences in speech production for
speakers who were communicating or just reading texts, suggesting that
the reaction to noise is not purely automatic but rather consciously
driven by the speakers’ effort to maintain intelligible communication.
The same study hypothesizes that the response to noise may be initially
learned through the public loop (speaker–listener) and later becomes a
highly practiced reaction. In Junqua et al. (1998), speakers were ex-
posed to noise while communicating with a voice-controlled dialing
system. The system utilized neutral-speech trained acoustic models and
hence, would perform best when encountering matching neutral speech
modality. The subjects were able to consciously compensate for the
Lombard effect and lower their voices, in spite of the present noise, to
reach efficient response from the system. This confirms the hypothesis
in Lane and Tranel (1971) that speech production changes in noise are
at least to some extent driven by a conscious response to the public
loop. These observations lead to the definition of Lombard effect as
stated in the previous paragraph and used in Junqua (1993);
Womack and Hansen (1999). However, it remains unclear to what ex-
tent or in which conditions the speakers’ speech production changes
made in order to maintain intelligible communication are conscious of
subconscious.
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As observed already in Lane and Tranel’s seminal paper from 1971
(Lane and Tranel, 1971), the rate of speech production variations under
Lombard effect does not depend only on the type and level of en-
vironmental noise but also on a number of other factors such as the
communication scenario, the way the noise is presented to the subjects,
and the means of establishing auditory feedback. Moreover, Lombard
effect is strongly speaker-dependent. A combination of all these factors
cause a large variation, or sometimes even contradictions, in observed
trends across Lombard effect studies. Taking this into account, the
following paragraphs summarize the aspects of speech variability under
Lombard effect that are agreed upon by a large body of literature, while
the reader is being cautioned that studies presenting alternative ob-
servations to some of these trends may be found.

Speakers increase their vocal effort (Lombard, 1911; Dreher and
O’Neill, 1957; Webster and Klumpp, 1962) and the increase is non-
uniform across phone classes with vowels being typically more em-
phasized that consonants (Hansen, 1988; Junqua, 1993). The higher
vocal effort is accompanied by increases in the fundamental frequency
(Lombard, 1911). This is in part caused by the physiological relation-
ship between the fundamental frequency of the glottal waveform and
sub-glottal pressure and tension in the laryngeal musculature, which
are elevated during higher vocal efforts (Schulman, 1985). In some
studies, fundamental frequency of speech was reported to change al-
most linearly with vocal intensity (Gramming et al., 1987).

Lombard effect impacts temporal profiles of glottal waveforms
(Cummings and Clements, 1990). Spectral energy typically migrates to
higher frequencies, causing upward shift of the spectral center of
gravity (Junqua, 1993; Lu and Cooke, 2008) perceptually related to the
“brightness” of speech. This goes hand in hand with flattening of the
spectral slope (Hansen, 1988; Pisoni et al., 1985; Summers et al., 1988).
The first formant F1 migrates upwards in frequency in Lombard speech
(Schulman, 1985; Bond and Moore, 1990), and the rate of the shift is
phone dependent (Junqua and Anglade, 1990; Bořil, 2008). The second
formant F2 may shift in either direction in frequency depending on the
phonetic classes and other factors (Bořil, 2008; Junqua, 1993; Bond
et al., 1989; Pisoni et al., 1985; Hansen, 1988; Hansen and Bria, 1990;
Takizawa and Hamada, 1990). Bandwidths of the first four formants are
reduced compared to neutral speech for most phones (Hansen, 1988;
Hansen and Bria, 1990; Junqua, 1993; Bořil, 2008). Syllable and word
durations are typically prolonged in Lombard speech (Dreher and
O’Neill, 1957; Junqua and Anglade, 1990; Lane and Tranel, 1971;
Hansen, 1988; 1996; Bořil, 2008).

Even if the environmental noise which triggered Lombard effect is
suppressed in the recording or completely excluded (e.g., when the
noise is produced to the subjects via closed-air headphones), the speech
variability caused by Lombard effect may result in a severe mismatch
with the neutral speech-trained acoustic models and cause the speech
system to break (Bořil and Hansen, 2010).

Fig. 3 shows performance of a neutral-trained automatic speech
recognition (ASR) system tested on TIMIT-like (Zue et al., 1990)
utterances produced by speakers who were exposed to three levels of a
highway (HWY), large crowd (CRD/LCR), and pink noise (PNK) played
back through headphones (70, 80, and 90 dB SPL for HWY and CRD; 65,
75, 85 dB SPL for PNK). The experiment was conducted on a close-talk
microphone channel with a high signal-to-noise ratio (SNR) and in-
volved speech recordings from 31 native speakers of American English
(25 females, 6 males) as captured in the UT-Scope Lombard Effect set
(Hansen and Varadarajan, 2009) (see Bořil and Hansen, 2011 for more
details on the ASR experiment). The word error rate (WER) can be seen
to grow rapidly from the baseline clean Neutral condition once the
speakers are exposed to increasing noise levels. Note that in all noisy
conditions utilized in this experiment, the speech signal retains a high
SNR as the rate with which the subjects increase their vocal level masks
the already minimal cross-talk between the closed-air headphones and
the close-talk microphone.

Similar impacts of Lombard effect have been observed in speaker

verification (SV). Fig. 4 presents detection error tradeoff (DET) curves
for a SV task on the UT-Scope database (Hansen and
Varadarajan, 2009). This experiment involved 30 subjects (19 males
and 11 females) and similarly as in the ASR task discussed above, the
speech variability due to Lombard effect results in degraded SV per-
formance as a result of the increased mismatch between the classified
speech samples and the reference speaker models and universal back-
ground model (UBM) (see Hansen and Varadarajan, 2009 for more
details). It is safe to state that none of these noise-induced speech
variations could be found in the Aurora or NIST datasets where the
noise was artificially added to neutral speech recordings and hence, it is
unclear what the actual performance of the systems tuned and eval-
uated on these sets would be in real world noisy conditions.

2.2. Talking in noise: reading versus communicating

Going one step further from simply mixing noise with clean speech,
some studies record speech in realistic or simulated noisy conditions to

Fig. 3. Talking in noise: ASR performance on clean neutral and clean Lombard
speech UT-Scope tasks; a TIMIT language model; 95% confidence intervals.

Fig. 4. Talking in noise: SV performance on clean neutral and clean Lombard
speech UT-Scope tasks; 12 s test utterances; Neutral—clean neutral samples;
LCR1–3–large crowd noise presented at 70, 80, and 90 dB SPL;
HWY1–3–highway noise presented at 70, 80, and 90 dB SPL; PNK1–3—pink
noise presented at 65, 75, 85 dB SPL (speakers exposed to these noise levels
using open-air headphones; all recordings are noise-free).
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capture noise-induced speech production variability. Yet, adopting the
concept of many neutral speech databases, the recorded subjects are
asked to read prompts in noise without being engaged in an actual
communication (Junqua, 1993; Hansen, 1996; Lu and Cooke, 2008;
Barker et al., 2015; 2017). While the subjects will respond to the
background noise to some extent, especially when instructed to imagine
they are addressing some person or a piece of technology (Barker et al.,
2017), they are reading the prompts without any feedback that would
help them adjust their voices in a way to effectively convey the lin-
guistic content to others over the noise. Since this scenario lacks the
communication loop, the speech production adjustments are left solely
to the judgment of the speaker. As shown in Lane and Tranel (1971);
Bořil (2008) and when comparing for example Dreher and
O’Neill (1957) and Webster and Klumpp (1962), presence or lack of
communication will result in considerably different speech adjustments
in response to noise. In the context of speech technologies, one can
assume that the subjects mostly engage in communication with the
device (human–machine interactions) or with other humans (e.g.,
processing radio or TV programs, forensic analysis of recorded dialo-
gues). For this reason, it is instrumental to include communication loop
in the acquisition of naturalistic speech corpora. An example of the
different production adjustments for scenarios that involved or did not
involve communication loop is shown in Figs. 5 and 6.

The figures study fundamental frequency (F0) and vowel locations
in the F1–F2 formant plane for utterances from Czech SPEECON
(ELRA, 2008) and the Czech Lombard Speech Database (CLSD’05)
(Bořil, 2008; Bořil and Pollák, 2005). In both datasets, the subjects
produced utterances in (i) a clean office environment and (ii) when
exposed to a car noise. The SPEECON recording protocol required the
subjects to read the prompts to themselves and did not involve a
communication loop. In CLSD’05, the subjects were required to com-
municate the prompts to a listener who was exposed to the same noise.
The listener was instructed to ask for a repetition if the utterance was
not intelligible to them. It is noted that the SPEECON and CLSD’05
datasets capture similar scenarios in terms of noise types, but they
cannot be compared in absolute terms since in the SPEECON case, the
recording was conducted in an actual car and in CLSD’05, pre-recorded
car noise samples were produced to the subjects via a headset that
contained also speech feedback. The purpose of presenting the
SPEECON and CLSD’05 analyses side-by-side in Figs. 5 and 6 is to give
the reader a notion on the rate of speech parameter changes in the case
of speech read in clean versus noise conditions and when commu-
nicating in clean and noisy conditions. A study Cooke and Lu (2010)
reveals similar trends for an experimental setup where the same noisy
conditions and recording equipment were used in scenarios with and
without communication and the communicative scenario yielded

Fig. 5. Talking in noise: fundamental frequency in scenarios without (SPEECON) and with (CLSD’05) communication loop; F/M—female/male subjects.

Fig. 6. Talking in noise: vowel locations in F1–F2 plane in female utterances in scenarios without (SPEECON) and with (CLSD’05) communication factor; F/
M—female/male subjects; 1-σ ellipses estimated to cover 39.4% of samples.
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significantly higher rate of speech variation in Lombard speech than the
non-communicative scenario. Similar conclusions can be found in
Lane and Tranel (1971).

It can be observed in Figs. 5 and 6 that the F0 changes and the
formant shifts in the communication scenario (CLSD’05) are more
pronounced and also more consistent, yielding relatively more compact
1-σ ellipses (see Bořil, 2008 for more details).

2.3. Talking in noise: communication scenarios

As discussed in the previous section, the presence or lack of the
communication loop will affect the way we speak. Moreover, different
communication scenarios may be associated with different vocal ad-
justment strategies. For example, speech addressed to infants (mo-
therese) tends to have notably different characteristics compared to
adult-directed speech (Narayan and McDermott, 2016). Communica-
tion parties may adapt their acoustic-phonetic spaces towards each
other via phonetic convergence (Pardo, 2013). Their speech production
will be also impacted by their mutual relationship and differences in
social status (Leongomez et al., 2017).

Figs. 7, 9, 10,11 present results of speech analyses on 68 subjects
from the UTDrive database (Angkititrakul et al., 2007). The subjects
were driving in real traffic while performing various secondary tasks
(i.e., tasks conducted in addition to driving the vehicle). Fig. 7 sum-
marizes the proportion of conversational turns between the drivers and
an automated dialog system that were perceived by a human tran-
scriber as negative. The drivers were instructed to call a commercial
automated dialog system and retrieve a specific information. Due to the
occasional ASR errors, the drivers had to repeat some of the queries
until they succeeded in completing the task. Such repetitions sometimes

resulted in notable driver frustration. Not surprisingly, the frustration
was observed to further build up with the number of involuntary re-
petitions. The figure breaks down the human–dialog system interac-
tions by gender. It can be seen that across all conditions (no repetition,
1–6 query repetitions needed), there were notable differences between
the genders in terms of the tendency to get frustrated with the dialog
system.

Figs. 8–11 study fundamental frequency, spectral center of gravity,
spectral energy spread, and mean duration of voiced segments esti-
mated for the driver’s speech while (i) casually talking to the passenger
(Passenger), and (ii) calling the dialog system (Dialog).

These figures confirm that the communication mode (talking to a
passenger versus a dialog system), emotions (neutral/negative), and the
number of query repetitions, no repetition (Re0), one repetition (Re1)
and 2–6 repetitions (Re2–6), all affect speech production (see
Bořil et al., 2010 for more details).

3. Whispered speech

Similar to speech under Lombard effect, whispered speech re-
presents yet another mode of speech with altered vocal effort. While
Lombard effect will be encountered in communication in noisy en-
vironments, whisper is often used in relatively quiet environments to
share discreet or private information. Whisper is often used in hu-
man–human communication but may be equally attractive as a means
for human-machine interactions, especially when using handheld

Fig. 7. Talking in noise: proportion of negative interactions with a dialog
system as a function of gender; F/M—female/male subjects.

Fig. 8. Talking in noise: human-human versus human-dialog system commu-
nication (UT-Drive corpus); fundamental frequency; error bars represent 95%
confidence intervals.

Fig. 9. Talking in noise: human-human versus human-dialog system commu-
nication; spectral center of gravity (SCG); error bars represent 95% confidence
intervals.

Fig. 10. Talking in noise: human-human versus human-dialog system com-
munication; spectral energy spread (SES); error bars represent 95% confidence
intervals.
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devices such as smartphones in open-office settings, company meetings,
or quiet places such as libraries.

The majority of current speech engines are oriented towards neutral
speech and perform poorly when exposed to whisper. Neutral (modal)
speech is dominated by voiced sounds where the airflow from the
speaker’s lungs causes vibration of the vocal folds. These vibrations are
the excitation source of the vocal tract. On the other hand, in pure
whisper (i.e., speech lacking any voiced components), the glottis is
constantly open and the turbulent flow of the passing air provides ex-
citation for the articulators (Morris and Clements, 2002). In addition to
missing the periodic excitation, whisper is characterized by different
prosodic cues (Heeren and Lorenzi, 2014), phone durations (Lee et al.,
2014), distribution of energy across phonetic classes, spectral tilt, and
formant center frequencies and bandwidths (Zhang et al., 2010; Fan
and Hansen, 2010; 2011; Ito et al., 2001; Eklund and Traunmuller,
1997; Ito et al., 2005; Lim, 2011; Matsuda and Kasuya, 1999; Morris
and Clements, 2002), as well as altered distribution of phones in the
F1–F2 formant space (Sharifzadeh et al., 2012).

Fig. 12 shows an example of neutral and whispered speech waveforms
capturing the same linguistic content. The accompanying spectrograms
demonstrate how in the voiced regions of the neutral utterance, a domi-
nant portion of the spectral energy is concentrated at lower frequencies
(mostly below 2 kHz, with visible harmonics of the fundamental fre-
quency), while in the whispered utterance, the spectral energy is dis-
tributed across a broader range of frequencies and lacks any harmonic

structure. It can be also seen that the unvoiced /z/ (from “dishes”) ap-
pearing at the end of both the neutral and whispered utterances has a
similar structure in both, suggesting that in spite of the likely effects of co-
articulation with the adjacent phones, unvoiced consonants in neutral and
whispered speech may share similar characteristics.

Speech engines trained for neutral speech perform poorly on whisper
due to the severe acoustic mismatch between the neutral acoustic
models and processed whispered samples. Studies on whispered speech
recognition mostly utilize model adaptation (Ito et al., 2001; 2005; Lim,
2011; Mathur et al., 2012; Jou et al., 2005), vector Taylor series
transformations of the whisper samples towards neutral (Yang et al.,
2012), or inverse filtering (Galic et al., 2014) and (Grozdic et al., 2014).
Hybrid deep neural network–hidden Markov models (DNN–HMM) were
recently explored for whisper ASR in Lee et al. (2014);
Ghaffarzadegan et al. (2017), and an audiovisual approach to speech
recognition was taken in Tao and Busso (2014). Whispered speech
processing has been studied also in the context of speaker identification
(Fan and Hansen, 2010; 2011; 2013), automatic whisper island detec-
tion (Zhang et al., 2010), and modal speech synthesis from whisper
(Morris and Clements, 2002).

Fig. 11. Talking in noise: human-human versus human-dialog system com-
munication; mean voiced segment durations; error bars represent 95% con-
fidence intervals.

Fig. 12. Time domain waveform and spectrogram of neutral and whispered utterance “Don’t do Charlie’s dirty dishes” produced by one speaker.

Fig. 13. Formant center frequency distributions; Ne/Wh—neutral/whisper; V/
UV—voiced/unvoiced.
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Figs. 13 and 14 show boxplots of formant center frequency and
bandwidth distributions in neutral and whispered speech drawn from the
UT-Vocal Effort II dataset (Ghaffarzadegan et al., 2016). It is noted that the
whisper samples in UT-Vocal Effort II are dominated by unvoiced speech
but contain also a small portion of occasional voiced segments and hence,
the figure includes those as well (denoted Wh_V—voiced whisper). When
switching from neutral speech to whisper, nearly all neutral voiced Ne_V
segments in modal speech will be replaced by whispered unvoiced Wh_UV
segments and it is easy to infer that on average, all the first four formants
will be traveling upwards in frequency (Fig. 13) and their bandwidths will
be, due to the noise-like nature of whisper, broadened (Fig. 14) as far as the
neutral speech is dominated by voiced segments, which is typically the
case. Comparison of neutral unvoiced Ne_UV segments and whispered
unvoiced Wh_UV segments reveals that there is an prominent increase in
F1 and F2 center frequencies, confirming the observations from
Sharifzadeh et al. (2012), while F3 and F4 exhibit a slight shift downwards
for whisper. The increase in F1, F2 follows a similar trend as seen in
Lombard speech (Bořil and Hansen, 2010). These two modalities, while
being quite different in a number of aspects (Lombard speech being louder
and dominated by voiced segments compared to neutral speech while
whisper being just the opposite), they may share similar strategies in terms
of the jaw and tongue configurations during speech production. Note that
the first formant center frequency varies inversely to the vertical position
of the tongue and the second formant frequency increases with tongue
advancement (Kent and Read, 2002; Sulyman et al., 2014; Hansen et al.,
2015). Some older literature hypothesizes that the location of the third
formant F3 is less dependent on the linguistic content and more correlated
with the vocal tract length in speakers (Claes et al., 1998; Eide and Gish,
1996). However, a recent study involving quantitative analyses of mag-
netic resonance imaging (MRI) does not seem to confirm this hypothesis
(Hatano et al., 2012). The same study finds either negative or positive
correlations between the MRI-measured vocal tract length and F3 and F4
shifts depending on the vowel uttered. In this sense, even if, hypotheti-
cally, whispering lead to a consistent adjustment of the speaker’s vocal
tract length with respect to neutral speech, the measured F3 and F4 center
frequencies could be still traveling either upwards or downwards in fre-
quency depending on the linguistic contents. For this reason, we attribute
the slight decrease in the whispered F3, F4 means to the specific whispered
phonetic balance captured by the database.

Fig. 15 presents a distribution of the first two cepstral coefficients c0

and c1 for neutral speech and whisper. Neutral speech combines voiced
and unvoiced phone classes, which leads to mildly bimodal distribu-
tions of the two lowest cepstral coefficients. On the other hand, a pure
whisper is dominated by unvoiced segments with one prominent mode
per coefficient. This strong unimodality is likely causing a greater
confusability between broad phonetic classes in whisper but also be-
tween whispered and silence segments (note that the silence and un-
voiced speech distributions in the two bottom plots have similar con-
tours and strongly overlap). The fundamental difference between the
neutral and whispered cepstral distributions causes mismatch between
whisper and neutral-trained acoustic models of speech, speaker, and
language recognition systems and degrades their performance
(Ghaffarzadegan et al., 2016; 2015; Fan and Hansen, 2011).

This concludes our survey of selected speech modalities in this
section (neutral speech, Lombard effect speech, whisper, emotional
speech, speech under cognitive load). Other talking styles can be found
in literature. For example, the reader is encouraged to reach for
(Zhang and Hansen, 2007) to learn more about soft, loud, and shouted
speech in the context of speech technologies, (Hasan et al., 2013a) to
study the effects of arousal, and (Hansen et al., 2012) to see the impact
of a non-acted stress on speech production.

4. Channel characteristics

Channel variability is mostly perceived as a negative factor that
increases mismatch in speech systems. Channel characteristics are af-
fected by the room impulse response and the related reverberation ef-
fects (Sadjadi et al., 2012), transmission channel parameters and mi-
crophones used (Junqua, 2002), as well as the distance and orientation
of the speaker with respect to the microphone or microphone array,
most recently studied in the context of distant speech recognition
(Ravanelli et al., 2017).

It is fairly standard for modern speech corpora to incorporate var-
ious channels for development and evaluations of robust speech en-
gines, be it real channels used in the simultaneous capture of the speech
material or simulated channels (e.g., ELRA, 2008; Hirsch and Finster,
2005; Hasan et al., 2013b; Barker et al., 2015). The speech community
is well aware of the issues stemming from channel variability and a vast
number of channel normalization and modeling techniques have been
devised since the dawn of speech engineering. This being said, in some
applications, channel characteristics may be leveraged in gathering
valuable information about a particular environment or the recording
equipment used during the data acquisition (e.g., “environmental
sniffing” (Akbacak and Hansen, 2007)). On the other hand, there are
situations where the speech corpus designers have good reasons to
conceal any information about the origin of the individual samples. One
example can be speaker, language, or dialect recognition evaluation
campaigns. Here, the tested systems are expected to make decisions
solely based on the speech contents of the samples while being, in an
ideal case, immune to channel and noise characteristics present in the
signal.

Fig. 16 demonstrates a real world example where channel char-
acteristics “leaked” information about the dialect being spoken in the
recordings. The left-hand side of the figure details long-term channel
transfer functions estimated for LDC’s conversational telephone speech
(CTS) corpora capturing four Arabic dialects (Iraqi, Levantine, Gulf,
Egyptian). As found in Bořil et al. (2012), processing just silence seg-
ments from these datasets is sufficient for a highly accurate dialect
identification (DID) since the channel characteristics are perfectly
correlated with the respective dialects. This is an example of using good
data (the datasets were recorded in separate campaigns using different
equipment and intended for ASR applications) in a wrong context (see
examples in Biadsy et al., 2009; Biadsy et al., 2011; Akbacak et al.,
2011). The right-hand side of the figure shows channel characteristics
of an in-house Pan-Arabic corpus that was collected with the dialect

Fig. 14. Formant bandwidth distributions; Ne/Wh—neutral/whisper; V/UV
—voiced/unvoiced.
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identification task in mind and utilized a fixed recording setup for all
scenarios. Here the channel characteristics do not reveal any useful
information with respect to the dialect being spoken and the dialect
identification systems need to focus solely on the speech content to
make any decisions (Bořil et al., 2012).

5. Prof-Life-Log: a case study with naturalistic speech corpus

Up to this point, we have discussed several prominent sources of
intra-speaker variability and related issues with realistically capturing
such variability in speech corpora. We have studied the impact of intra-

Fig. 16. (Left) Dialect-specific channel characteristics in Arabic CTS corpora—dashed lines are ± 5σ intervals; (right) channel characteristics in-house Pan-Arabic
corpus capturing dialects of United Arab Emirates (AE), Egypt (EGY), Iraq (IRQ), Palestine (PS), and Syria (SY).

Fig. 15. Normalized cepstral distributions of broad acoustic classes in neutral and whispered speech.
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speaker variability on speech technology and have also given an ex-
ample of how poorly planned or disregarded channel variability in
speech data acquisition may lead to a flawed experimental framework.
This section presents a case study on a recently collected, fully natur-
alistic corpus that addresses some of the issues discussed in the previous
sections. Prof-Life-Log (Ziaei et al., 2013) captures audio recordings of
entire work days of a university professor. The speech acquisition is
conducted via the LENA (Language Environment Analysis) unit
(Xu et al., 2012) fixed onto the subject’s clothes. The device records the
primary subject carrying the device, as well as those interacting with
him (secondary speakers) together with all the surrounding sounds. The
recorded interactions are fully natural and completely unscripted. The
subject routinely interacts with his colleagues, students, and acquain-
tances in various environments and social settings.

The LENA unit captures speech using a single microphone channel.
The analyses were conducted on recordings from four selected
environments—Office, Cafeteria, Walking, and Car captured within one
work day (12 h of audio). The environment information was perceptually
labeled by expert human annotators. An automated system (Ziaei et al.,
2013) was used to detect speech islands and perform primary vs. sec-
ondary speaker diarization. The operating point of the speech activity
detector was set to keep a low rate of false alarms (∼ 2.1%) to assure that
the segments sent for diarization contain actual speech. The diarization
error rate was estimated to be around 15% (based on evaluation on 6 h of
manually annotated data). The fundamental frequency analyzed below
was estimated for both primary and secondary speakers using Talkin’s
RAPT algorithm based on the Normalized Cross-Correlation Function
(NCCF) (Talkin, 1995) and the formant tracking was performed by the
Talkin’s linear prediction and dynamic programming based formant
tracking algorithm (Talkin, 1987), both implemented in WaveSurfer
(Sjolander and Beskow, 2000). Due to the nature of the recording setup,
the analyzed trends represent human-environment and human-human
interactions in natural communication settings. It is expected that the
speech production parameters estimated from the segmented recording
session will be, to a certain extent, affected by the presence of the en-
vironmental noise, especially in the case of the secondary speakers that are
further away from the microphone worn by the primary speaker. To re-
duce the impact of the analysis errors on the observed trends, means of the
parameters extracted across all segments of the particular class of interest
as captured in the 12-h session are presented and where deemed relevant,
accompanied by their 95% confidence intervals or boxplots.

Office

Walking

Car

Cafeteria

Fig. 17. Prof-Life-Log: (Left) Lombard function—vocal intensity as a function of environmental scenario; primary speaker; (right) fundamental frequency in primary
speaker and secondary speakers in varying environments; error bars—95% confidence intervals.

Fig. 18. Prof-Life-Log: environment-induced vowel shifts in the F1–F2 formant
space.

Spk
Spk

Spk
Spk

Fig. 19. Prof-Life-Log: speech rate (extracted from short-time energy envelopes,
following (Heinrich and Schiel, 2011)) in primary and secondary speakers as a
function of environment; boxplot edges—25th and 75th percentiles, central
mark—median, whiskers—most extreme points that are not considered outliers.
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Figs. 17–19 analyze interactions between the vocal intensity in the
primary speaker and the level and type of environmental noise (Lom-
bard function), and also relationship between the primary and sec-
ondary speakers’ average fundamental frequencies, shifts of vowels in
the F1–F2 formant space, and speech rates as functions of the environ-
ment.

Fig. 17 details how the speakers cope with different environments in
terms of vocal intensity (left—primary speaker) and fundamental fre-
quency (right—primary speaker and secondary speakers). As could be
expected, the naturally noisier environments Cafeteria, Car are seen to
induce greater vocal intensities in the primary speaker compared to
Office and Walking. On the other hand, fundamental frequency does not
completely follow the same trend, with Walking fundamental frequency
values exceeding those of the Car. Interestingly, the mean fundamental
frequencies in secondary speakers follow an identical trend as those in
the primary speaker when switching between environments. This sug-
gests that (i) the environment has a rather consistent impact on the
communication parties and/or (ii) there is a prominent inter-speaker
convergence.

Fig. 18 studies shifts of vowel formants in the primary speaker due
to the varying environments; in particular, prominent F1 changes in
/uw/ and F2 changes in /eh/ are observed.

A similar trend to the one in F0 can be seen for the speech rate in
Fig. 19 where the communication parties again respond in the same

fashion to different environments. The speech rate is estimated using
the algorithm introduced in Heinrich and Schiel (2011a) and represents
the number of syllable-like islands detected from the energy contour per
second. Fig. 20 further details the mean spectral center of gravity (re-
lated to perceptual “brightness” of speech) and spectral energy spread
measured for the primary speaker across the environments. The results
suggest a strong correlation between the spectral characteristics of
speech and the environment in which it was produced.

Fig. 21 presents long-term spectra of the four environments, with
the office noise having the lowest energy and the car noise displaying a
characteristic peak at low frequencies and a quick decay at higher
frequencies. Given these prominent spectral profile differences, it seems
quite natural that speakers adjust their speech production differently
with each environment in an effort to sustain intelligible communica-
tion.

Fig. 22 compares distribution of pitch bigrams for the primary
speaker in Office and Cafeteria environments. The pitch bigram analysis
follows the procedure introduced in Bořil et al. (2013) where each
voiced island in speech is fit with a regression line. Slopes of the ex-
tracted regression lines are quantized into three categories (pitch pat-
tern primitives)—rising, flat, and falling. Subsequently, N-grams of
pattern primitives can be counted and used to quantify differences in
pitch contours. Fig. 22 presents absolute frequencies of primitive bi-
grams. Since a primitive unigram can take on one of three categories,
there are nine possible bigrams. The shape of the particular bigram is
given by its unigram coordinates read from left to right. For example,
the central bigram represents a flat pattern (i.e., a combination of two
flat unigrams). The bigram in the bottom corner represents a rising–-
falling pitch pattern. Fig. 22 shows that in the Office environment the
flat pattern is dominating in the primary speaker while in Cafeteria, the
bigrams are distributed more uniformly, suggesting greater pitch
modulations.

For a comparison, Fig. 23 shows pitch bigram patterns found in the
vocalizations of 18–31 month old US-born toddlers (five males and
three females) produced during their natural daily routines (Bořil et al.,
2013). The recordings were collected using the same type of a portable
LENA recorder as in the Prof-Life-Log dataset. Unlike in the adult
speech where the flat pitch bigram is most prominent, the toddler vo-
calizations are characterized by dominating double-falling and double-
rising bigrams, with the frequencies of the flat bigram and the other
remaining bigrams being nearly uniformly distributed. This corre-
sponds well with the intuition that toddlers and children in general tend
to modulate their voices at a notably higher rate than adults.

Fig. 20. Prof-Life-Log—spectral center of gravity and spectral energy spread in primary speaker in varying environments; error bars—95% confidence intervals.

Fig. 21. Long-term spectra of selected environmental scenarios in Prof-Life-Log.
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6. Conclusions

This study has considered a range of prominent factors that impact
speech and language technology. It should be noted that the emphasis
here has been more on factors that impact speaker variability, which by
no means is exhaustive, and therefore further investigations are clearly
possible into sub-areas within the environment, channel, microphone/
recording, context issues, etc. It is clear that the increasing extensive
sub-areas within environment, channel, microphone/recording, context
issues, etc. which also deserve further consideration. It is clear that the
increasing demands placed on current speech engines have driven many
speech researchers to leverage found data as a means to address nat-
uralistic audio streams for speech recognition, speaker recognition,
language identification, and diarization technology in general. While a
variety of factors influence the presence or lack of realism in speech
corpora as well as their corresponding effects on speech systems, for
present day solutions to be effective, more realistic data is needed. In
particular, our focus in this study has been on the role of speaker
variability, environmental noise, communication factors, and channel
variability. Here we have presented research examples of widely used
corpora that in some ways departed from what could be considered

realistic scenarios—either through the data collection protocol or due
to the misinterpretation of the purpose of the data sets by users,
alongside with data sets that we believe have the potential to address
those issues.

In terms of recommendations for researchers going forward who
want to address robustness in speech and language systems, the fol-
lowing three “best practices” are suggested:

• Recommendation #1—Know your Source Plan: for the specific speech
or language application, know the number of speakers, amount of
speech per speaker, speaking style (stress, emotion, vocal effort,
Lombard effect, etc.) which is needed or acceptable for your appli-
cation. Know if the audio streams are single speaker or multiple
speakers, and if there is any overlap when speech is present. Know
the language and dialect of interest—and recognize that code-
switching occurs in bilingual speakers in the context of conversa-
tional subjects that are bilingual. Building an acoustic model at
some level is like baking a cake—you need to have the right mix of
speech ingredients, but too much of one style or context can alter
the resulting model and degrade overall system performance.

• Recommendation #2—Prune What is Not Needed: developing
screening tools to perform data purification or balancing is a must
when dealing with found or massive audio streams or corpora.
Setting aside data that does not meet the requirements set forth in
the Source Plan is important and new signal processing tools are
clearly needed to accomplish this task. This includes automatic SNR,
quality, noise, and non-linear distortion analysis and visualization to
build an “extrinsic” profile of the available audio materials. An
equivalent “intrinsic” speaker profiling response is also needed to
allow designers to construct the needed training materials to
achieve the best acoustic models for system development.
Determining effective thresholds or criteria to prune available cor-
pora is an emerging and critical need for the field.

• Recommendation #3—The need for Data Profiling & Proof-of-Concept
Testing: The final recommendation from this investigation is that the
availability of speech and language resources continue to grow ex-
ponentially, and while using found data is tempting because it is cost
effective, researchers need to exercise greater caution in how they
treat such data. As such, there is a clear need for developing a “Data
Profiling” paradigm which can be applied to both training data as
well as sample test data. The need here is to independently measure
the data diversity of both train and sample test to ensure there is a
similar balance. To accomplish this, a series of basic analysis steps

Age 18-31 Months

Fig. 23. Distribution of pitch bigram patterns in eight US toddlers aged 18–31
months.

Fig. 22. Prof-Life-Log—distribution of pitch bigram patterns for primary speaker in Office and Cafeteria environments.
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for the training data should always include assessing: (i) SNR/noise
level, (ii) channel characteristics, (iii) reverberation traits/room
impulse response, (iv) number of speakers in the audio, (v) potential
overlap of speech segments, (vi) presence of music or non-speech
events/content, (vii) language of the speaker/speech, and (viii)
identity and style of the speaker. Finally, a “proof-of-concept” test is
needed. For example, in speaker or language recognition, one can
always perform the evaluation on the speech after a SAD (speech
activity detection) step is employed. A good proof-of-concept test
here would be to test all the data which was set aside as silence/
noise. If the models are truly balanced, the SID or LID task should
provide roughly chance performance (e.g., 75% EER or 25% accu-
racy for a 4-way classification task).

Greater care in preliminary assessment of the audio content for
training as well as probe testing can significantly increase the effec-
tiveness and reliability of the final speech algorithm solution. New
corpora are being made available to the research community with ex-
amples such as (i) SITW—speakers in the wild (useful for speaker ID),
(ii) Fearless Steps Corpus (Yu and Hansen, 2017; Kaushik et al.,
2017)—naturalistic audio from the U.S. NASA Apollo program
(19,000 h; useful for diarization, speaker identification, speech under
stress, etc.), (iii) NIST SRE and LRE corpora collected by NIST for
speaker and language recognition evaluations (NIST, 2016; 2017), etc.
While this study has considered a number of sub-areas in the field of
speech, language, and speaker processing for recognition, it was not
possible to provide an exhaustive treatment for all topic areas in robust
speech research. Clearly, the next generation of speech and language
solutions will need to take greater advantage of naturalistic data as well
as designed data collections which meet the needs of researchers and
technologists for robust solutions to the problems of speaker, environ-
ment, and communications based mismatch or variability.

Supplementary material

Supplementary material associated with this article can be found, in
the online version, at 10.1016/j.specom.2018.05.004.
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