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Abstract
Performance of current speech recognition systems is 
significantly deteriorated when exposed to strongly noisy 
environment. It can be attributed to background noise and 
Lombard effect (LE). Attempts for LE-robust systems often 
display a tradeoff between LE-specific improvements and the 
portability to neutral speech. Therefore, towards LE-robust 
recognition, it seems effective to use a set of conditions-
dedicated subsystems driven by a condition classifier, rather 
than attempting for one universal recognizer.

Presented paper focuses on a design of a two-stage 
recognition system (TSR) comprising talking style classifier 
(neutral/LE) followed by two style-dedicated recognizers 
differing in input features. First, the binary neutral/LE 
classifier is built, with a particular interest in developing 
suitable features for the classification. Second, performance 
of common speech features (MFCC, PLP), LE-robust features 
(Expolog) and newly proposed features is compared in 
neutral/LE digit recognition tasks. In addition, robustness to 
the changes of average speech pitch and various noise 
backgrounds is evaluated. Third, the TSR is built, employing 
two recognizers, each using style-specific features. 
Comparison of the proposed system with either neutral-
specific or LE-specific recognizer on a joint neutral/LE 
speech shows an improvement 6.5 4.2 % WER on neutral 
and 48.1 28.4 % WER on LE Czech utterances. 

Index Terms: Lombard effect, talking style classification, 
robust features, speech recognition 

1. Introduction
Lombard effect refers to changes in speech production 
introduced by speaker in an effort to maintain intelligible 
communication [1, 2]. Number of works has studied impact of 
noise on speech production. Some analyzed acoustic-phonetic 
variations in few discrete levels of noise background [1, 2, 4, 
9, 10], others searched for a continuous dependency on the 
noise level [11, 12]. Significant differences in distributions of 
vocal intensity, fundamental frequency, glottal pulse shape 
and spectral tilt, locations and bandwidths of first formants, 
and other parameters were reported between LE and neutral 
speech [1], substantially impairing accuracy of recognizers 
employing neutral speech models, e.g. [1–5]. Efforts to 
improve the performance under LE include design of robust 
features [3, 4], equalization methods [5] and style-dependent 
training of acoustic models [1]. Condition-dependent training 
or design of robust features often results in a decrease of 
performance when the conditions change [1, 4]. This suggests 
addressing each of the conditions by a separate dedicated 
subsystem and implementing a switching mechanism – a 
condition classifier. Similar idea was proposed successfully in 
[6], where automatic neural network (ANN) talking style 

classifier was used to weight outputs of a codebook of style-
dependent HMM recognizers. In [7], style classification and 
speech recognition were performed simultaneously by an N-
channel HMM. To each speaking style one HMM dimension 
was allocated. The approach allowed for style classification 
on the HMM-state level. 

In this paper, a two-stage approach is proposed, using 
style classifier + independent neutral/LE recognizers. In the 
first stage, the utterances are classified on the speaking style 
and in the second stage they are passed to the corresponding 
dedicated recognizer. 

The paper is organized as follows. First, a set of selected 
features is tested on discriminability in the neutral/LE 
classification. Several possible setups are compared, the best 
of which yields the final classification feature vector (CFV). 
Subsequently, the CFV is used for training ANN and GMM 
based classifiers. Second, common speech features (MFCC, 
PLP), special LE-robust features (Expolog [3]) and newly 
proposed front-end modifications are tested in the neutral/LE 
digit recognition task, sharing a common back-end 
architecture. Robustness to changes of average utterance pitch 
and to emulated noisy backgrounds at various SNRs is 
compared. Finally, the TSR is designed, employing the style 
classifier and two recognizers, each using the best performing 
features found. All the presented experiments were carried 
out on the CLSD’05 database [8]. The database comprises 
recordings of Czech neutral speech and Lombard speech 
uttered in the simulated noisy conditions. In the latter case, a 
car noise of 95 dB SPL was presented to speakers by closed 
headphones, yielding high SNR of the recorded speech. 

2. Classifying neutral/LE speech 
Based on previous studies, only the features providing 
significant style discriminability on the phoneme/gender-
independent level were selected for the neutral/LE 
classification: vocal intensity, spectral slope of the voiced 
speech segments and mean and standard deviation of the 
fundamental frequency. Several frequency bands for spectral 
slope extraction are considered as well as linear and semitone 
fundamental frequency representations. Variants with 
superior discriminability are included in the CFV to train 
ANN and GMM classifiers. Analyses of feature distributions 
and training of classifiers were carried out on the development
set comprising digits and phonetically rich sentences uttered 
by 8 female and 7 male speakers. Open test set comprised 
digits and sentences uttered by 4 male and 4 female speakers 
(disjunct from the development ones). 

2.1. Features for neutral/LE classification 
Voice intensity, spectral slope and fundamental frequency 
(F0) are extracted and averaged within the utterance, i.e. each 
utterance is parameterized by one mean feature vector. For 
the F0  feature, also its standard deviation is included in CFV. 
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Subsequently, distributions of individual features from CFV 
were obtained by plotting all samples of the particular feature 
found in development data, separately for neutral and LE 
speech. Neutral/LE discriminability of that feature was then 
rated based on overlaps of its normalized distributions for 
neutral and LE speech. 

Vocal intensity – since the level of the background noise 
was almost constant during the CLSD’05 recording, voice 
intensity changes are displayed directly in the changes of 
SNR. Normalized distributions of neutral and LE utterance 
SNRs are shown in Fig. 1. ‘Dev’ denotes development set, N 
neutral data, M male and F female utterances. 

Spectral slope – a regression line was fit to the amplitude 
spectra (initially 0–4k Hz) of the voiced segments to 
determine the slope, following [10]. In the preliminary study, 
spectral slopes were analyzed in digit utterances separately 
for 5 Czech vowels /a/, /e/, /i/, /o/, /u/. Vowel boundaries 
were determined by means of forced alignment. The mean 
slopes were observed to differ across vowels, genders and 
talking styles. Male slopes were in general steeper both on the 
phoneme and talking style level. In both genders and all 
vowels, the slopes were steeper for neutral speech, confirming 
observations in previous works. Female vowel slopes are 
shown in Tab. 1. ‘#N, #LE’ denotes number of neutral and LE 
phoneme realizations, respectively. 

Table 1. Mean spectral slopes in female digit vowels. 

Subsequently, impact of frequency band-limiting on spectral 
slope discriminability was evaluated, both gender dependent 
and independent – see Tab. 2. Results are based on all voiced 
segments in digits and sentences. 60 Hz high-pass was used to 
suppress F0 sub-harmonics. Range 1k–5k Hz covers formants 
F2–F4. Spectral slopes extracted from this band overlap 
completely and do not discriminate.  

To exploit the 'discriminative' part of the spectrum, bands 
were further limited to 0–1k Hz and 60–1k Hz, providing the 
lowest overlap. Distributions of the slopes obtained from 
60–1k Hz band are shown in Fig. 2. 

Fundamental frequency – distributions of F0 and F0 standard 
deviation are shown in Fig. 3. 

2.2. ANN and GMM classifiers 
ANN classifier – a fully-connected three-layer MLP 

(Multi-Layer Perceptron) [13] was trained to estimate 
posterior probabilities of two complementary classes 
(neutral/LE speech). The MLP topology was N x 3000 x 2 
neurons (input x hidden x output) with sigmoid nonlinearity 
in the hidden layer and softmax nonlinearity in the output 
layer. N was set to 1 in the initial single-feature and 4 in the 
CFV experiment. The MLP was trained against hard targets 
(the required outputs were either 0 or 1). Since there were 
2472 training examples and about 20k trainable parameters, 
the risk of over-fitting was reduced by using 90% of the data 
for MLP training and 10% for cross-validation (CV). The 
final weights were chosen from the epoch achieving maximal 
accuracy on the CV data. Typically, two iterations were 
needed. MLP size and learning rate were optimized on the 
CV data. 

GMM classifier – comprises two four-dimensional 
Gaussian mixture models (GMMs) for neutral and LE speech. 
Both GMMs employ one mixture per dimension, i.e. each 

Band (Hz) 
Set

0–8k 60–8k 60–5k 1k–5k 0–1k 60–1k 
M 26.0 28.1 29.5 100.0 27.8 28.0 
F 26.2 29.0 16.8 100.0 25.8 22.2 

M+F 28.1 30.5 29.5 100.0 27.5 26.0 

Females 
Set

Neutral LE 

Vowel # N Slope
(dB/oct) (dB/oct) # LE Slope

(dB/oct) (dB/oct)

/a/ 454 -6.8 1.1 350 -3.2 1.8 
/e/ 1064 -5.6 1.1 840 -3.1 1.4 
/i/ 509 -5.0 1.2 405 -2.5 1.8 
/o/ 120 -8.0 0.9 90 -4.5 1.6 
/u/ 102 -6.1 0.8 53 -3.9 1.6 

Figure 3: Normalized distributions of F0 and F0 standard 
deviation; overlaps 27.2 and 32.2 %.

Figure 1: Normalized distributions of SNR, overlap 10.4 %. 

Table 2. Efficiency of various bands for spectral slope based 
classification – distributions overlap (%). 
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Figure 2: Normalized distributions of spectral slopes extracted 
from band 60–1kHz; overlap 26.0 %.
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parameter in the CFV is modeled by a single Gaussian. F0
distributions in Fig. 2 suggest using more Gaussians, however 
no improvement in classification accuracy was observed 
when splitting each mixture into two. Full covariance matrix 
is used to capture inter-feature variability.   

First, the discriminability of individual features from CFV 
was evaluated by ANN. A set of ANNs was trained on M+F 
digits and sentences using separate features from CFV. 
Transfer functions between the input feature value and output 
posterior probability for neutral – Pr(N) or LE – Pr(LE) 
classes were evaluated, see Fig. 1, 2.  Of some features, two 
variants were compared: spectral slope was extracted either 
from 0–8k Hz or from 60–1k Hz; F0 and F0 were considered 
either on linear scale (Hz) or on log scale (%), see Tab. 3. 
Confirming observations in Sec. 2.1, SL60-1kHz provides lower 
utterance classification error rate (UER) compared to SL0-8kHz.
Linear versions of F0 outperform log ones, presumably 
because log scale compresses the variations.  

Table 3. Efficiency of single feature trained ANN classifier, UER (%). 
SL – spectral slope. Train set – 2202, CV set – 270 utterances. 

Based on this knowledge, for the final CFV were chosen 
these features: SNRdB, SL60-1kHz, F0Hz and F0Hz. Performance 
of ANN and GMM classifiers on the closed and open set is 
shown in Tab. 4. UER scores are accompanied with 95% 
confidence interval. ANN classifier outperformed GMM in 
the open test. It can be attributed to the different nature of 
classifiers. While GMMs build the models in terms of  
maximum likelihood, ANNs are trained  discriminatively. 
Note that the training set comprised similar number of 
samples from both neutral and LE classes. 

Table 4. CFV-based classification; closed/open test, (M+F). 

3. Features for speech recognition 
MFCC and PLP features, LE-robust Expolog features [3] and 
recently proposed features 20Bands-LPC, RFCC-LPC – 
derived from PLP, and RFCC-DCT – derived from MFCC by 
modifying filter banks, were compared using  HMM-based 
recognizer. 20Bands-LPC replaces filter bank in PLP by 20 
rectangular filters spread over 0–4k Hz, without overlap. 
RFCC-DCT and RFCC-LPC replace the filter bank in MFCC 
and PLP, respectively, by the ‘repartitioned filter bank’ 
obtained in a data-driven design, see [4, 5] for details. 
Interestingly, in previous ASR experiments [5], all the above 
mentioned features outperformed MFCC and PLP in clean 
(high SNR) LE conditions. This paper extends the study by 
modified MFCC-LPC and PLP-DCT features (altered cepstral 
extraction) and by Big1-LPC features (derived from 20Bands-
LPC by merging first three bands together). Big1-LPC aims 
to address the observations that suppressing lower frequency 
components (up to around 600 Hz) improved LE, while 
deteriorated neutral speech recognition performance. Merging 
the first three bands into one reduces the impact of that region 

on features, while still preserving some information relevant 
for the neutral speech processing. As significantly higher 
corruption of recognition performance by LE was observed 
on female than male speech, the newly proposed features in  
[4] focused exclusively on females. Hence, for consistency, 
the following experiments were carried out only on female 
utterances. The HMMs were trained on 37 Czech SPEECON 
[14] female office sessions (37 speakers, approximately 10 
hours of signal). The recordings were down-sampled from 16 
kHz to 8 kHz and filtered by the telephone filter G.712. Digits 
from four neutral and LE CLSD'05 female sessions formed 
the open test set used for evaluation. Performance of the 
considered features is shown in Fig. 4.

Best results were reached by PLP-DCT and PLP (2.5 %, 2.9 
% WER) on neutral speech and by RFCC-LPC on LE speech 
(23.0 % WER). Subsequently, feature robustness was tested 
under various levels of added noises from Aurora [15] and 
Car2E [16] (-5 25 dB with 5 dB step; infinity dB). Note that 
the same noises from Car2E were employed, which were used 
while recording the CLSD database. Moreover, efficiency of 
full-wave rectified spectral subtraction using Burg’s cepstral 
VAD, as implemented in CTUCopy open source tool [18], 
was tested, see Tab. 5. ‘NSeff’ denotes a noise level till which 
the noise subtraction improved the recognition performance 
of the best features. Two best performing features are listed 
for each condition.

Table 5. Features performing best on neutral and LE noisy speech. 

Subsequently, the dependency of selected features' 
performance on utterance’s average F0 was evaluated.
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Figure 4: Comparing recognition features – baseline test.

Figure 5: WER(Fc) dependency. BL – baseline WER on the 
whole merged neutral + LE set.
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Set SNRdB SL0-8kHz SL60-1kHz F0Hz  F0Hz F0%  F0%

Train 10.9 24.0 19.3 23.8 25.8 25.5 36.3 

CV 12.2 20.4 18.2 18.5 25.6 24.8 31.1 

ANN GMM 
Set

Train CV Open Train Open 
# Utter 2202 270 1371 2472 1371 

UER (%) 
9.9 

8.7-11.1 
5.6 

2.8-8.3 
1.6 

0.9-2.3 
6.6 

5.6-7.6 
2.5 

1.7-3.3 
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The neutral and LE digits were merged, yielding a set of 
utterances with F0 in range approx. 100–500 Hz. Utterances 
with F0 falling within a sliding window of the bandwidth 100 
Hz were assigned to the test set Fc (Fc – central frequency of 
the window). The window was shifted by 5 Hz starting from 
Fc = 150 Hz. At each step, a recognition was performed to 
sample WER(Fc) dependency. As shown in Fig. 5., for Fc
starting at 250 Hz (F0 200–300 Hz) RFCC-LPC outperforms 
the other features, which is consistent with its superior 
robustness to LE observed in Fig. 4, as LE is displayed in the 
increase of F0.

4. Two-stage recognition 
PLP and RFCC-LPC features were employed in the neutral 
and LE dedicated recognizers respectively. PLP represents 
‘common’ features for neutral speech, RFCC-LPC was 
chosen for its superior properties on female LE speech (see 
Fig. 4). TSR systems comprising ANN and GMM classifiers 
followed by dedicated recognizers (of the same architecture 
as in Sec. 3) were implemented and tested in the open female 
digits task. Also performance of standalone dedicated 
recognizers when recognizing both neutral and LE set was 
evaluated. As shown in Tab. 6., both ANN and GMM TSRs 
yielded performances of the ‘optimal’ features on both neutral 
and LE set, providing and improvement 6.5 4.2 % WER on 
neutral and 48.1 28.4 % WER on LE compared to the 
isolated recognizers exposed to the adverse style. 

Table 6. Performance of TSR vs. dedicated recognizers. 

5. Conclusions
Efficiency of selected features for neutral/LE classification 
was evaluated on the CLSD’05 database. Discriminative 
properties of spectral slope extracted from various frequency 
bands were studied, finding the band 60–1k Hz superior to 
others. It was found that linear (Hz) F0 representation 
provides better discrimination as compared to log (semitones) 
one. ANN and GMM gender independent neutral/LE 
classifiers were trained on the classification feature vector 
formed by SNRdB, SL60-1kHz, F0Hz and F0Hz. ANN displayed 
superior performance on the open task. 

Common, special and newly proposed features for speech 
recognition were compared in neutral/LE digits tasks and 
tested on robustness to various noises and changes in 
fundamental frequency of speech. On neutral speech, both 
features employing DCT or LPC cepstral coefficients were 
efficient, depending on the type of noise. RFCC-LPC features 
displayed the best performance on LE female set in all 
conditions. This confirms the observation that LPC based 
cepstral coefficients better model Lombard speech spectra 
even if noise is present [17]. Finally, a two-stage recognition 
system employing style classifier + neutral (PLP)/LE (RFCC-
LPC) recognizers was designed and tested, yielding and 

improvement 6.5 4.2 % WER on neutral and 48.1 28.4 % 
WER on LE when compared to the isolated recognizers 
exposed to the opposite style than for which they were 
designed.
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Set Real neutral Real LE 
# Female digits 1439 1837 

PLP
4.3 

3.3-5.4 
48.1 

45.8-50.4 

RFCC-LPC
6.5 

5.2-7.7 
28.3 

26.2-30.4 

ANN Tandem 
4.2 

3.2-5.3 
28.4 

26.4-30.5 

WER 
(%)

GMM Tandem 
4.4 

3.3-5.4 
28.4 

26.4-30.5 
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