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Abstract

This study proposes model and feature based strategies for
automatic whispered speech recognition. Our goal is to com-
pensate for the mismatch between neutral-trained recognizer
models and parameters of whispered speech. We propose a
pseudo-whisper generation from neutral speech samples for ef-
ficient acoustic model adaptation. The scheme is based on the
popular Vector Taylor Series (VTS) algorithm. In the first step,
a ‘background’ model capturing a rough estimate of the target
whispered speech characteristics from a small amount of whis-
pered data is trained. Second, the target background model is
utilized in the VTS strategy to establish broad phone classes
(consonants and vowels) transformations for individual neu-
tral utterances and transform them towards whisper. Finally,
these pseudo-whisper samples are used to adapt neutral rec-
ognizer models towards whisper. This approach is evaluated
together with Vocal Tract Length Normalization (VTLN) and
Shift frequency transforms and show to greatly benefit recogni-
tion performance compared to a traditional whisper-adaptation
approach. The absolute WER on the closed speakers whisper
scenario has been reduced from 17.3 % to 8.4 % and the open
speakers scenario from 27.7 % to 17.5 %.

Index Terms: whispered speech recognition, Vector Taylor Se-
ries, vocal length normalization

1. Introduction

Neutral-trained speech recognizers tend to perform poorly when
exposed to whispered speech. The cause of this is the con-
siderable acoustic mismatch between the incoming whispered
speech and the neutral speech samples seen by the models dur-
ing the system design. Some of the major differences between
neutral and whispered speech are the missing glottal excitation
in whisper, differences in energy distribution between phone
classes, variations of spectral tilt, and formant shifts due to dif-
ferent configurations of the vocal tract [1-7]. Most of current
studies on whispered speech recognition attempt to alleviate the
acoustic mismatch through acoustic model adaptation [6-9] or
feature transformations [9].

In our previous study [10], the focus was on the analy-
sis of speech production differences between neutral speech
and whisper as captured in the UT-Vocal Effort II (VEII) cor-
pus [11], and design of affordable front-end feature extraction
strategies to reduce the speech variability unrelated to the lin-
guistic content. We have proposed a simple approach of filter
bank subband re-distribution based on the relevance of individ-
ual frequency bands for neutral and whispered speech recogni-
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tion. Based on the formant shifts in whisper observed in [10], in
this study, we investigate the efficiency of spectral-domain max-
imum likelihood frequency transformations (vocal tract length
normalization — VTLN [12] and Shift [13]) which were pre-
viously shown to successfully address similar formant shifts
in Lombard speech. Subsequently, we study the efficiency of
model adaptation towards whispered speech. Since whispered
speech samples are rarely available in the corpora utilized for
acoustic model training, we propose a Vector Taylor Series
(VTS) based approach for pseudo-whisper speech generation
from neutral speech samples. It is shown that the VTS approach
considerably outperforms a traditional model adaptation strat-
egy both on neutral and whispered evaluation sets when both
approaches have access to identical adaptation sets.

The rest of the paper is structured as follows. First, the
Vocal Effort II corpus is briefly described. Second, frequency
transformations VTLN and Shift are reviewed and VTS-based
pseudo-whisper speech generation is introduced. Finally, a
side-by-side evaluation of the approaches is presented.

2. Corpus of Neutral/Whispered Speech

The speech data used in this study are drawn from the UT-
Vocal Effort II (VEII) database [11]. Our focus is on the read
speech portion of VEII where each subject read 41 TIMIT sen-
tences [14] and two newspaper paragraphs while switching be-
tween neutral speech and whispering. Similar to [10], neutral
and whispered TIMIT sentences from 39 female and 19 male
speakers are used in our experiments. The recordings were
downsampled to 16 kHz. In the ASR experiments, TIMIT [14]
database is used for acoustic model training and baseline eval-
uations. The content of the VEII and TIMIT data sets used in
this study is detailed in Table 1.

3. Compensation Methods
3.1. VTLN and Shift Algorithm

As shown in [4-7,10], one of the main differences between neu-
tral and whispered speech is the upward shift of low formants
(especially F and F3) in frequency. One of the standard meth-
ods originally introduced to compensate for the inter-speaker
vocal tract variability is the maximum likelihood vocal tract
length normalization (VTLN). VTLN maximizes decoding like-
lihood for each speaker or utterance using a simple frequency
warping function. This warping can be implemented by manip-
ulating cutoff frequencies of the feature extraction filter bank
[12]. Past studies have shown that besides its original objective,
VTLN is helpful in compensating for formants shifts caused by
Lombard effect [13,15], which are in a way similar with those
in whispered speech (upward shifts in /7 and F3) [10].

In the standard VTLN approach [12, 16], the scaled fre-
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quency axis Fyrrn = F/é is obtained through multiple de-
coding passes on warped features (feature domain VTLN). Al-
ternatively, a model-based VTLN can be utilized where a set of
warped models, i.e., models trained on data warped with dif-
ferent «’s, is used to decode unwarped features (model domain
VTLN). In our study, a grid search over a set of 9 warping fac-
tors ranging from 0.8 to 1.2 is used.

In whisper, the rate of low and high formant shifts from
their neutral locations differs and hence, an alternative fre-
quency transformation function which would not pass through
the frequency coordinate origin might be more suitable. Moti-
vated by the success of the Shiff transform [13,17] on Lombard
effect speech where similar formant shifts are observed, we in-
vestigate this frequency warping also in our study:

Fsnife = F + 3, (1

in which 3 is a shift factor. A grid search over a set of 7 warping
factors in the range of 0 to 300 (step 50 Hz) is used to estimate
[ for each utterance. Likewise in VTLN, we can do the shift
either by shifting the training utterances or models.

3.2. VTS Algorithm Description

This section introduces a VTS-based algorithm that trans-
forms neutral speech samples to pseudo-whispered ones. The
pseudo-whispered samples are subsequently used to adapt neu-
tral acoustic models to whisper. This is motivated by the fact
that neutral speech data is usually easily accessible during ASR
training while obtaining transcribed whispered training sam-
ples is difficult. The proposed VTS method requires only a
small amount of untranscribed whispered utterances to gener-
ate a large population of pseudo-whispered samples for model
adaptation to whisper.

In the VTS algorithm, the environment is modeled as a
speech signal corrupted by channel effects and an additive sta-
tionary noise [18,19]. Since the goal of this part is transforming
neutral features to pseudo-whisper features using limited whis-
pered speech data, we can assume that neutral speech yne (t)
is the result of whispered speech x.n (t) passing through the
channel h (t) and being corrupted by additive noise n (t) [20]:

Yne (t) = zwn (£) x h () + n (¢). )
In the log-spectral domain Eq. (2) can be expressed as:
Yne = LTwh + h + g (xwh7 h7 n) s (3)
# Sessions
Corpus  Set Style M F  #Sents Dur
Train Ne 326 136 4158 213
TIMIT Test Ne 112 56 1512 78
Ne 577 23
VEIL = Adapt g, 580 34
Closed 19 39
Speakers  Test Ne 348 14
Wh 348 21
Ne 766 30
5/11)561’17 Adapt Wh 13 26 779 45
Ne 351 14
Speaker:
peakers  Test Wh 5 13 360 20
Table 1: Speech corpora statistics; M/F — males/females; Train —

training set; Adapt — model adaptation/VTS-GMM set; Ne/Wh — neu-
tral/whispered speech; #Sents — number of sentences; Dur — total dura-
tion in minutes. Closed Speakers — same speakers (different utterances)
in Adapt/Test; Open Speakers — different speakers in Adapt/Test.
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Figure 1: VTS-based generation of pseudo-whisper samples using
whisper GMM and samples from neutral Adapt set. In the example,
vowel- and consonant-specific VTS transforms are applied.

“
In Eq. (3), we assume in log-spectral domain the cosine of the
angle between ., (t) * h (t) and n (t) is zero. Other assump-
tions of this algorithm are that the limited observations of the
whispered speech can be represented by a mixture of Gaussian
distributions, noise is represented by a single Gaussian distribu-
tion, and the channel h is deterministic.

Because of the nonlinear function g (zwh, h,n) in Eq. (3),
the problem of computing the pdf of neutral speech given the
pdf of whispered speech is non-trivial. We can simplify this
problem using vector Taylor expansion of y,. around the point
(2 p » R0, fin). We first estimate the noise and channel char-
acteristics using the E-M algorithm and subsequently compute
the mean and variance of y,. from the VTS expanded for-
mula [18]. Once the parameters of the distribution of neutral
speech are computed, the pseudo-whispered features can be cal-
culated using the Minimum Mean Square Estimation (MMSE)
algorithm [21]. The process is outlined in Fig. 1. First, we
use a small amount of unlabeled whisper samples (taken from
the “Whisper Adapt’ set — see Table 1) to train a whisper Gaus-
sian Mixture Model (W haqapt GMM). Subsequently, we uti-
lize this GMM in the VTS scheme to extract transforms for
broad phone classes (vowels, consonants) for the neutral utter-
ances drawn from the ‘Neutral Adapt’ set. The transforms are
estimated on an utterance level. Phone boundaries in the neu-
tral utterances are estimated using forced alignment (since tran-
scriptions for adaptation data are available). For each neutral
sample, we apply the utterance-specific transforms to produce a
corresponding pseudo-whispered sample. Once all neutral sam-
ples are converted to their pseudo-whispered counterparts, they
are used to adapt the neutral ASR acoustic models to whisper.

g (@wh,hyn) =In (1 +exp (n — Twn — h)).

4. Experiments in Neutral/Whispered ASR

Our experimental setup follows the one from [10]. A gender-
independent speech recognizer was trained on 3.5 hours of
TIMIT recordings (see Table 1). 3-state left-to-right triphone
HMMs with 8 Gaussian mixture components per state are used
to model 39 phone categories (including silence). Front-end
feature vectors are extracted using a 25 ms/10 ms windowing of
a 16 kHz/16 bit audio signal and comprise 39 static, delta, and
acceleration coefficients processed with cepstral mean normal-
ization. The recognizer is built in CMU Sphinx 3 [22].

In all experiments, the TIMIT acoustic models are MLLR-
adapted in a supervised fashion towards the VEII acous-
tic/channel characteristics using the neutral adaptation sets de-
tailed in Table 1. Based on the experiment, also the whispered
portion of the adaptation set is used. The experiments are car-
ried out on closed speakers and open speakers test sets to evalu-



PLP
PLP PLP .
Speaker - Test  ypee MECCprp PLP - 50Uni. 20uni- 20UM-
Scenario Set 20Uni 20Uni . Redist-

Redist 5800
5800
Closed Ne 52 3.8 5.4 4.0 4.1 45 39
Wh 27.0 19.5 24.6 18.2 17.3 14.0 13.7
Ne 6.3 5.8 7.1 52 5.6 5.5 5.0

Open

Wh 38.5 30.2 354 27.6 27.7 229 23.4

Table 2: Comparison of baseline features, features established in [10],
and reduced bandwidth features; WER (%).

ate how the potential benefits of the discussed methods transfer
between the two application domains.

4.1. Bandwidth Reduction

Our initial experiment evaluates performance of baseline
MFCC and PLP features and MFCC-20Uni and PLP-20Uni fea-
tures [10] which utilize triangular filter banks uniformly dis-
tributed in linear frequency. The latter two provided a supe-
rior performance on the whisper closed speakers test set in [10].
The word error rate (WER) vs. omitted frequency band curves
in Fig. 5 in [10] suggest a rather ambiguous contribution of the
highest frequency components to the neutral and whisper recog-
nition performance. Based on this observation, we propose two
modifications of the previous features — PLP-20Uni-5800 and
PLP-20Uni-Redist-5800. The first limits the linear filter bank
in PLP-20Uni to the range of 0-5800 Hz and the second redis-
tributes the limited filter bank according to the approach and
WER curves in [10]. As can be seen in Table 2, the benefits
of the features established in [10] do transfer also to the open
speakers task, providing substantial WER reduction on whis-
per — from 38.5 to 30.2 % WER for MFCC and MFCC-20Uni
and 35.4 to 27.6 % WER for PLP and PLP-20Uni. A moder-
ate WER reduction is seen also for neutral speech. Reducing
the filter bank bandwidth to 0-5800 Hz provides further WER
reduction for whisper for both closed and open speakers scenar-
ios while preserving neutral WER nearly intact. Based on these
results, the rest of the experiments utilize PLP-20Uni-5800 fea-
tures, unless stated otherwise.

4.2. VTLN and Shift Frequency Transforms

In our evaluations, transforms are applied during both model
training and decoding. During the model training, when per-
forming the forced alignment to establish train sample a’s, we
apply either Feature Domain alignment, i.e., the transformation
is applied to the incoming samples, or in Model Domain align-
ment, where models transformed with factors are first produced,
and subsequently used to align the training samples. In the test
utterance decoding, the transformations are always applied in

VTLN Shift

Speaker Test Base- Feature  Model Feature  Model
Scenario Set line Domain  Domain Domain Domain

N 4. . . . 4
Closed e 5 3.6 3.2 3.5 3

Wh  14.0 11.4 10.7 12.1 11.5

Ne 5.5 5.0 53 5.6 4.3

Open
Wh 229 27.1 22.1 22.8 22.0

Table 3: Performance of VTLN and Shift compensations. Feature
Domain/Model Domain — alignment during training with frequency-
transformed features or models; speaker-specific frequency transforms
applied both in model training and decoding; WER (%).
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Figure 2: Vowel distributions in F}—F% formant space; neutral, whis-
per, and VTLN-transformed whisper samples from closed speakers sets.

the feature domain. As can be seen in Table 3, both VTLN and
Shift are successful in reducing neutral and whisper WERs on
the closed speakers set. For Model Domain VTLN, the reduc-
tion is 14.0 to 10.7 % WER in whisper and 4.5 to 3.2 % WER
in neutral. In the open speakers scenario, the results are less
promising with VTLN increasing the whisper WER in one case
but mostly preserving or slightly reducing WERs in other cases.
Shift transform is more stable on unseen speakers.

Figure 2 shows the estimated mean vowel locations in
the F1—F> plane for neutral, whisper, and VTLN-transformed
whisper samples. For the plot, phone boundaries were esti-
mated by forced alignment and combined with formant tracks
extracted by Praat. The VTLN-transformed whisper formant
locations were calculated through applying ML VTLN factors
to the original whisper formant frequencies. It can be seen that
due to the fundamental differences between neutral and whisper
speech production, the vowel placement in the formant plane is
quite different and the phones /ek/ and /uh/ are even switching
place. ML VTLN in this case is partially successful in pushing
the whisper formants towards neutral and recovering the order
of /eh/ and /uh/ in the plane, however, the distance from the
neutral samples is still significant.

4.3. Adaptation to Pseudo-Whisper VTS

Past studies on whispered speech recognition mostly utilize
acoustic model adaptation to alleviate the mismatch between
neutral models and whispered speech. For a successful adap-
tation towards the target domain, a sufficient amount of adap-
tation data is required. In this section, we study the effects of
size of the adaptation set on recognition performance for two
setups. Both setups are given access to the identical amounts
of neutral and whispered adaptation samples. In the first setup
denoted MLLR, the samples are used in a Maximum Likelihood

VTS+VTLNpeose  VTS+Shiftpecode

Speaker  Test VTS Feature Feature
Scenario  Set Domain Domain
Ni 44 2.9 32
Closed ¢
Wh 94 8.4 8.7

Table 4: Combination of VTS and freq. transform strategies; closed
speakers set. Decode — freq. transforms applied only in decoding. Fea-
ture Domain — decoding with freq-transformed features; WER (%).
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Figure 3: Performance of VTS with vowel-, consonant-, and vowel-
and consonant-specific transforms applied.

Linear Regression (MLLR) adaptation to transform the neutral
TIMIT models towards VEII channel/acoustics characteristics
and whispered speech.

In the second setup denoted VTS, the whisper samples are
used to train a Gaussian mixture model of whisper ‘W hadapt
GMM’. Subsequently, VTS utilizing the whisper GMM is ap-
plied to the neutral adaptation samples to produce an equal
number of pseudo-whisper samples. The pseudo-whisper sam-
ples are then used to MLLR-adapt the neutral acoustic mod-
els. While both setups have access to the same original adapta-
tion data sets, the VTS configuration can effectively produce as
many pseudo-whisper samples as available in the neutral set. In
real world applications, neutral data are usually easily accessi-
ble to the system while the target domain data may be sparse.

In the first experiment, we compare the efficiency of VTS-
transformed data for model adaptation when using transfor-
mations derived from broad phone classes (vowels and conso-
nants). We compare the cases when only one phone class is
transformed at a time for the pseudo-whisper speech generation
(either vowels or consonants) and the case when both classes
are transformed at the same time using their respective transfor-
mations (denoted Vowels & Consonants). In this experiment,
the VTS setup has access to the complete neutral and whisper
adaptation sets (see Table 1). In Fig. 3, the Baseline bars rep-
resent performance of the unadapted system (see Table 2). It
can be seen that for both closed and open speakers scenarios,
the WERs follow the same trend — the VTS transformation of
vowel sections being most effective, followed by a combined
application of vowel and consonant transforms, and the trans-
formation of only consonants being least successful. For a ref-

Whisper-Adapted vs. Pseudo-W hisper Adapted System
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Figure 4: Comparison of model adaptation on whisper and on VTS-
generated pseudo-whisper samples; closed speakers set.
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Figure 5: Comparison of model adaptation on whisper and on VTS-
generated pseudo-whisper samples; open speakers set.

erence, we present results of the same experiment also for the
MEFCC front-end on the closed speakers set to show the trend is
similar to PLP-20Uni-5800.

In the second experiment, we compare performance of the
MLLR and VTS setups in dependency on the size of the avail-
able whisper adaptation data (the complete neutral adaptation
set is available in all cases). Figures 4 and 5 compare per-
formance on closed and open speakers sets for both neutral
and whisper data. Intuitively, the performance is identical for
MLLR and VTS for the empty whisper adaptation set. In all
other conditions, the VTS system displays a superior perfor-
mance. It is noted that the smallest non-empty whisper adap-
tation set considered contains only 15 utterances, which means
that in the closed speakers scenario only a portion of the speak-
ers is actually represented in the set. When increasing whis-
per adaptation set size, MLLR slowly approaches VTS. Some-
what surprisingly, the performance on the neutral test set is only
slightly deteriorated for the whisper-adapted MLLR system and
even slightly improved for the VTS system.

4.4. Combination of VTS and Frequency Transforms

Finally, we evaluate the joint benefits of the frequency
transforms and the proposed VTS pseudo-whisper generation
method for whisper model adaptation. The results for closed
speakers scenario are shown in Table 4. The column ‘VTS’
represents performance of the VTS system without frequency
transforms. It can be seen that the combination of VTS and
VTLN or Shift (this time applied only in the decoding stage)
is quite beneficial, providing further substantial WER reduction
for neutral and whisper speech recognition. Due to the time
constraints, only one setup was evaluated for the open speak-
ers scenario — VTS combined with the Shift transform reduced
the WER of the original VTS system from 18.5 to 17.5 % for
whisper and from 4.9 to 4.5 % for neutral speech samples.

5. Conclusions

This study has analyzed the efficiency of frequency-based spec-
tral transformations VTLN and Shift for whisper speech recog-
nition and proposed a novel approach to pseudo-whisper gen-
eration for acoustic model adaptation, requiring only a small
amount of whisper samples. It was found that both the spec-
tral transformations and the VTS approach can considerably
improve recognition performance and also perform well when
combined together. In particular, the VTS approach has shown
great performance benefits for cases when only small amount
of whisper samples are available.
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