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ABSTRACT

Dialect variations of a language have a severe impact on the perfor-
mance of speech systems. Therefore, knowing how close or diverse
dialects are in a given language space provides useful information to
predict, or improve, system performance when there is a mismatch
between train and test data. Distance measures have been used in
several applications of speech processing. However, apart from pho-
netic measures, little if any work has been done on dialect distance
measurement. This study explores differences in pitch movement
microstructure among dialects. A method of dialect distance assess-
ment based on pitch patterns modeled progressively from pitch con-
tour primitives is proposed. The presented method does not require
any manual labeling and is text-independent. The KL divergence is
employed to compare the resulting statistical models. The proposed
scheme is evaluated on a corpus of Arabic dialects, and shown to be
consistent with the results from the spectral-based dialect classifica-
tion system. Finally, it is also shown using a perceptive evaluation
that the proposed objective approach correlates well with subjective
distances.

Index Terms— dialect distance assessment, pitch patterns

1. INTRODUCTION

Dialect is a variety of a language that is used by a group of speak-
ers belonging to some geographical region. Dialects of a language
differ in phonetic, grammatical, and lexical features. Like other
speaker variations, dialect impacts the performance of speech sys-
tems. Therefore, efficient dialect classification algorithms will con-
tribute to improved speech recognition, speaker identification, speech
coding, or spoken document retrieval systems. Compared to lan-
guage identification in which a dictionary and set of language rules
are known, dialect identification (ID) is more challenging. In a di-
alect ID task, dialect-dependent models are trained, and during the
test phase, the model which is most likely to produce the test utter-
ance is identified. For both train and test phases, feature vectors are
extracted from audio files. The availability of data transcription in-
fluences the design of a dialect ID system. For unsupervised dialect
classification, systems based on Gaussian Mixture Models (GMMs)
have proven to be successful [1].

In this study, our focus is on estimating the proximity or sepa-
ration between different dialects of the same language by means of
a distance measurement. Distance measures have been applied in
different fields of speech processing. In speech recognition, from
measuring the distortion between input and output [2], [3] to speaker
adaptation and speaker clustering [4], measures of similarity have
played a significant role in improving system performance. Other ar-
eas of speech processing, such as speech coding, enhancement, and
synthesis have exploited distances as an objective measure of assess-
ing speech quality [5]. Phonetic distance between dialects has been
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calculated in several linguistic studies using various string distances
including Levenshtein, Euclidean, and Manhattan distance [6]. The
obtained distances have been applied in order to divide geographical
maps into dialect areas. Apart from linguistic approaches, little if
any work has been done on finding a meaningful distance measure
between dialects.

Previous studies have shown that pitch movement can provide
a cue for accent classification [7] (perceptual study), dialect clas-
sification [8] (analysis of pitch contours in English dialects), and
language identification [9] (automatic language ID). In this paper,
we propose a probabilistic method to compare statistical models for
pitch movement patterns between dialects. We start by proposing
text-independent pitch features based on pitch contour primitives,
and train a model for each dialect based on the proposed features.
Next, the pitch primitive models are used as the building blocks to
model longer-term pitch patterns in different dialects by means of N-
grams. There are two points to be noted here. First, the proposed
features are text-independent, allowing dialect comparison in an un-
supervised manner based on available un-transcribed train data. Sec-
ond, our efforts are to keep the assessment system as computationally
inexpensive as possible, therefore it can serve as an initial step prior
to actual classification.

The proposed dialect distance assessment framework suggests
how accurately the dialects can be distinguished. Therefore, it pro-
vides some sense of the resulting dialect classification system per-
formance, and takes an initial step towards dialect purity assessment.
Furthermore, the performance of a dialect-dependent speech recog-
nition system for a new dialect can be estimated based on the distance
between dialects. In a previous study [10], we assessed dialect sep-
aration comparing log-likelihood score distributions. GMMs were
applied as statistical models for each dialect, and Mel Frequency
Cepstral Coefficients (MFCCs) were used as extracted features from
audio files. In this study, we show that the pitch pattern based sepa-
ration assessment is consistent with the log-likelihood score distribu-
tion distance for the same corpus. We present the proposed distance
measure in Sec. 2. In Sec. 3, evaluation on a corpus of Arabic di-
alects is discussed. We show the repeatability of presented measure,
and its correlation with human perception. Conclusions are drawn in
Sec. 4. For the remainder of this paper, we use ”dialect distance” and
”dialect separation” interchangeably, and the word ”distance” is not
used in the strict sense of metric spaces.

2. PROPOSED METHOD

Human perception tests indicate that prosodic cues, including pitch
movements, can be employed to distinguish one language or accent
from another [7], [11]. However, prosodic features have only briefly
been considered in language ID systems [12], and even less in dialect
classification. In the present study, we hypothesize that variation of
pitch contours are dialect-dependent and can provide an efficient cue
for dialect separation assessment. The presented scheme does not re-
quire any prior knowledge, manual segmentation, or pre-processing.

5158978-1-4244-4296-6/10/$25.00 ©2010 IEEE ICASSP 2010



2.1. Text-independent Pitch Features

As noted, our objective is to develop an unsupervised system that
automatically assesses the separation between dialects based on
available train data. The system’s input is un-transcribed conver-
sational audio, and the task is to compare different dialects on the
basis of pitch movements. Our approach statistically models de-
tails of the pitch contour in voiced speech data for each dialect.
As a first step, pitch frequencies are extracted from every utter-
ance of each dialect to obtain a single pitch vector per utterance.
The pitch is obtained using Robust Algorithm for Pitch Tracking
(RAPT), proposed in [13]. RAPT is based on the Normalized Cross-
Correlation Function (NCCF), and applies dynamic programming as
the post-processing technique to select the best F0 and voicing state
candidates at each frame. Next, 3-Dimensional feature vectors are
generated from groups of three consecutive nonzero pitch values. To
obtain a representation of pitch contour microstructure rather than
speaker/utterance-dependent absolute pitch values, pitch slopes are
subsequently extracted from the 3-Dimensional pitch vectors. Since
the step size in pitch extraction is fixed (10 msec.), a feature directly
proportional to pitch slope is calculated as the difference between
consecutive pitch values, transforming the pitch vector [F01 F02
F03 ] into a 2D vector [(F02 -F01 ) (F03 -F02 )]. For the remainder of
this study, the extracted feature is referred to as pitch slope vector.
Note the difference from the traditional meaning where pitch slope
refers to the long-term trend of a pitch contour.

Fig. 1 shows feature extraction from a pitch contour example.
As shown, a window slides along the pitch contour, extracting three
nonzero pitches at a time. Note that there is overlap of two samples
between adjacent windows. Each 3D pitch vector yields a 2D pitch
slope vector which is then classified as one of 9 pitch patterns, which
are introduced in the next subsection.
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Fig. 1: Extraction of proposed text-independent pitch features from
pitch contour example.
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Fig. 2: Histogram for Egyptian dialect pitch slope vectors.

2.2. Pitch Patterns Codebook

After extracting 2D pitch slope vectors for each dialect, the pattern
of changes from every three consecutive pitches is determined. A
positive slope means an increase in pitch, and alternatively, a nega-
tive slope represents a decrease. In addition, the absolute value of the
slope or pitch change is important. For example, steep slopes corre-
spond to abrupt changes in pitch while slopes close to zero (indepen-
dent of the sign) reflect steady fragments of the pitch contour. Based
on the inspection of pitch slope vector histograms for all dialects ,
we set thresholds for 2D pitch slope vectors to obtain a codebook
of pitch patterns. For each dialect, 2D pitch slope vectors extracted
from every speaker and utterance of dialect’s data are used to build
a 3D histogram as statistical representation of pitch change in that
dialect. Fig. 2 shows an example of a pitch slope vector histogram.
Each 2D pitch slope vector corresponds to a point on the XY plane.
A set of 9 different patterns are considered for each dialect, depicted
in Fig. 3. If the absolute change of pitch is less than 3 Hz, the pitch is
considered steady. However, for absolute pitch slopes greater than 3
Hz, two options are considered: positive and negative. A pitch con-
tour description utilizing a set of simple shapes was previously used
in [14]. 7 patterns were applied in manual labeling of 100 msec.–
2 sec. speech segments in an analysis of infant speech production.
Note that in our approach, the pitch patterns represent fine details of
the pitch contour (20 msec. resolution) and are extracted in a fully
automatic manner.

After classifying all 2D pitch slope vectors as one of the pitch
patterns, the next step is to model pitch changes in each dialect, us-
ing the extracted features. These models can later be compared to
obtain pitch movement differences between different dialects of a
language. Statistical models used here are discrete probability dis-
tributions. Each distribution shows the probability of occurrence for
each pattern in the given dialect, and can be described by matrix
P (3 × 3) of probabilities. The variability of these distributions re-
flect differences in excitation structure between dialects.
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Fig. 3: Codebook of pitch patterns.

Furthermore, the obtained pitch patterns from 3D pitch vec-
tors can be extended to higher dimensions (i.e., longer tempo-
ral patterns) by means of N-gram modeling. First, consider the
codebook of 9 pitch patterns as a dictionary of different words:
{w1, w2, w3, w4, w5, w6, w7, w8, w9}. We already have the uni-
grams for this dictionary which are the probabilities of occurrence
for each word (pattern). Next, conditional probabilities are computed
from N-gram frequency counts:

P
`
wi|wi−(n−1), . . . , wi−1

´
=

C
`
wi−(n−1), . . . , wi−1, wi

´

C
`
wi−(n−1), . . . , wi−1

´ ,

(1)
where C represents the count of the word sequences. Using the con-
ditional probabilities, the probability of different sequences of pat-
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terns can be calculated:

P (w1, . . . , wm) =
mQ

i=1

P (wi|w1, . . . , wi−1)

≈
mQ

i=1

P
`
wi|wi−(n−1), . . . , wi−1

´
.

(2)

Here, we calculate the probabilities for different pairs of words which
correspond to 3D pitch slope vector patterns. These results, com-
bined with the uni-gram counts, are applied to compute conditional
probabilities:

P (wi|wj) =
C (wj , wi)

C (wj)
, i, j = 1, 2, ..., 9. (3)

Next, bi-gram models are used to calculate probability distribution
for sequences of three words, or 5D pitch vectors.

2.3. Distance Between Pitch Pattern Models

The Kullback Leibler (KL) divergence or relative entropy [15] is a
non-commutative measure of similarity/dissimilarity between distri-
butions or statistical models. If P and Q are two discrete probability
distributions, the KL divergence of Q from P is:

DKL (P‖Q) =
X

i

P (i) log
P (i)

Q(i)
. (4)

In Sec. 2.2, we modeled pitch patterns for each dialect as a 2D dis-
crete distribution. The next step is to compare dialect models for a
measure of dialect distance. We used KL divergence for comparing
the distributions, which in this case has a closed form. The distance
of dialect2 (D2) from dialect1 (D1) is:

d(D1, D2) =
3X

i=1

3X

j=1

P1(i, j) log
P1(i, j)

P2(i, j)
, (5)

where P1(i, j) and P2(i, j) are discrete pitch pattern distributions
for dialect1 and dialect2, respectively. Note that d(D1, D2) is not
necessarily equal to d(D2, D1). Therefore, we average the two dis-
tances to obtain a separation assessment between two dialects. Fig.
4 shows the block diagram of proposed dialect distance assessment
method.

3. EXPERIMENTAL RESULTS AND EVALUATION

3.1. Evaluation

Here, the distance assessment scheme is investigated for a corpus of
three Arabic dialects: AE (United Arab Emirates), EG (Egypt), and
SY (Syria). Our focus is to keep the training data balanced, (i.e., for
each dialect almost 5 hours of conversational speech from 32 male
speakers is used). The computed distances using all available data
are as follows: d(AE,EG) = 0.0036, d(AE,SY)=0.0043, d(EG,SY) =
0.00018. The distances show that AE and SY have the widest sepa-
ration, while EG and SY are the closest dialects. This is the same ob-
servation that resulted from previously proposed log-likelihood dis-
tances [10]. In the next step, we evaluate the consistency of the pro-
posed distance measure. Distances for 10 non-overlapping subsets
extracted from the original data are calculated. Each subset contains
data from all speakers. The results are summarized in Table 1. The
first row shows distances using the entire available data. In the sec-
ond row, mean and standard deviation of distances obtained from 10
subsets are shown. It can be seen that the mean distances extracted
from the subsets are comparable to the distances obtained from the
whole set. The low values of standard deviation compared to the
distance means confirm the consistency of the distance estimation

Set d(AE,SY)
(x10-3)

d(AE,EG)
(x10-3)

d(EG,SY)
(x10-3)

Whole Set 4.3 3.6 0.18 

10 Subsets 4.4
(  = 0.6) 

3.7
(  = 0.5) 

0.22
(  = 0.07)

Table 1: Means and variances of 10 distance measures using subsets
of the whole data set

across the subsets. In [10], we evaluated log-likelihood score distri-
bution distances with results from an open-set GMM-based dialect
classification task. 600 mixtures and 26-dimensional MFCC features
were used for classification. A confusion score was defined between
each dialect pair D1 and D2 as the sum of percentages of D1 classi-
fied as D2 and vice versa. We discussed that the greater the dialect
distances, the less the confusion score. Therefore, in this study, in-
verse confusion is used as a reference to show how well distance
measures can predict dialect classification system performance. Fig.
5 shows pitch pattern distances for pairs of three Arabic dialects,
and compares them with log-likelihood distances, and inverse con-
fusion scores from dialect ID system. Since each set of scores by
nature has a different range, normalized values are presented in the
figure. Normalization process for each set of three distances consists
of subtracting the mean and dividing by the standard deviation. Next,
minimum normalized distance in each set is used as a bias to obtain
nonnegative distances:

d′
i =

di − μ

σ
−

min
i

(di) − μ

σ
=

di − min
i

(di)

σ
, (6)

where di and d′
i are original and normalized distances, respectively,

i = 1, 2, 3. μ is the mean of three distances in each set, and σ is
the standard deviation. It is shown in Fig. 5 that log-likelihood score
distribution distances are closest to inverse confusion. This is due
to the fact that these distances are derived from GMM score distri-
butions of dialect classification system. In addition, MFCCs are the
features used for both classification, and log-likelihood distance mea-
sure. Distances from pitch pattern comparison, which represent exci-
tation differences between dialects, display good correlation with in-
verse confusion scores. This confirms that automatic dialect ID sys-
tem performance can be well estimated using proposed pitch pattern
distances. Note that this study’s approach is only based on statistical
analysis of pitch contour details and does not require any informa-
tion from dialect ID system. Extending length of the pitch patterns
by means of bi-gram modeling results in distances closer to inverse
confusion.

3.2. Perceptive Evaluation

Finally, in this section correlation of objective dialect distance with
human perception is investigated. For this experiment, two Egyptian
subjects are used. Each subjective test consists of 30 sessions. In
each session, three 15 sec. conversations are presented from three
different dialects (AE, EG, SY). One audio file is used as the refer-
ence. Listeners were asked to compare the two other utterances to the
reference and on a scale of 1 (similar to the reference) to 10 (com-
pletely different from the reference) give two perceptual distances for
each session. The reference dialect in each session is chosen in a ran-
dom way. To make the decisions as speaker independent as possible,
different speakers are used for each session. The perceived distances
between each two dialects are averaged across sessions to obtain one
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Fig. 5: Comparison between dialect distance measures.

perceptive distance per listener. The resultant subjective distances
from both listeners show that perceptually, SY is closer to EG than
AE to EG. This is the same order of distances that we obtained from
the proposed objective distance measure. The average distance from
2 listeners between SY and EG is 6.4, while between AE and EG is
7.2. We clearly recognize that this perceptive test is limited, and more
listeners are needed to show the correlation of the proposed distance
measure with human perception. In addition, the number of listeners
from each dialect should be balanced. Here, the listener group is bi-
ased based on knowledge/familiarity of the dialects. Since the native
dialect of the subjects is Egyptian their judgment on comparing the
other two dialects with their native dialect is more reliable.

4. CONCLUSIONS

In this study, a method for assessing dialect separation based on com-
paring pitch movement patterns was proposed. 2D pitch slope vec-
tors were classified into 9 patterns of pitch change. Statistical pitch
pattern models were compared to obtain dialect distances. Using bi-
grams, models for longer temporal patterns were derived. The pro-
posed distance measure was evaluated for three Arabic dialects. The
results showed that AE dialect’s pitch movements are completely dis-
tinguishable from the other two dialects (EG and SY), while EG and
SY are more confusable. Dialect classification system performance
for these three dialects confirms the result of the proposed distance
measure. The correlation of the distances with human perception was
also investigated in a listener test. The proposed method of measur-
ing dialect distance has applications in dialect classification, perfor-
mance prediction, as well as dialect data purity assessment. More-
over, it is believed that the newly established statistical modeling of
pitch contour used side-by-side with spectral-acoustic features will
benefit automatic dialect identification.
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