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The variability in speech production brought on by physical stress causes significant re-

duction in speech system performance for speech and speaker recognition. This thesis

focuses on analysis of speech under physical task stress. An analysis of fundamental fre-

quency, fundamental frequency variance, utterance duration, and the percent of frames

voiced in an utterance is performed. F-ratio analyses of the spectrum and cepstrum pro-

vide motivation for further research effort. Finally, the aim of the main research effort is to

establish which phone classes are the most affected by physical task stress. A new analy-

sis method is proposed which involves interpreting the results of an classification system

that is based on Mel-Frequency Cepstral Coefficients using Gaussian Mixture Models. It

is shown that nasals and laterals are most affected by physical task stress. These results

will find application in speech recognition research and provide new insight in the study

of physical task stress speech.

vi



TABLE OF CONTENTS

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

CHAPTER 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

CHAPTER 2 Research in Speech Styles . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.1 Speech styles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Past work on speech variation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Past work on physical task stress . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4 Work on physical task stress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

CHAPTER 3 Corpus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2 Heart rate analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

CHAPTER 4 Parameter Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.1 Per-speaker parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.2 F-ratio analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

CHAPTER 5 Phone Class Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.2 Alternative experiment designs . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.3 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.4 Discussion on method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.5 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

CHAPTER 6 Perceptual Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
6.1 Listener test procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
6.2 Listener test results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
6.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

CHAPTER 7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
7.1 Results summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
7.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

APPENDIX A Derivation of the KL divergence for two Laplacian PDFs . . . . . . . 44
A.1 Derivation of main result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
A.2 Supporting results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

vii



Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

Vita

viii



LIST OF TABLES

3.1 Aspects of the subset of UT-Scope used in this thesis. . . . . . . . . . . . . . . 16

4.1 Summary table of parameter analysis results . . . . . . . . . . . . . . . . . . . 20

5.1 Accuracy for each of the 42 per-speaker classification systems. Each system
was trained with all corpus data except that of the indicated speaker, then
tested with the data for the indicated speaker. . . . . . . . . . . . . . . . . . . 30

5.2 Aspects of the classification system used in this thesis. . . . . . . . . . . . . . 33
5.3 Results of statistical tests to determine whether frame scores within each

phone class for each speaker are Laplacian distributed at the 99% confidence
level. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

6.1 Results of listener tests and statistical comparisons. X indicates statistical
significance. W.R.T. means with respect to. . . . . . . . . . . . . . . . . . . . . 40

ix



LIST OF FIGURES

3.1 Recording setup for the physical task stress segment of the UT-Scope corpus. 15
3.2 Average heart rate through time for the neutral and physical task stress

recordings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.1 F-Ratio showing dependence of each frequency bin on physical task stress . . 21
4.2 F-Ratio showing dependence of each cepstral bin on physical task stress . . . 22

5.1 Process of computing the frame scores for one speaker (256 mixture GMMs,
15-dim MFCCs, with 15-dim delta and double-delta coefficients, C0 included). 26

5.2 Process of computing the classification strength of neutral high vowels. . . . 27
5.3 A relationship between exertion level and performance for some speakers

may be observed from this scatter plot. . . . . . . . . . . . . . . . . . . . . . . 31
5.4 Speaker fmb1 physical stress fricative frame scores, with estimated Lapla-

cian distribution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.5 Overall results of the phone class classification power comparison. . . . . . . 38

x



CHAPTER 1

INTRODUCTION

Analysis of speech under physical task stress can result in new understanding of the

way that variation affects speech systems. This thesis carries out an analysis of speech

under physical task stress and discusses what may be concluded about the behavior of

the speech production system and how that affects the design of speech systems. The

study of speech variability in general is important for the long-term success of speech

systems, as they are deployed in increasingly varying environments (Hansen and Wom-

ack, 1996). The focus of this thesis is short-term intra-speaker variability; i.e. the variation

inherent in one speaker’s speech in the context of one utterance or one or more conversa-

tions. Long-term variation includes variation due to aging, or the naturally slow changes

in a speaker’s accent or dialect, while short-term variation results from changes in emo-

tion, stress, or environmental factors (Benzeghiba et al., 2007). This thesis focuses on the

short-term variations in speech production that result from physical task stress, with the

intent to uncover insights that may be applicable to the design of speech systems, in-

cluding speaker identification and verification systems and automatic speech recognition

systems, that are robust to such speech production variations.

This thesis contributes a new analysis method, based on the examination of the output

of an automatic classification system, to be applied to understanding speech variation. In

this thesis traditional analysis methods as well as the new analysis method are applied

to physical task stress in an effort to understand the nature of the speech signal variation

and speech production variation that occurs as a result of physical task stress on the part

of the speaker. The Center for Robust Speech Systems (CRSS) at the University of Texas

at Dallas is the only lab actively looking at speech under physical stress at the time of

this writing, though research on speech under physical task stress has been published in

1
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the past by researchers at the University of South Dakota. Prior work on speech under

physical task stress has not offered theories, methods, experimental results, or definitions

of the problems and main ideas directly concerning speech under physical task stress

and the design of related systems. This thesis therefore takes a broad view at research in

various other styles of speech and discusses what kinds of methods and ideas might be

applied to speech under physical task stress, and to contribute relevant theory, method

and experimental results.

In the remainder of this thesis is first discussed past work on other types of speech vari-

ation in Chapter 2. In Chapter 3 is discussed the speech corpus used for experiments in

this thesis. In Chapter 4, data analysis experiments are performed, their results discussed,

and then a motivation is presented for the work in Chapter 5. Chapter 5 presents an ex-

periment involving analysis of scores from a stress classification system that is designed

to determine which phone classes are most affected by physical task stress. A formal lis-

tener test is presented in Chapter 6. Finally, Chapter 7 discusses conclusions that may be

made based on the results presented in this thesis, and future research work that may be

performed to extend the knowledge presented.



CHAPTER 2

RESEARCH IN SPEECH STYLES

The purpose of this chapter is to synthesize related background research into a basis

for and justification for the work that will be performed later in this thesis. Physical task

stress has not been the focus of extensive research in the past; this chapter therefore draws

from a wider array of research than that specifically considering speech under physical

task stress. This chapter begins by introducing the concept of speech styles, which will

be used as an organizing principle around which research areas similar to speech under

physical task stress may be identified. Despite the fact that various types of speech varia-

tion are researched in relative isolation by a variety of groups with different motivations,

a main goal of this chapter is to present a comprehensive view of the variety of research

that has taken place on various speech styles, in the hopes that from a comprehensive

view will emerge guidance for research on speech under physical task stress.

Specifically, the following are questions pertinent to a research endeavor in speech

under physical task stress that may be answered by a careful review of work on related

types of speech:

• What is the best method to collect appropriate speech data?

• How are various types of speech variation defined and distinguished from one an-

other?

• What are the important opening questions for research into a new type of speech

variation?

3
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2.1 Speech styles

This section introduces the idea of speech styles as a device with which research into vari-

ous types of speech variation may be compared and contrasted with research on physical

task stress speech. The purpose of this section is not to fully develop the concept of speech

styles as a model of speech production or perception. Rather, the purpose of this section

is to discuss the concept of speech styles in enough depth that it is reasonable to apply it

as a guide in understanding how various research is related. For example, it is clear that

speech under physical task stress corresponds with an intuitive notion of a type of speech.

But what are speech types? How are types of speech different from each other? It is thus

proposed to define a speech style as “a consistent method of producing speech adopted

by a speaker for a limited duration that affects the phonetic content of the language”. Be-

cause they affect the phonetic content of the language, speech styles may thus affect the

meaning of the speech produced, and might convey some extra-linguistic information to

the listener. Any short term variation in speech may constitute a speech style.

It is important to note that speech styles are an articulatory-phonetic phenomenon, a

phenomenon that results in changes to the acoustic-phonetics of the language and may

result in auditory-phonetic changes, and may or may not be perceived. This definition

of speech styles makes explicit the previously implicit notion that there are distinct ways

of speaking that speakers shift into when they change state, and separates the notions

of speaker state and the resulting articulatory phenomena. Speech styles are not a phe-

nomenon of the organization of sound units (phonology), or the syntax or morphology of

the language. They are also not directly dependent on a speaker’s state, including emo-

tions. Rather, various speech styles might result from a single speaker state. Whisper, for

example, is an example of a speech style. Whisper is highly definable in terms of proper-

ties of the speech production system - it lacks a fundamental frequency. Similarly, other

voicing registers, or hoarseness or pressed voicing, would be considered speech styles

under this definition. Speech styles are thus collections of properties of the articulatory
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system and not necessarily related to speaker intent.

Perhaps, therefore, some distinction should be made between speech styles (such as

whisper) and motivations to change speech style (such as emotions). Angry is not a style

of speech, under this definition. Emotions are instead a form of speaker state. Rather, one

or more speech styles may result from anger. The particular speech style that may result

will depend on the speaker’s habits, mood, situation, and other factors. Whisper, as a

speech style, could result from a wide range of situations and decisions on the part of the

speaker. The purpose of the definition of speech styles is to move the center of focus in

understanding research in speech variation away from motivation or context surrounding

a speaker, and towards a particular speech production process.

The primary motivation of the speech styles concept is to assist the speech researcher

determining more specific definitions of what constitutes the speech under considera-

tion. Classic papers considering speech under stress or emotion assume that a particular

type of constant speech production process is associated with, for example, anger, or at

least a certain subtype of anger. But what constitutes hot anger? Is acted speech similar

enough to base conclusions on? The speech styles model attempts to resolve such am-

biguity by shifting the problem of definition to one that may offer more possibilities for

objective measurement than is possible with speaker state. The speech styles concept de-

fines as styles of speech a consistent set of articulatory properties. For example, one style

of speech that might result from anger on the part of the speaker might involve increased

pitch, a certain hoarseness, and faster speaking rates. Another style of anger might have

more in common with loud speech, involving formant variations due to a more open

vocal tract, pitch, and intensity changes.

The speech styles concept represents a departure from the past model for short-term

speech variation, the ordered-stressors model presented in Murray et al. (1996). The or-

dered stressors model focuses on the sources of speech variation, termed stressors, rather

than on their results, and presents a way to taxonomize the sources of speech variation.

It too has not seen application in the literature on short-term speech variation. The or-
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dered stressors model is discussed further in Section 2.2.1. Whether or not research into

speech variation and how it affects speech systems has explicitly employed the ordered

stressors model, it has in the past employed the perspective of the source of the speech

variations (such as anger) and examined the speech that results. Some recent research has

begun to consider a perspective more related to that of the speech styles concept. Hansen

and Varadarajan (2009), for example, considered whether there may be different types of

Lombard speech, which might result from different types of noise the speaker may be

exposed to.

However, despite the fact that it is at odds with the way research has been conducted

in this area in the past, the concept of speech styles is useful as a way view research

into various sources of speech variation because it turns the focus of the research away

from the source of variation, which is quite different from physical task stress, towards

the variation that results from that source, which may or may not be in common with

the speech that results from physical task stress and may thus provide some insight into

research in speech under physical task stress.

2.2 Past work on speech variation

Past work on various types of short-term speech variation has generally focused on pa-

rameter analysis, the design of detection systems, and the design of improvements to

achieve robustness of speech and speaker recognition systems. Early papers (Williams

and Stevens, 1972) often emphasized visual observation of spectrograms and qualitative

reasoning. More recent papers emphasize automatic measurements and employ statisti-

cal tests to draw conclusions, such as Maniwa et al. (2009). However, the measurement

focus has not changed significantly. Parameters including fundamental frequency, for-

mant locations, and phone durations are generally the focus of study. There has been

some discussion in the literature seeking to consider other aspects of the speech signal,

in an effort to gain deeper insight into the nature of speech variation and its relationship

to speech system performance (see e.g. Cheang and Pell (2008)), but these parameters
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remain the primary objects of study in the context of speech systems. Perhaps the reason

is that few other parameters form such direct and fundamental connections between the

acoustic speech signal and the behavior of the speech production and perception systems.

The term “speech under stress” has been found in the literature of speech systems for

more than two decades. The term is difficult to define, and working definitions have

evolved over time. As speech systems reached an initial level of success, research en-

gineers began branching out in the mid-1980’s into studying other types of speech than

the laboratory, low-noise, non-emotional speech that had been the focus of system de-

velopment up until that time. Any type of speech that deviated in its speech production

from this norm was referred to as “speech under stress” by researchers at that time (see

Chen (1988) and Hansen (1988) for examples of this usage). Speech referred to as “speech

under stress” included speech differing in rate (fast, slow) and effort (loud, soft), differ-

ing due to task demands (cognitive demands, physical stress, fatigue, and others), and

differing due to chemical inducement. Later, efforts were made to more formally define

speech under stress and to create theoretical models of stress types for use in research

(Murray et al., 1996). As the area diversified to include more stress types, researchers

began focusing their work on a single type of speech variability or small set of types,

rather than broadly considering speech variation. Work has been published recently on

Lombard effect (Boril and Hansen (2009), Lu and Cooke (2009)), emotion (Burkhardt et al.

(2009), Ijima et al. (2009)), cognitive load (Lindstrom et al. (2008)), and fatigue (Greeley

et al., 2006), among other areas. Especially in research on emotional speech, we find that

researchers from several domains, such as psychology, engineering, and phonetics now

collaborate on new results. Work also continues intermittently on refining definitions of

speech under stress and emotion (e.g. Scherer (2003) and Godin (2009)). As the term

“speech under stress” has evolved, it has become more specific; now speech production

variation due to emotion, rate or style changes, and Lombard effect are rarely referred to

as speech under stress, the term being reserved for speech under cognitive task stress and

physical task stress.
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The remainder of this section discusses specific insights from past work on short-term

speech variation that are relevant to the study of speech under physical task stress. Past

work has discussed theoretical models that frame research and experimental design, a

large body of past work has been published on the parameter analysis of various types of

short-term speech variation, and past work has discussed several automatic classification

methods and their applications.

2.2.1 Theoretical models: taxonomies of variation

There has been research into a few theoretical models that may be applied to research in

short-term speech variation. Models are important because they assist in answering the

fundamental questions of organization. They explain, for example, why one should col-

lect data in a certain way, what kinds of research questions one might ask. Models drive

the fundamental breakthroughs, because they form the underpinnings of experimental

design. Descriptions of two models applied to the study of speech variation follow. One

is the Brunswickian lens model, developed by psychologists for the study of perception,

and applied to the study of emotions in speech by Scherer (Scherer, 2003). Another model

is an ordered-stressor model proposed in (Murray et al., 1996), in which the speaker is

modeled as having four levels at which stressors can affect his/her speech.

Emotions in speech are a well studied source of speech styles. Intuitively we know

that when people are angry, or sad, or currently experiencing a wide variety of other

emotions, their speech is affected. One model that has been applied to the study of emo-

tions in speech is the Brunswickian lens model, as applied by Scherer (Scherer, 2003).

The lens model as applied by Scherer is designed to study the vocal communication of

emotion. It breaks the vocal communication of emotion into several steps: speakers have

an emotional state, that state has effects on the speech production system, the produced

speech may change due to transmission and the hearing process, and finally the listener

attributes the sounds they hear to emotions in the speaker. The utility in the Brunswick-

ian lens model is that it provides for the systematic study of the various stages of vocal
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emotion communication. The lens model is not focused on the determination of the types

of variation but on the study of the results of vocal emotion.

Another important model of the speech types considered in this chapter was first de-

scribed in detail in (Murray et al., 1996) and was left unnamed by its original authors. It

is referred to in this thesis as the ordered-stressors model.

Neither the Brunswickian lens model nor the ordered-stressors model have been ex-

tensively applied to research in their respective domains. Most publications in the area of

speech variation assume an intuitive definition of the speech variation to be studied. This

can lead to problems where research results from different studies are not comparable

because in practice they assume fundamentally different definitions of a particular type

of speech variation, while on the surface they may assume what appear to be equivalent

intuitive definitions. An important conclusion to be drawn that is relevant to physical

task stress speech research is that research should be guided by theoretical models that

are continually refined as new results are achieved.

2.2.2 Data collection

Data collection is an important problem in the study of speech variation, because it di-

rectly affects the validity of the results of any experiments. Fortunately, data collection

for physical stress avoids much of the ambiguity associated with the collection of, say,

emotion data, where researchers disagree on whether acted speech is ecologically valid,

and whether it is possible to design experiments to elicit real emotions in a laboratory set-

ting. The collection of physical task stress data does encounter some specific questions.

How should the level of physical task stress be defined? Should it be an absolute heart

rate? Should it be a measure of heart rate as a percentage greater than resting heart rate?

Or should it be a specific exertion level? Or calibrated to body weight, or to Body Mass

Index (BMI)? The most relevant conclusion from past research on short-term speech vari-

ation is that it is important to clearly define what is the ground-truth of what constitutes

the source of the speech variation to be studied. However, while it is important to de-
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fine and fix the definition of ground-truth within the context of one study, it is important

to examine, in other studies and throughout the course of research, what results from

other definitions of ground-truth. In this thesis, the available corpus has taken the level

of physical task stress to be the based on how quickly the experimental subject operates

an exercise machine, irrespective of the fitness level of the subject. It should thus be noted

that the results from this studies are based in this particular context. Future studies on

the nature of physical task stress speech can and should also consider the physical task

stress speech that results from other definitions of the level of physical task stress, making

explicit the definitions used, and comparing the results to those of this study.

2.2.3 Acoustic data analysis

Many past works have investigated various sources of speech styles. A complete litera-

ture review may be found in Benzeghiba et al. (2007). The following is a list of represen-

tative examples:

• Angry (Hansen, 1988), (Scherer, 2000), (Cummings and Clements, 1995), (Williams

and Stevens, 1972)

• Apache helicopter

• Clear speech (Hansen, 1988), (Cummings and Clements, 1995), (Maniwa et al., 2009)

• Cockpit conditions

• Fast (Hansen, 1988), (Cummings and Clements, 1995)

• Fatigue (Whitmore and Fisher, 1996)

• Fear (Williams and Stevens, 1972)

• Lombard (Hansen, 1988), (Bond et al., 1989), (Cummings and Clements, 1995), (Hansen

and Varadarajan, 2009)

• Loud (Hansen, 1988), (Holmberg et al., 1988), (Cummings and Clements, 1995)
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• Physical task stress (Godin and Hansen, 2008), (Patil and Hansen, 2008)

• Question (Hansen, 1988), (Cummings and Clements, 1995)

• Rollercoaster

• Sarcasm (Cheang and Pell, 2008)

• Slow (Hansen, 1988), (Cummings and Clements, 1995)

• Soft (Hansen, 1988), (Holmberg et al., 1988), (Cummings and Clements, 1995)

• Sorrow (Williams and Stevens, 1972)

• Whisper (Fan and Hansen, 2009)

• Workload task stress (Hecker et al., 1968), (Hansen, 1988), (Cummings and Clements,

1995), (Lindstrom et al., 2008)

It is clear from this list the variety of short-term speech variability that has been studied

in the past. However, in most studies of short-term speech variation, acoustic data analy-

sis generally takes the form of comparing the mean values of parameters measured from

the speech signal in neutral and measured under stress or speech variation. Often the

following parameters are investigated include fundamental frequency, formant locations,

formant bandwidths, speech rate, and intensity. Each type studied is sought to provide

a description of the acoustic correlates of the stress type. Data analysis studies though

are often more than simply descriptive of the variation found in a set of parameters. For

example, it has been shown in (Hansen and Varadarajan, 2009) that there are different

types of Lombard speech, depending on the type of noise in the speaking environment.

The best work on speech styles seeks to be more than simply descriptive: it strives for

more an interpretation of the results in terms of how the speech production system is

behaving or how speech systems may specifically be affected. The best work strives to

characterize the speech style as a whole: How does the speech style fit into the phonetic

sequence? Into everyday experience? How much variation across speakers is seen from
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the same source of variation? Might different speech styles be driven by the same emo-

tion? Do different emotions result in the same speech style? What are the implications for

the semantic meaning of the utterance when a speech style is adopted?

2.2.4 Automatic classification

Besides data analysis, a number of studies in the literature on speech variability have con-

sidered classification systems, such as Cairns and Hansen (1994), Womack and Hansen

(1996), Lee and Narayanan (2005), Patil and Hansen (2008), and Sethu et al. (2009), and

others. Classification systems have various applications, including as front-ends to robust

systems or as part of a segmentation or summarization system. Classification systems

have been of interest to build and analyze because in so doing a researcher can examine

the effects of speech variability on feature extraction and modeling technologies outside

the complicating context of a speech or speaker recognition system. In this thesis it will be

shown that to build and analyze a classification system can have an additional purpose. A

classification system for physical task stress speech will be analyzed in this thesis to draw

conclusions about the effects of physical task stress on the speech production system.

2.3 Past work on physical task stress

Little work has been performed specifically on speech under physical task stress. Publi-

cations so far include Entwistle (2003), Entwistle (2005), Godin and Hansen (2008), Godin

(2009), and Patil and Hansen (2008). From Entwistle’s work it can be concluded that au-

tomatic speech recognition (ASR) systems are negatively impacted by physical task stress

(referred to as “human exertion” in her work). Patil and Hansen (2008) described classi-

fication experiments performed on the UT-Scope corpus. Two features were employed,

a stress detection feature (TEO-CB-AutoEnv), and a classic speech feature (MFCCs), and

speech data from two sensors was examined, the standard close-talking acoustic micro-

phone, and the physical microphone (P-MIC). The statistical classifiers were Gaussian

Mixture Models (GMMs). It was found that the system classifying data from the P-MIC
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performed better than the system classifying data from the acoustic microphone. There

are various possible reasons for the improvement in performance seen. The classification

performance might be improved in the P-MIC due to heartbeats heard in the P-MIC of

increased amplitude or frequency of occurrence, or the P-MIC may capture more of the

(assumably modified) respiration noise of speech, or the P-MIC may capture more clearly

glottal sounds that differentiate physical task stress speech from neutral speech. The per-

formance improvement may serve as evidence that many of the articulatory effects of

physical task stress lay with the glottal structures, a hypothesis in line with other obser-

vations including the reduction in voicing and the change in fundamental frequency seen

in Godin and Hansen (2008).

2.4 Work on physical task stress

From the literature discussed in this chapter a guide may be formulated to further re-

search into physical task stress speech. First, it is clear that the ground truth of what

constitutes physical task stress and the level of physical task stress speech must be de-

fined and investigated. Second, the literature suggests that a three part process is most

effective for beginning work on a new type of short-term speech variation, when the

purpose of that work is to advance the design of speech systems. That process involves

defining a theoretical model and ground-truth, performing and interpreting data analysis

experiments, and investigating the behavior of speech systems through the behavior of

classification systems based on relevant speech technologies. Finally, the literature has

suggested that data analysis should strive to be more than descriptive of specific param-

eters of the speech signal, especially because those parameters are not directly employed

in relevant, contemporary speech systems. Instead, interpretation of the results of data

analysis in terms of the overall behavior of the speech signal is important to ensure rel-

evance and applicability of the analysis results. As these three parts of the investigation

together lay the groundwork for future studies that develop robustness improvements to

speech systems, this thesis makes these three parts its focus.



CHAPTER 3

CORPUS

This thesis employs the UT-Scope corpus (Ikeno et al., 2007) for experiments on speech

under physical task stress. The corpus includes neutral speech, speech under physical

task stress, speech under cognitive task stress, and Lombard effect speech. This thesis

contains some of the first results of experiments performed on the physical task stress

segment of the UT-Scope corpus. Other recent work on the physical task stress portion

of the UT-Scope corpus includes Godin and Hansen (2008), which this thesis draws from,

and Patil and Hansen (2008), Patil (2009), and Sangwan (2009), each of which applied

the UT-Scope corpus to speech systems to directly examine the effect of physical task

stress. This chapter discusses the nature of the physical task stress portion of UT-Scope

and addresses its suitability for research into physical task stress speech.

3.1 Overview

The UT-Scope corpus was collected at the University of Texas at Dallas and includes

speech from 77 speakers, 51 of which are native speakers of American English, with 42

female speakers of Am-English and 9 male speakers. For each stress type was recorded a

35 sentence prompted speech segment (prompted through headphones) and a 3 minute

spontaneous speech segment involving a conversation between the experimenter and the

subject. The prompted segments of the recordings of the native speakers have full sen-

tence and word level segmentations available, with phone-level segmentations available

for 38 of the 42 female native speakers. The phone-level segmentations were generated

using forced-alignment, with segmentations for 10 of the speakers having been hand cor-

rected by a researcher.

The physical task stress for the speech recordings was induced using an elliptical stair

14
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Figure 3.1. Recording setup for the physical task stress segment of the UT-Scope corpus.

stepper. The speakers were directed to maintain an approximately 10 mph speed on the

stairstepper. The recording setup for the physical task stress segment of UT-Scope is

shown in Fig. 3.1.

The experiments performed in Chapter 4 were performed on the prompted segments

of the physical task stress and neutral recordings of the 51 native Am-English speakers.

The experiments performed in Chapter 5 were performed on the prompted neutral and

physical task stress segments of the 38 female native speakers for which phone segmen-

tations are available. Relevant aspects of the portion of UT-Scope used in this thesis are

described in Table 3.1.

3.2 Heart rate analysis

As a corpus designed to include speech under physical task stress, it is important to gauge

the actual exertion level of the speakers as recorded. Heart rate (including for the neutral
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Table 3.1. Aspects of the subset of UT-Scope used in this thesis.
Parameter Male spkrs Female spkrs

# of speakers 9 42
Average age (yrs) 22.3 23.6

Age range 19-33 18-45
Sentences/task 35

Tasks Neutral, Physical exertion
Native language American English

Microphone Close-talking
Speech style Prompted

Av. exertion level 43%
Sampling rate 16kHz

Figure 3.2. Average heart rate through time for the neutral and physical task stress record-
ings.

condition, and sampled each 15s) and age data are available for all of the speakers. The

average heart rate across all of the speakers for both the neutral and physical task stress

recordings is shown in Fig. 3.2. It may be seen from the figure that the heart rate for the

physical task stress recordings is higher than the heart rate for the neutral recordings.

The available heart rate and age data may be used to estimate exertion level. Though

it will tend to overestimate the resting heart rate, a rough estimate of the resting heart

rate of each speaker is obtained by averaging the speaker’s heart rate during the neutral

segment. Then, one of many popular, and sometimes controversial, and generally similar
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formulae can be used to estimate the exertion level. One estimate is the Karvonen formula

HR = (MHR − RHR)l + RHR (3.1)

where HR is the current heart rate, RHR is the resting heart rate as estimated, l is the exer-

tion level (ranging from 0 to 1) and MHR is the person’s maximum heart rate, estimated

according to (Tanaka et al., 2001):

MHR = 208.9− 0.7A (3.2)

where A is the age of the person. Applying this formula to the 51 native speakers of the

UT-Scope database, having had to disregard 7 speakers due to missing heart rate data (6)

or error in recording data (1), an average exertion level of 0.43, or 43%, is found, with

standard deviation of 12%. We consider this an appropriate level of exertion. A high

level of exertion (perhaps in the range of 60-80%) would not produce exemplars similar

to those likely to be seen in real life. Those exercising highly are not likely to be interested

in speaking for extended periods of time. A low exertion level is thus more ecologically

valid.



CHAPTER 4

PARAMETER ANALYSIS

This chapter discusses an analysis of physical task stress speech across several speech

parameters, in an effort to understand the ways that physical task stress affects speech

production and the acoustic speech signal. There are two parts to the following parame-

ter analysis. The first part of the analysis examines four parameters of the speech signal

on a per-speaker basis. For each speaker, statistical tests are used to determine whether

the measured parameter undergoes a significant shift in mean from that measured in neu-

tral speech to that measured under physical task stress. The second part of the analysis

examines the spectrum and cepstrum to determine where, on average across all speakers,

the most variance due to physical task stress may be found. An important result of the

second part of the analysis is that it motivates the use of the cepstrum for further analysis

purposes in Chapter 5.

4.1 Per-speaker parameters

Four parameters of the speech signal were measured and compared between neutral

and physical task stress: fundamental frequency, standard deviation of fundamental fre-

quency within an utterance, utterance duration, and the percent of frames voiced within

an utterance. To measure fundamental frequency (F0), the F0 for each 10ms frame was

computed with WaveSurfer (Sjolander and Beskow, 2000), using the ESPS algorithm with

an analysis window of 75ms. The F0 minimum was set to 120 Hz for females and 80 Hz for

males, and the maximum to 400 Hz. A distribution was formed for each condition (phys-

ical and neutral) for each speaker, selecting only those F0 values lying within a prompted

utterance as indicated by the utterance segmentations available with UT-Scope. Two 1-

sided t-tests, with a 99% confidence level, were used to compare the distribution means

18
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of F0 for each speaker. Results for F0 and the other parameters are shown in Table 4.1.

The results are discussed at the end of this section.

The standard deviation of F0 within an utterance, F0σ, was measured to determine

whether F0 varies more or less under physical task stress. The standard deviation of the

F0 within each utterance was computed, yielding 35 measurements of the distribution of

σ per condition per speaker. Two 1-sided student-t tests were used to compare the means

of these distributions for each speaker. The third parameter examined was the difference

in duration of utterances between physical task stress and neutral speech as spoken by

the same speaker. This was compared by applying two one-sided student-t tests to the

set of 35 measurements of difference in duration to determine whether the difference in

duration had a distribution with mean statistically greater or less than zero at the 99%

confidence level.

Finally, the percentage of voiced frames in an utterance was measured as for F0 above,

by using WaveSurfer to identify which 10ms frames of the recordings were voiced and

which were unvoiced. The percentage of voiced frames in each utterance was computed,

yielding 35 measurements per speaker per condition. For each speaker, distributions for

neutral and physical task stress speech were formed and the means of these distributions

compared using two 1-sided student-t tests.

Table 4.1 summarizes the results. Approximately 88 % of the speakers showed a statis-

tically significant decrease in the percentage of frames in an utterance considered voiced,

and just 1.96 % showed a statistically significant increase. We conclude that a reduction in

the amount of voiced speech is a primary indicator of physical task stress in speech. Con-

sidering the mean F0, 60.8 % of the speakers had a statistically significant increase in their

mean F0 under physical task stress, 13.6 % of the speakers had a statistically significant

decrease in their mean F0 under physical task stress, and 25.5 % of the speakers had no

statistically significant change. Thus, for most speakers, a change in mean F0 is associated

with physical task stress.

The tests performed on utterance F0 σ showed that only 25.4 % of the speakers showed
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Table 4.1. Summary table of parameter analysis results
Statistical test result % of speakers

on physical stress speech
F0 greater in stress 60.8

F0 lower 13.6
F0 same 25.5

F0 σ greater in stress 1.96
F0 σ lower 23.5
F0 σ same 74.5

Duration shorter in stress 43.1
Duration longer 31.4
Duration same 25.5

Greater % voiced in stress 1.96
Lower % voiced 88.2
Same % voiced 9.80

a statistically significant difference in the mean of utterance F0 σ, with 23.5 % of the speak-

ers having a lower utterance F0 σ. For most speakers (74.5 %), no statistically significant

change in utterance F0 σ was found. We conclude that physical task stress has a negligible

effect on the short term variability most speakers impart in their F0. Finally, the results

show that 25.5 % of the speakers have no statistically significant difference in the dura-

tion of their utterances, while 31.4 % of the speakers spoke longer under physical task and

43.1 % spoke shorter. We conclude that duration of prompted sentences is often affected

by physical task stress, but that the manner of the effect is speaker dependent.

4.2 F-ratio analysis

In this section two analyses are performed, one of the influence of physical task stress on

the variance in the speech signal spectrum, and another of the influence of the stress on

the speech signal cepstrum. The measurements specifically are designed to measure the

effects of physical task stress on each frequency or quefrency bin of a DFT/real cepstral

analysis. This measurement is accomplished by forming the ratio of the variance of each

frequency/quefrency bin between tasks to the average variance for that bin within the

tasks:

Fj =
inter-category variance of bin j

average intra-category variance of bin j
(4.1)
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Figure 4.1. F-Ratio showing dependence of each frequency bin on physical task stress

for each frequency bin i. This is an application of Fisher’s F-ratio, which in speech lit-

erature has been applied similarly to compare general intra-speaker variability to inter-

speaker variability (Lu and Dang, 2008), and has been applied to the measurement of the

discriminative capability of features for speaker identification (Campbell, 1997). To de-

termine the overall F-ratio of each frequency bin, each Fi,j is averaged across all speakers

j resulting in an average Fi for each bin of the DFT analysis. This parameter is also mea-

sured for each bin of the real cepstrum, the real cepstrum being computed by taking the

inverse DFT of the natural log of the magnitude of the DFT spectrum (Deller et al., 2000).

The results of the F-ratio measurements are shown in Figs. 4.1 and 4.2. From Fig. 4.1

it can be observed that the effects of physical task stress are on average not concentrated

in specific areas of the spectrum, though greater effects may be observed on the lower

frequencies than on the higher frequencies. This may be attributed to fundamental fre-

quency changes, though that is not certain. However, it is clear from Fig. 4.2 that the

effects of physical task stress concentrate in the middle of the cepstrum, which is associ-

ated with mid-size structural variations in the spectrum, and at the high end, associated

with the smallest structural variations of the spectrum. These variations at the high-end

of the cepstrum may be evidence of noisiness induced by breathing or breathiness at the
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Figure 4.2. F-Ratio showing dependence of each cepstral bin on physical task stress

glottis, though that remains to be determined.

However, the most striking observation from Fig. 4.2 is the scale of the effects of phys-

ical task stress on individual areas of the cepstrum as compared to areas of the spectrum.

It may be observed that the magnitude of the effects on the cepstrum can be as much as

10 times as high as that of the effects on the spectrum, and in some areas of the cepstrum

the variance due to physical task stress is equivalent in magnitude to the variance due

to all other factors combined (i.e. in some places the F-ratio approaches 1). Because the

magnitude spectrum and the real cepstrum have, mathematically speaking, the same in-

formation, it may be concluded that the effects of physical task stress so clearly evident

in the cepstrum are to be found not in specific frequency bins, but in the structure of the

spectrum or in the time variation of the spectrum. Further investigation is warranted both

into how physical task stress affects the structure of the spectrum, and into the source of

the variation seen so clearly in the F-ratio of the cepstrum.

4.3 Discussion

Three observations may be made based on the measurements presented in Section 4.1.

First, it is clear that the effects of physical task stress vary by speaker. Thus, there must be

a variety of strategies that speakers may employ to cope with physical task stress, and the
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design of any experiment to determine the effects of physical task stress on speech must

explore or account for the speaker variability of the effects. Furthermore, any speech

system designed to be robust to speech under physical task stress must also account for

variations between speakers in how their speech production processes are affected by

physical task stress. Second, it is clear that most speakers reduce the percentage of time

during an utterance that is phonated. This is evidence for one or more of three possible

effects. One, the excitation process may be affected in such a way that vowels are either

given a breathier quality or otherwise modified to confuse the automatic voicing detec-

tion algorithm. Two, the reduction in measured voicing may be evidence for in-utterance

breaths. Three, the reduction in measured voicing may be evidence for increased dura-

tions of unvoiced segments of speech. Whether any of these possibilities account for the

reduction in measured voicing cannot be determined from available data and could be

the subject of future research.

Finally, it should be noted that for most speakers, statistically significant changes in

the average measured fundamental frequency are observed. This constitutes evidence

that physical task stress affects speech production in the vicinity of the glottis, which

coincides with the measured decrease in voicing. There are two possible mechanisms

by which fundamental frequency varies during the speech production process. Funda-

mental frequency may vary due to a change in transglottal pressure, and it may vary

due to changes in the stiffness of the vocal folds, with changes in the stiffness of the vo-

cal folds being the dominant means by which fundamental frequency is varied (Stevens

(1998), p.73). Future research could investigate which of these mechanisms results in the

observed changes in fundamental frequency. It should also be noted that, despite the ob-

served changes in average fundamental frequency, most speakers demonstrate an ability

to maintain some control over the variation of fundamental frequency within an utter-

ance, as for most speakers it can be observed that the variation in fundamental frequency

in an utterance is not found to change.

It is clear from the measurements presented in this chapter, and from previous re-
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search, that physical task stress affects the speech production process is measurable ways,

but that a full understanding of the effects of physical task stress on speech production

remains distant. In the next chapter another step is taken to broaden the understanding of

what aspects of speech production may be affected the most by physical task stress. The

experiments of this chapter have relied on analysis of various parameters of the speech

signal. In Chapter 5 a different approach is taken. The cepstrum, shown in Fig. 4.2 to cap-

ture more variation in the speech signal in individual quefrency bins than the spectrum,

is applied in an analysis to determine which phone classes are most affected by physical

task stress, regardless of the particular parameter affected. In the conclusion, Chapter 7,

the results of the two different approaches from Chapters 4 and 5 are discussed to draw

new conclusions about the nature of physical task stress speech.

We close this discussion of the parameter analysis of physical task stress speech with

some points about automatic parameter analyses in general. Automatic methods have

both limitations and advantages as compared to making measurements by hand, per-

haps by using a spectrogram. Automatic measurements may have more errors, or their

error behavior on styled or stressed speech may not be well understood. Also, because the

audio and spectrograms are not examined by humans, unforeseen effects of the stress or

variability may remain undetected. However, automatic methods support experiments

on very large databases at a fraction of the cost of by-hand analysis. This fact has been ex-

ploited in this thesis to support drawing broadly speaker independent conclusions about

certain aspects of speech under physical task stress.



CHAPTER 5

PHONE CLASS ANALYSIS

In this chapter is discussed the design, results, and interpretation of an experiment that

determines which phone classes are most affected by physical task stress. As discussed

in Chapter 2, studies of stressed speech, including that presented in Chapter 4, generally

attempt to discern and understand the causes of variations in one or more parameters

including pitch, formants, or various durations. Some also study the relationship between

the variations of those parameters and various phones or phone classes. By contrast, the

design of the following experiment is motivated by a desire to explore the relative effects

of physical task stress on various phone classes, irrespective of any specific parameter of

the speech - i.e. to determine, in the most general sense possible, which phone classes

are most affected by physical task stress. Such knowledge could be applied in several

ways. One is to direct future exploration into the effects of physical task stress to those

phones that are most affected. Another is to apply the knowledge to focus improvements

in robustness of recognition systems on those phone classes that are most affected. At

the conclusion of this study, the results of this analysis will compared to the parameter

analysis discussed in Chapter 4 in order to draw new insight into what speech production

mechanisms might be most strongly influenced by physical task stress, and what that may

imply for the design of speech systems.

5.1 Overview

As noted, the basic purpose of the following experiment is to rank order the phone classes

of American English in terms of the overall effect that physical task stress has on their

production. The basic structure of the experiment, shown in Figure 5.1, is to first apply

a speaker independent neutral/stress classification system to the speech. Then, from the
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Figure 5.1. Process of computing the frame scores for one speaker (256 mixture GMMs,
15-dim MFCCs, with 15-dim delta and double-delta coefficients, C0 included).

classification results it is estimated which phone classes are most affected by physical task

stress. It is important to note that the particular interpretation of the results presented is

dependent on the particular structure of the classification system employed. The structure

of the classification system discussed shortly results in a meaningful classification score

for very short time durations, which in the experiment will be applied to durations as

short as one phone.

The basic structure of the classifier is the common two stage process of feature ex-

traction followed by statistical modeling. Gaussian Mixture Models (GMMs) (Reynolds

and Rose, 1995) are the statistical modeler employed. GMMs function by determining a

summation of a finite set of multidimensional Gaussian distributions that closely approx-
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Figure 5.2. Process of computing the classification strength of neutral high vowels.
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imates the distribution of the feature data of the training process. Each frame of the test

data is scored against the models for neutral and physical task stress; in essence, frames

that have higher scores more closely fit the differences in the distributions modeled by the

GMMs. In a complete classifier, i.e. one not being used for such experiments, frames are

scored individually and their scores averaged and compared to a threshold to make a final

classification decision for a given utterance. Because the individual frames are assumed

independent and their individual score is not dependent on other frames, it is possible

in the following experiment to examine individual frame scores outside of the context

of their temporal neighbors. Thus the second part of the experiment is to group all the

frame scores for one speaker by the phone class from which that score originated, and

then to examine the statistical distribution of the scores within each group. This process

is described by Fig. 5.2.

These groups of scores, one group for each combination of phone class, speaker and

speech type (neutral/stress), may each be modeled by a probability distribution. In the

following experiment, the probability distribution of frame scores for one phone class for

one speaker in neutral will be compared to the probability distribution of frame scores

for one phone class for one speaker in physical task stress. It will be argued that those

phone classes for which the distribution of the frame scores undergoes the most change

from neutral to physical task stress must be those phone classes that are most affected by

physical task stress.

The following analysis relies on the cepstrum as represented by Mel-Frequency Cep-

stral Coefficients (MFCCs). This is because the cepstrum is mostly parameter indepen-

dent; as seen in Chapter 4 individual parts of the cepstrum encompass the variation in

speech due to physical task stress, rather than the variation being captured in the struc-

ture of the cepstrum, as is the case for the spectrum. Therefore by use of the cepstrum the

experiment closely approximates an analysis of the total variation of the speech signal

within each phone class, irrespective of the nature of the variation.
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5.2 Alternative experiment designs

In this section two principle concerns are addressed regarding the design of the experi-

ment. First, are the automatic classification methods reliable enough to build an experi-

ment upon? And second, are there other ways to formulate the classifier?

To evaluate whether the classification method employed for analysis is reliable enough

to result in meaningful conclusions, the system performance was evaluated on a per-

speaker basis. The per-speaker accuracy of the classification system used in the experi-

ment, when employing optimum speaker-specific classification threshoulds, is shown in

Table 5.1. For 25 of the 42 speakers, the system has 100% accuracy at classifying 10 second

utterances as either neutral or stress tokens, when employing the optimum threshold for

each speaker. For most of the remaining speakers, the classification accuracy is very high,

with a total average of 95%. It is argued that this implies that the classification systems

have modeled the most significant and common effects of physical task stress on speech

production, and are therefore suitable for the following experiment. It should be noted

that speaker dependent thresholds are justified here, on the grounds that the purpose of

this evaluation is solely to determine the ability of the system to separate neutral frames

from physical task stress frames for a specific, known speaker.

In order to examine whether the low performance observed for some of the speakers

is related to the exertion level, a scatter plot of this data is shown in Fig. 5.3. It can be seen

from the plot that there is a trend towards lower exertion levels for those speakers which

are classified poorly. It can also be seen that there are speakers for whom high classifica-

tion performance is observed but who demonstrated a low average exertion level. It may

be concluded that there is some factor that relates system performance to exertion level

for certain speakers.

The second concern addressed is whether there may be other ways to formulate the ex-

periment. One alternative formulation would be to train one GMM for each phone class,

for both neutral and physical stress, and to compare the classification accuracy for each
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Table 5.1. Accuracy for each of the 42 per-speaker classification systems. Each system was
trained with all corpus data except that of the indicated speaker, then tested with the data
for the indicated speaker.

Spkr Class. acc. Spkr Class. acc.
fac1 100% frt1 100%
fad1 100% fss1 100%
fah1 100% fth1 100%
fch1 100% fts1 100%
fdb1 100% fam1 95%
ffl1 100% fat1 95%
fjc1 100% fjs1 95%
fjf1 100% fjw2 95%

fjw1 100% fms3 95%
fkc1 100% fmt1 95%
fli1 100% fsm1 95%
flk1 100% ftk1 95%
flk2 100% fcb1 91%
flm1 100% fmb1 91%
fml1 100% fjf2 86%
fmp1 100% fnw1 86%
fms1 100% fms2 82%
fmw1 100% fsm2 82%
fnc2 100% fep1 77%
fnh1 100% fae1 68%
fnm1 100% fmf1 68%

Average: 95%
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Figure 5.3. A relationship between exertion level and performance for some speakers may
be observed from this scatter plot.

phone class, reasoning that the phone classes which may be used in the best classifiers

must be those that are most affected by physical task stress. This is not the way the fol-

lowing experiment is formulated because the the performance of the phone-class based

classifiers could be dominated by a ceiling affect, in which several of the phone classes

result in classification accuracy near 100%. In that case it would be difficult to determine

which of the phone classes is most affected by physical task stress.

5.3 Method

This section discusses the design of the experiment in sufficient detail for the experiment

to be replicated. The experimental method has two parts: the classification system, which

generates a score for each frame of the speech, and distribution comparison.
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5.3.1 The classification systems

The classification systems are comprised of feature extraction (MFCCs) and statistical

modeling (GMMs), as shown in Figure 5.1. One classification system is built for each

speaker, employing as training data the speech from all other speakers. Gaussian Mix-

ture Models (GMMs) result in a meaningful score generated for each frame of the speech;

this fact is exploited in the experiment to examine groups of frames outside of their tem-

poral context. Several details of the construction of the classification systems should be

noted, including the number of cepstral coefficients, whether delta and double-delta co-

efficients are included, the number of mixtures that are employed, and the software used;

these are summarized in Table 5.2, with a X indicating included features. To determine

these parameters, they were varied until the best overall equal error rate (EER) was found

(when using the same decision threshold for all 42 systems), or, in the case of the num-

ber of mixtures, the performance became negligibly higher for an increasing number of

mixtures.

It should be noted that the purpose of the classification system development is to build

the best possible classification systems for this dataset rather than to build a classification

system that could be deployed in the real world. It therefore is fair to use all of the avail-

able data in the development of the classifier, while this would not be the case were the

purpose to estimate the classification systems’ performance in real-world deployment.

It should also be noted that scoring code to compute scores for individual frames was

developed in-house. To verify the accuracy of the frame score computation, the average

scores for utterances computed by the frame score code were checked against the results

from HTK and found to be equivalent.

5.3.2 Comparing score distributions

In this section is described the method to compare the distribution of the frame scores

for one speaker for one phone class in neutral to the distribution of the frame scores for
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Table 5.2. Aspects of the classification system used in this thesis.
Parameter Value used

in experiment
Features used MFCCs
# of mixtures 256

# of cepstral coefficients 15
Delta coefficients X

Double-delta coefficients X
Training software HTK
Training speakers 41

Test speakers 1
Testing style Round-robin

Equal error rate 15%
Global threshold −0.1670

one speaker for one phone class in physical task stress. The comparison is performed

in two steps. In the first step, the frame scores are modeled with a particular probabil-

ity distribution. This provides a closed form expression of the probability distribution,

facilitating comparison. In the second step, the distributions are compared using the

Kullback-Leibler Divergence (KL Divergence) (Kullback and Leibler, 1951).

The KL Divergence is an expression designed to compare two probability distributions

p(x) and q(x):

DKL(P ||Q) =

∫ ∞

−∞
p(x)log

p(x)

q(x)
dx (5.1)

In this form the KL Divergence is not symmetric. For the purposes of this experiment the

distance between probability distributions will be measured by:

DKL(P, Q) = DKL(P ||Q) + DKL(Q||P ) (5.2)

Figure 5.4 shows a histogram of frame scores from fricatives spoken by speaker fmb1

under physical task stress. A Laplacian probability distribution is shown fit to the his-

togram. It will be assumed that the distribution of frame scores for all phone classes is

Laplacian. Table 5.3 shows justification for this assumption. It can be seen in the table that

for most phone classes, frame scores from over 75% of the speakers are consistent with a

Laplacian distribution. Statistical tests for the fit of a Gaussian distribution to the frame
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Figure 5.4. Speaker fmb1 physical stress fricative frame scores, with estimated Laplacian
distribution.

scores found that assuming a Gaussian distribution for frame scores was a reasonable

assumption for less than 10% of speakers, for most phone classes.

The Laplacian probability distribution is:

p(x) =
1

2b
exp(−|x− µ|

b
) (5.3)

Having assumed that p(x) and q(x) in Eq. 5.1 are Laplacian and thus take the form of

Eq. 5.3, it remains to find a closed form expression of Eq. 5.2. This is accomplished by

substituting Eq. 5.3 into Eq. 5.1, solving the integration, and substituting the result into

Eq. 5.2. This substitution and solution process is straightforward but tedious; a complete

derivation may be found in Appendix 7.2. The final result is:

DKL(N, S) = bn + bs − bn exp
(
−|µn−µs|

bn

)
− bs exp

(
−|µn−µs|

bs

) (5.4)

where parameters bn and µn are the parameters of the Laplacian distribution for the neu-

tral frame scores, and parameters bs and µs are the parameters of the Laplacian distribu-
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Table 5.3. Results of statistical tests to determine whether frame scores within each phone
class for each speaker are Laplacian distributed at the 99% confidence level.

Phone class % of spkrs with scores
Laplacian dist.

Neutral - low non-R vowels 87%
Phy - low non-R vowels 89%

Neutral - high non-R vowels 59%
Phy - high non-R vowels 66%

Neutral - laterals 100%
Phy - laterals 100%

Neutral - stop plosives 87%
Phy - stop plosives 92%

Neutral - diphthongs 97%
Phy - diphthongs 87%

Neutral - R vowels 100%
Phy - R vowels 97%

Neutral - fricatives 84%
Phy - fricatives 76%
Neutral - glides 97%

Phy - glides 97%
Neutral - nasals 82%

Phy - nasals 89%
Neutral - combo consonants 100%

Phy - combo consonants 100%

tion for the physical task stress frame scores. The parameter µ is estimated as the median

of the available data samples, and the maximum likelihood estimator for b is:

b =
1

M

∑
fric

|s[n]− µ| (5.5)

where M is the number of frames of that phone class.

Eqs. 5.4 and 5.5 therefore form the measurement that is applied to compute the changes

affected by physical task stress on the distribution of frame scores within one phone class.

5.4 Discussion on method

It is important to group the phone classes in such a way that they may be modeled by

a unimodal probability density function for both conceptual and practical reasons. For

practical reasons, it is important that a closed form solution to Eq. 5.1 be found. For
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conceptual reasons, modeling the frame scores with a unimodal density function assures

that the phone class under examination represents a group of phones that are affected

similarly by physical task stress. When that is the case, it is reasonable to assume that

the quantity being measured is the effect of physical task stress on the members of that

class, rather than separate, averaged effects. This is the reason that the vowels have been

split into three groups: R-colored vowels, high vowels, and low vowels. Grouping all

the vowels together does not result in a unimodal distribution, while separating out the

R-colored vowels results in a unimodal Laplacian distribution for the R-colored vowels.

For the non-R-colored vowels, other separations, such as dividing the vowels into front

and back vowels, do not result in unimodal distributions. It may thus be hypothesized

that physical task stress affects high and low vowels differently.

5.5 Results and discussion

The experiment was conducted as described and the results are shown in Figure 5.5. The

experimental results show that nasal phones undergo the greatest change in score distri-

bution from neutral to physical task stress. Laterals, high vowels, and diphthongs could

be grouped together as being the next most affected phone classes after nasals. The score

distribution, and therefore the speech signal, and, it is thus argued, the production pro-

cess of fricatives and plosives, are affected the least by physical task stress.

Voiced sounds, with the exception of glides, show a trend of being more affected by

physical task stress than unvoiced sounds. This may be related to the results on fun-

damental frequency and voicing changes seen in Chapter 4. Glides are somewhat of a

surprise; it is not clear for what reason they appear to be affected less by physical task

stress than other voiced sounds. It may be that the specific position of the articulators

in glides, one that is more constricted than that of vowels, results in a speech produc-

tion process that is more easily controlled when the speaker is under physical task stress

than the relatively more open vowels. Further investigation into this possibility, or into

alternate explanations for the differences seen between nasals, diphthongs, and vowels is
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clearly warranted.

Considering fricatives and plosives, their noise character when produced in neutral

speaking conditions may make them similar to the breath noise that we expect to see

in physical task stress utterances. Thus perhaps the acoustic signal resulting from their

production in both neutral and physical task stress is not clearly distinguishable from

other noises produced under physical task stress.

It is clear from the figure, however, that all phone classes underwent a change in score

distribution from neutral to physical task stress, and that therefore all the phone classes

must undergo some change from neutral production to physical task stress production.

It should also be noted that the experimental results give only a measure of the overall

amount that physical task stress affects the production of each phone class. R-vowels

and low vowels are, according to the results, affected in some sense a similar amount by

physical task stress, but the experimental results are silent on the question of whether the

mechanism by which they are affected is the same.

The conclusions that may be drawn from the experimental results are discussed further

at the conclusion of this thesis.
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Figure 5.5. Overall results of the phone class classification power comparison.



CHAPTER 6

PERCEPTUAL STUDY

A listener test was conducted to examine some aspects of the perception of speech

under physical task stress. The analyses described in Chapter 4 revealed that changes

in F0 and the glottal waveform are strong correlates with physical task stress. Listener

tests were therefore performed to determine the strength of these acoustic correlates as

perceptual cues, and also to establish listener performance on a stress classification task.

Here, 10 subjects were asked to classify 84 utterances, describing the speaker as either

“exercising”, or “seated, resting”.

6.1 Listener test procedure

The physical task stress speech had heavy breathing surrounding the utterances, so as

a first step all of the utterances were closely cropped in time to remove their context.

This helped to ensure that listeners made their classification decision based on the speech

itself, and not on surrounding breath sounds. To test the strength of F0 and the glottal

waveform as perceptual cues, some of the utterances were modified so that they were in

some way shifted towards the counterpart utterance in the opposite condition. To shift

the F0 of some utterances, a PSOLA technique was applied so that the given utterance had

a mean F0 equal to the mean F0 of the same speaker’s utterance in the opposite condition.

For the glottal waveform tests, the glottal inverse filtering method described in Childers

and Lee (1991) was used to extract glottal waveforms from the voiced portions of the

speech, which were then replaced with waveforms extracted from the opposite condition.

The utterances were then reconstructed by inverting the process and concatenating them

with the unmodified unvoiced portions of the utterances.

The 84 utterances were partitioned into 8 groups. Two groups of 10 utterances, one
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Table 6.1. Results of listener tests and statistical comparisons. X indicates statistical sig-
nificance. W.R.T. means with respect to.

Category Perf. Sig., W.R.T.
Unprocessed neutral 84.4 % N/A

Unprocessed physical 68.9 % N/A
Neut. < F0 > shifted to phy. 82.8 % -, unproc. neut
Phy. < F0 > shifted to neut. 44.4 % X, unproc. phy

Replace neut. glottal waveform w/ neut. 48.9 % X, unproc. neut
Replace phy. glottal waveform w/ phy. 66.7 % -, unproc. phy
Replace neut. glottal waveform w/ phy. 61.6 % - proc. neut
Replace phy. glottal waveform w/ neut. 71.7 % -, proc. phy

from each condition, were left unprocessed. Two groups of 11 utterances were processed

as described above to shift their pitch. Two groups, each comprising 10 utterances, served

as control groups for the glottal processing technique. These were processed using glottal

waveforms from the same condition. Two groups served as experimental groups, each of

11 utterances. These utterances were synthesized using glottal waveforms extracted from

that speaker’s opposite condition utterance. The order of all 84 utterances was random-

ized, and then presented to listeners in a formal test.

6.2 Listener test results

The listener test results are summarized in Table 6.1. The table shows that the listeners

correctly classified 84.4 % of the unprocessed neutral utterances, and 68.9 % of the phys-

ical task stress utterances. Student-t tests were also used to make comparisons between

the test results. The results for pitch shifted utterances were compared with those from

unprocessed utterances of the same condition. Shifting the pitch of the physical stress

utterances caused a statistically significant decrease in listener performance of more than

20 %. Shifting the pitch of the neutral speech did not have an effect on performance.

The results for the utterances which underwent glottal waveform replacement from

the same condition were compared with unprocessed utterances to determine if the pro-

cessing method had an effect on listener performance. The processing method did not

have a statistically significant effect on the listeners’ ability to mark utterances as physical
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task stress, though the processing decreased performance on neutral utterances to chance

levels. In comparing the utterances with glottal waveforms swapped from opposite con-

ditions to those with waveforms from the same conditions, no statistically significant shift

was found.

6.3 Discussion

In retrospect, the results of the glottal waveform tests are not reliable indicators of per-

ceptual behavior regarding glottal waveforms. This is because processing artifacts likely

dominated the listeners’ perceptual experience, which has been confirmed by informal

listening. This is also supported by the fact that processing the neutral utterances to re-

main neutral resulted in a statistically significant shift in performance; no shift should be

observed if the processing method did not result in clearly audible artifacts. These results

are included here because they were part of the experiment as conducted. The results for

the other types of processing remain valid, as they were presented independently to the

listeners.

We can conclude from the results of this experiment that listeners are able to discern

speech production differences that result from physical task stress, even when the ut-

terance is presented out of context. That the speech production process is affected by

physical task stress in fundamental ways is thus corroborated by the acoustic parameter

analysis of Chapter 4, the phone class analysis presented in Chapter 5, and the results of

the formal listener just presented.



CHAPTER 7

CONCLUSION

This thesis has presented and discussed experimental results concerning the nature of

speech under physical task stress. It is clear from these results that physical task stress

has an affect on many aspects of the speech production process.

7.1 Results summary

Chapter 4 presented results on a parameter analysis. It was found that three of the four

parameters varied. Additionally, f-ratio analysis showed that the variation due to physi-

cal task stress does not concentrate in specific frequency bins but must instead by associ-

ated with the temporal structure of the spectrum, but that variance due to physical task

stress may be found in specific areas of the cepstrum. Thus we may hypothesize, based on

this result, that specific speech production processes are consistently affected by physical

task stress.

Chapter 5 presented a new analysis method, and the results thereof, that showed that

production of nasals and laterals are the most affected by physical task stress, and that the

production of fricatives and plosives are the least affected. Chapter 6 presented results of

a listener test that showed that listeners are able to discern physical task stress in speech

from parameters beyond the breaths inherent in the speech. We can thus conclude that

physical task stress affects several aspects of the speech production process.

This has implications for the development of speech systems as well as for further sci-

entific inquiry into the nature of physical tasks stress speech production and perception.

We have sought to describe physical task stress in a way that goes beyond description

of the changes in measured parameters to discuss possible ways that physical task stress

affects speech production processes.
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7.2 Future work

It is clear that the research performed thus far has resulted in some general insights into

the nature of physical task stress speech. However, it is only a beginning as many more

general and specific questions remain to be asked and answered. For example, a vari-

ety of further analysis questions might be investigated, such as How many speakers add

intra-utterance breaths and how often is this employed? Does it depend on the linguistic

structure of the utterance or on the particular phones employed? What is the mechanism

by which fundamental frequency is varied? Additionally, as discussed in Chapter 2, fur-

ther investigation of physical task stress should consider other definitions of the ground-

truth level of physical task stress, and continue investigation into whether there is one or

more specific speech styles associated with physical task stress and the nature of those

styles.



DERIVATION OF THE KL DIVERGENCE FOR TWO LAPLACIAN PDFS

In Chapter 5 the KL divergence between two Laplacian PDFs was employed as a mea-

surement of how much each phone class was affected by physical task stress. In this Ap-

pendix this divergence is derived. The derivation of the divergence itself is presented in

Section A.1. The derivation relies on other formulations that are presented in subsequent

sections. All of the derivations in this Appendix employ commonly known techniques

for integration.

A.1 Derivation of main result

This section presents the derivation of the main result, seen previously in Eq. 5.2. The

symmetric KL divergence between p(x) and q(x) is defined to be:

DKL(p, q) = DKL(p||q) + DKL(q||p) (A.1)

where the KL divergence of p(x) from q(x) is defined as:

DKL(p||q) =

∫ ∞

−∞
p(x)ln

(
p(x)

q(x)

)
dx. (A.2)

The Laplacian probability density functions p(x) and q(x) take the form:

p(x) =
1

2bp

exp

(
−|x− µp|

bp

)
(A.3)
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and therefore:

DKL(p||q) =
∫∞
−∞

1
2bp

exp
(
−|x−µp|

bp

)
ln

(
bq

bp
exp(|x− µq| − |x− µp|)

)
dx (A.4)

= 1
2bp

∫∞
−∞ exp

(
−|x−µp|

bp

)
[ln bq − ln bp + |x− µq| − |x− µp|] dx (A.5)

= (ln bq − ln bp)
1

2bp

∫∞
−∞ exp

(
−|x−µp|

bp

)
dx + 1

2bp

∫∞
−∞ exp

(
−|x−µp|

bp

)
|x− µq|dx

− 1
2bp

∫∞
−∞ exp

(
−|x−µp|

bp

)
|x− µp|dx (A.6)

Clearly the first term equals ln bq − ln bp, as the PDF integrates to 1. The second and

third terms will be integrated separately. For the remainder of the derivation, it will be

assumed, without loss of generality, that µp ≥ µq. For the second term,

1

2bp

∫ ∞

−∞
exp

(
−|x− µp|

bp

)
|x− µq|dx =

1

2bp

[∫ µq

−∞
exp

(
x− µp

bp

)
(x− µq)dx

+

∫ µp

µq

exp

(
x− µp

bp

)
(µq − x)dx

+

∫ ∞

µp

exp

(
µp − x

bp

)
(µq − x)dx

]
(A.7)

= 1
2bp

[∫ µq

−∞ x exp
(

x−µp

bp

)
dx− µq

∫ µq

−∞ exp
(

x−µp

bp

)
dx

+µq

∫ µp

µq
exp

(
x−µp

bp

)
dx−

∫ µp

µq
x exp

(
x−µp

bp

)
dx

+µq

∫∞
µp

exp
(

µp−x

bp

)
dx−

∫∞
µp

x exp
(

µp−x

bp

)
dx

]
(A.8)
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Applying supporting results from Section A.2 results in:

=

(
µq − bp

2

)
exp

(
µq − µp

bp

)
− µq

(
1

2
exp(

(
µq − µp

bp

))
+

µq

2
− µq

2
exp

(
µq − µp

bp

)
− µp

2
+

bp

2
+

µq

2
exp

(
µq − µp

bp

)
− bp

2
exp

(
µq − µp

bp

)
+

µq

2
− µp + bp

2
(A.9)

=µq − µp − bp exp

(
µq − µp

bp

)
(A.10)

Now to derive the third term from Eq. A.6:

1

2bp

∫ ∞

−∞
exp

(
−|x− µp|

bp

)
|x− µp|dx

=

∫ µp

−∞
exp

(
x− µp

bp

)
(x− µp)dx +

∫ ∞

µp

exp

(
µp − x

bp

)
(µp − x)dx

(A.11)

=

∫ µp

−∞
x exp

(
x− µp

bp

)
dx− µp

∫ µp

−∞
exp

(
x− µp

bp

)
dx

+ µp

∫ −∞

µp

exp

(
µp − x

bp

)
dx−

∫ ∞

µp

x exp

(
µp − x

bp

)
dx (A.12)

Applying supporting results for the first and last integral of Eq. A.12 and noting that the

middle two integrals cancel results in:

1

2bp

∫ ∞

−∞
exp

(
−|x− µp|

bp

)
|x− µp|dx = bp (A.13)

Thus substituting Eqs. A.10 and A.13 into Eq. A.6 results in:

DKL(p||q) = ln bq − ln bp + bp + µp − µq − bp exp

(
µq − µp

bp

)
(A.14)

Then DKL(q||p) for the case where µp ≥ µq may be derived by similar techniques. The

result is:

DKL(q||p) = ln bp − ln bq + bq + µq − µp − bq exp

(
µq − µp

bq

)
(A.15)

Finally, substituting Eqs. A.14 and A.15 into Eq. A.1, and noting that the symmetricity
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of the equation allows us to include the absolute value function to generalize away our

assumption that µp ≥ µq, results in the formula employed in this thesis:

DKL(p, q) = bp + bq − bp exp

(
−|µq − µp|

bp

)
− bq exp

(
−|µq − µp|

bq

)
(A.16)

A.2 Supporting results

In this section several supporting results for the derivation of the main result are listed.

Their derivation is straightforward from elementary calculus. The first such result is the

identity:

lim
x→−∞

x exp(x) = 0 (A.17)

The second useful identity is:

∫
xecxdx =

ecx

c2
(cx− 1) (A.18)

Also, ∫ b

a

exp

(
a− x

c

)
dx = c− c exp

(
a− b

c

)
=

∫ b

a

exp

(
x− b

c

)
(A.19)

And finally,

∫ b

a

x exp

(
a− x

c

)
dx = c2 + ca− bc exp

(
a− b

c

)
− c2 exp

(
a− b

c

)
(A.20)∫ b

a

x exp

(
x− b

c

)
dx = cb− c2 − ca exp

(
a− b

c

)
+ c2 exp

(
a− b

c

)
(A.21)
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