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Abstract
This study analyzes the individual and combined effect of room re-
verberation and increased vocal effort on automatic speech recogni-
tion. Robustness of several state-of-the-art front-end feature extrac-
tion strategies and normalizations to these sources of speech signal
variability is evaluated in the context of large and small vocabulary
recognition tasks on American English and Czech speech corpora. For
the large vocabulary task, speech material from the UT-Scope database
comprising American English utterances is used. The Czech speech
samples are drawn from the CLSD‘05 data corpus and used for the
small vocabulary tasks. Both databases contain neutral as well as in-
creased vocal effort recordings. Simulated reverberant test conditions
are generated using measured room impulse responses from the AIR
database and utilized in the evaluations. It is shown that the robustness
of a common MFCC front-end to reverberation and increased vocal ef-
fort can be considerably improved when paired with cepstral gain nor-
malization and modified RASTA filtering. A combination of recently
proposed mean Hilbert envelope coefficients and modified RASTA is
found to provide balanced performance across all reverberation and
vocal effort conditions.

1. Introduction
Room reverberation can cause various destructive impacts on spectro-
temporal characteristics of speech signals, most notably including tem-
poral smearing, filling dips and gaps in the temporal envelope, in-
creasing the prominence of low-frequency energy, and flattening the
formant transitions. These impacts have been categorized as self- and
overlap-masking effects [1]. The self-masking effect is caused by early
sound reflections in the room that arrive at the receiver (ear or micro-
phone) within 50-80 ms after the direct sound. The overlap-masking
effect on the other hand is resulted from late echos (or reflections)
which tend to smear the direct sound over time and mask succeeding
sounds. It has been shown that the overlap-masking effect of reverber-
ation is the primary cause of degraded speech recognition performance
in both human listeners [1] and automatic speech recognizers [2, 3].

In addition to signal distortion, room reverberation may result in
increased vocal effort of the speakers [4]. This is due to the fact that
room reverberation decreases speech quality and intelligibility, which
in turn induces changes in the auditory feedback process. Conse-
quently, speakers increase their vocal effort to compensate for the drop
in intelligibility. This increase in vocal effort, which is a function of
both reverberation time (aka T60) and talker-to-listener distance [4],
has been shown to be a major source of speech signal variability that
can ultimately deteriorate performance of ASR.

Hence, in a reverberant environment, an ASR system has to strug-
gle with not only the signal distortions, but also the signal variabil-
ity due to the increased vocal effort which is induced by reverbera-
tion. There have been several research attempts that considered indi-
vidual impacts of room reverberation [2, 3, 5–7] and increased vocal
effort [8, 9] on ASR, and reported compensation strategies to allevi-
ate these impacts. However, to the best of our knowledge, this study
is one of the first to consider the individual as well as the combined
effects of reverberation and increased vocal effort on ASR. In addi-
tion, robustness of various conventional and recently proposed fea-
ture extraction/compensation techniques are evaluated in the context
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of both small and large vocabulary ASR tasks under reverberation, in-
creased vocal effort, and their combination. In particular, motivated by
their encouraging performance in speaker identification (SID) under
reverberation, the recently proposed mean Hilbert envelope coefficient
(MHEC) features [10] are benchmarked against traditional MFCC pre-
ceded by long-term log spectral subtraction (LTLSS) [3] and Gamma-
tone subband based non-negative matrix factorization (NMF) [7], as
well as MFCC implemented in ETSI advanced front-end (AFE) [11],
in our ASR experiments. The feature extraction schemes are paired
with a number of popular cepstral normalizations and also recently
proposed RASTALP temporal filtering.

2. Mean Hilbert Envelope Coefficients: MHEC
MHEC features have been shown to be an effective alternative to
MFCCs for robust SID and ASR tasks under reverberant mismatched
conditions [10,12]. Here, we briefly describe the procedure for MHEC
extraction.

First, the pre-emphasized reverberant speech signal is analyzed
through a 26-channel Gammatone filterbank. Next, since we are
mostly interested in slowly varying amplitude modulations rather than
the fine structure, in each channel the Hilbert envelope is calculated
and smoothed using a low-pass filter with a cut-off frequency of 20 Hz.
In the next stage, the low-pass filtered envelope is blocked into frames
of 25ms duration with a skip rate of 10 ms. To estimate the temporal
envelope amplitude in each frame, the sample mean is computed. Note
that the sample mean is a measure of the spectral energy at the center
frequency of each channel, and therefore overall provides a short-term
spectral representation of the speech signal. Next, in each channel, the
envelope trajectories are normalized using the long-term average com-
puted over the entire utterance. This stage, which is called subband
normalization (SN), functions as an automatic gain control (AGC) and
is used to suppress any spectral coloration effect of the reverberation
(or the self-masking effect) in different frequency channels. Up to this
stage, only the self-masking effect which is due to early reflections has
been suppressed. The overlap-masking effect, which is the long-term
effect of reverberation and due to late reflections, can be modeled as
an uncorrelated additive noise [6], and hence can be compensated via
spectral subtraction [13]. The output of this stage represents an esti-
mate of the clean anechoic speech spectrum. In the last stage, natural
logarithm is applied to compress the dynamic range of spectral coeffi-
cients and followed by the DCT to obtain cepstral features. Here, only
the first 13 coefficients (including c0) are retained after DCT. The fi-
nal output is a matrix of 13-dimensional cepstral features, entitled the
mean Hilbert envelope coefficients (MHEC).

3. Feature Normalizations
Feature normalizations are typically used to transform incoming signal
towards characteristics learned by the acoustic models. Depending on
the type of normalization, detrimental effects of environmental acous-
tics, ambient noise, channel variations, as well as variations introduced
by speakers can be addressed. In our study, several normalizations
that were reported to increase robustness to channel variations and in-
creased vocal effort are evaluated. It is noted that room reverberation
can be viewed as a form of a convolutional distortion and as such, can
be in part addressed by channel-oriented normalizations. However, in
many instances, room impulse responses tend to have long tails com-
pared to typical telephone channel responses – a fact reducing the ef-
fectiveness of normalizations operating on the level of short-term win-
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Figure 1: UT-Scope LVCSR; impact of reverberation on neutral speech recog-
nition.
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Figure 2: UT-Scope LVCSR; impact of reverberation on increased vocal effort
speech recognition.

dows. The following feature normalizations are considered: Distri-
bution normalizations: cepstral mean normalization (CMN), cepstral
mean/variance normalization (CVN), Gaussianization (feature warp-
ing, warp) [14], histogram equalization (HEQ) [15], cepstral gain nor-
malization (CGN) [16], and recently established quantile-based cep-
stral dynamics normalization (QCN) [17]. Temporal filtering: Rela-
tive spectral (RASTA) filtering [18] and recently proposed modified
low-pass RASTA filtering (RASTALP) [9].

In particular, RASTA has been reported to have a potential to re-
duce the impact of reverberation on ASR [5]. In our previous study,
RASTALP – a modified RASTA filter approximating the low-pass
component of the original RASTA [9] and the high-pass portion by
CMN or other segment-based normalizations [9, 19] was presented.
Compared to the original high order RASTA filter, RASTALP re-
quires significantly lower (2nd) filter order, which results in consider-
able reduction of the transient effects typical for RASTA filtering. The
combination of CMN–RASTALP outperformed RASTA in LVCSR on
neutral and Lombard speech tasks in clean and noisy conditions [19].

4. Experimental Results
Two different speech corpora are utilized in this study – UT-Scope [20]
and CLSD‘05 [21]. Both databases contain neutral and increased vo-
cal effort speech. The increased vocal effort was induced by exposing
the subjects to background noise, yielding a so called Lombard ef-
fect speech [22]. Lombard effect results in the increase of vocal effort
and mean fundamental frequency, and affects also a number of other
speech parameters [8, 21, 23, 24]. While the casue of the vocal ef-
fort increase is different for Lombard speech and speech produced in
distant speaker-to-listener conditions, in both cases, the speech mod-
ifications result from the alteration of the auditory feedback. Due to
the physiological mechanisms, the increased vocal effort goes hand in
hand with changes of inherently related speech production parameters.
Subglottal pressure and tension in the laryngeal musculature in higher
vocal effort cause increase of mean fundamental frequency F0 [25],

which has been observed for altered auditory feedback both due to
noise (Lombard effect) [8] and distant speaker-to-listener communica-
tion [4]. Increased vocal intensity is accompanied by the jaw lowering,
which in turn causes an upward shift of the first formant F1 [26]. Both
migration of spectral energy and spectral center of gravity to higher
frequencies [23], as well as flattening of the spectral tilt, are also typ-
ical for increased vocal effort in loud and Lombard speech [8]. Con-
sidering these similarities, clean Lombard speech seems to be a good
approximation of the increased vocal effort speech observed in rever-
beration, and, hence, is used in this study.

4.1. UT-Scope Speech Corpus

The Lombard effect portion of the UT-Scope speech database contains
neutral (modal) speech and speech produced with various levels of in-
creased vocal effort [20]. The increased vocal effort was induced by
playing three types of noises for subjects through headphones, and
speech was captured by a close-talk microphone, yielding high signal-
to-noise ratio (SNR) recordings. This allows for analysis of increased
vocal effort speech with the inducing noise being excluded from the
signal. The noise types used are: (i) highway car noise (speed 65 mph,
windows half open) (ii) crowd noise, and (iii) pink noise. Highway
and crowd noises were played at 70, 80, and 90 dB sound pressure
level (SPL), pink noise at 65, 75, and 85 dB SPL. Sessions from 31 na-
tive speakers of American English (25 females, 6 males) are employed
in the ASR experiments.

4.2. CLSD‘05 Speech Corpus

The Czech Lombard Speech Database (CLSD‘05) [21] comprises
recordings of neutral speech and speech uttered in simulated noisy
conditions (90 dB SPL of car noise). Similar as in UT-Scope, the
noise samples were played through headphones, and speech was col-
lected by a close-talk microphone. Sessions from 26 native speakers
of Czech (12 females, 14 males) are utilized in the ASR experiments.

4.3. AIR Database

Two different reverberant test conditions are simulated by convolv-
ing the speech material with measured room impulse responses (RIR)
from the Aachen Impulse Response (AIR) Database [27]. The RIR
samples for a meeting room as well as an office are used with dimen-
sions of 8.0 × 5.0 × 3.1 m3 and 5.0 × 6.4 × 2.9 m3, and reverber-
ation times of T60=250 ms and T60=480 ms, respectively. Source-to-
microphone distance is 2.8 m in the meeting room, and 3.0 m in the
office.

4.4. UT-Scope LVCSR Experiments

Both UT-Scope and CLSD‘05 ASR systems utilize HTK for acoustic
modeling, and the acoustic front-end features contain 13 static cep-
stral coefficients, including c0, and their first and second order time
derivatives.

A triphone recognizer with an SRILM trigram language model
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Figure 3: UT-Scope LVCSR; impact of reverberation on speech recognition
on pooled neutral and increased vocal effort speech.
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Figure 4: CLSD‘05 Digit Recognition; impact of reverberation on neutral
speech recognition.
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Figure 5: CLSD‘05 Digit Recognition; impact of reverberation on increased
vocal effort speech recognition.

(LM) is trained on the TIMIT database. Here, 32-mixture TIMIT
acoustic models are adapted towards UT-Scope with a combination of
maximum likelihood linear regression (MLLR) adaptation, and max-
imum a posteriori (MAP) adaptation. The adaptation data is drawn
from the UT-Scope clean neutral samples. Sessions of the adaptation
set subjects are withdrawn from the evaluations. The test set contains
sessions from 3 male and 19 female subjects. A total of 100 phoneti-
cally balanced TIMIT-like sentences produced in the neutral condition,
and 20 TIMIT sentences produced in nine noise type/level conditions
are available for each subject.

The ASR setups are evaluated on (i) anechoic sets – neutral speech
and anechoic increased vocal effort speech produced in 70, 80, and
90 dB SPL of simulated highway and crowd noise, and 65, 75, and
85 dB of pink noise (the noise is not present in the recordings); (ii) the
previous sets, reverberated with the RIR sample (T60 = 250 ms) from
the AIR database; (iii) sets from i reverberated with the RIR sample
(T60 = 480 ms) from the AIR database. This totals in 30 evaluation
sets. The initial ASR system with MFCC–CVN front-end provides
performance of 91.7 % word accuracy (Acc) on the anechoic neutral
set. Since the focus of this study is on the effects of increased vocal
effort and reverberation on acoustic modeling in ASR, the remainder
of the paper reports word accuracies with LM being bypassed.

4.5. CLSD‘05 Small Vocabulary Experiments

A monophone recognizer is trained on the Czech SPEECON database
[28]. The recognizer comprises 43 context-independent monophone
models and two silence models. The models are trained on large vo-
cabulary material from the Czech SPEECON database [28]. The task
is to recognize 10 Czech digits (16 pronunciation variants) presented
in connected digits utterances. The neutral test set comprises a total
of 6353 words and the increased vocal effort test set 11663 words.
Similar as in the UT-Scope case, the neutral and increased vocal effort
sets are presented in the anechoic (i.e., original) and reverberant (T60
= 250 ms and T60 = 480 ms) conditions.

4.6. Results and Discussion

This section presents the observations made in the UT-Scope LVCSR
and CLSD‘05 digit recognition experiments. Since the number of
the ASR evaluation tasks, as well as the number of feature extraction
strategies considered is extensive, in the following paragraphs we at-
tempt to only summarize the overall trends and main outcomes of the
experiments.

UT-Scope LVCSR Experiments: In the first step, efficiency of
the normalizations from Sec. 3 included in an MFCC front-end was
studied for anechoic and reverberated sets comprising pooled neu-
tral and increased vocal effort samples. With increasing reverberation
time T60, the ASR performance severely deteriorates for all front-end
setups. In all conditions, the combination of CMN and RASTALP
(CMN-RASTA) outperformed traditional RASTA. The combinations
CGN-RASTALP and QCN4-RASTALP consistently ranked among
the top four normalizations in all scenarios, and ten out of twelve
best performing front-ends utilized RASTALP filtering. Since CGN-
RASTALP preceded, in the terms of word accuracy, QCN4-RASTALP
in two out of three scenarios, it is considered to be the most efficient
normalization in this evaluation. Detailed results of this experiment
can be found in [12].

In the next step, selected feature extraction strategies were eval-
uated in combination with four normalizations (no normalization,
CMN, CVN, and the best performing normalization identified in the
previous paragraph – CGN-RASTALP). CMN and CVN are chosen
to represent the common choice in many ASR engines. Front-ends
mentioned in Sec. 1 and MHEC incorporating spectral subtraction
(MHEC-SS), sub-band normalization (MHEC-SN), or both (MHEC-
SS-SN) were combined with normalizations and evaluated on anechoic
and reverberated sets. On anechoic data sets, once combined with
any normalization, MFCC reached a superior performance. LTLSS,
MHEC, and MHEC-SN ranked second behind MFCC. NMF provided
inferior performance to all other front-ends. For reverberated data
(T60 = 250ms), MHEC-SS and MHEC-SN performed best, followed
by NMF and MHEC. ETSI-AFE performed inferior to other front-
ends. On reverberated data (T60 = 480ms), NMF established highest
accuracy, followed by the four MHEC configurations. CGNLP is most
beneficial for all extraction strategies, except for NMF, which benefits
most from CVN. Hence, NMF is paired with CVN and all other front-
ends employ CGNLP in the subsequent analysis.

Third, feature extraction strategies are paired with their respec-
tive ‘optimal’ normalizations and evaluated separately for neutral, in-
creased vocal effort, and pooled sets in anechoic, T60=250 ms, and
T60=480 ms reverberation conditions. For comparison, performance
of a baseline MFCC front-end without any normalization (denoted
MFCC-none) is also evaluated. As can be seen in Fig. 1 and 2, MFCC-
CGNLP establishes the best performance in anechoic conditions for
both neutral and increased vocal effort speech while ranking fourth be-
hind NMF, MHEC, LTLSS in T60 = 250ms. On the other hand, NMF
provides inferior performance in anechoic conditions (even dropping
below the baseline performance for increased vocal effort speech) but
matches the top-performing front-ends in T60 = 480ms and clearly
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Figure 6: CLSD‘05 Digit Recognition; impact of reverberation on speech
recognition on pooled neutral and increased vocal effort speech.
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dominates in T60 = 480ms. Fig. 3 suggests that the MHEC front-
end would be the best choice for a recognizer operating in varying
reverberation and vocal effort conditions, as MHEC-CGNLP provides
the most balanced performance for pooled neutral and increased vocal
effort speech in anechoic and reverberated conditions.

CLSD‘05 Small Vocabulary Experiments: Unlike in the case of
UT-Scope, CLSD‘05 experiments focus on the small vocabulary digit
recognition task. In addition, CLSD‘05 captures Czech spoken lan-
guage and the recognizer utilizes monophone acoustic models. These
differences allow for analysis of how transferable are the observations
made in the previous paragraphs to another language and recognition
task domain1. In the CLSD‘05 experiments, the front-end feature ex-
traction strategies (MFCC, MHEC, LTLSS, NMF, AFE) were com-
bined with all normalizations from Sec. 3 but feature warping and
histogram equalization (those two provided a suboptimal performance
in the initial experiments).

Figures 4, 5, and 6 depict the performance of each feature extrac-
tion strategy paired with the respective best performing normalization.
It can be seen that the overall ASR performance is considerably higher
here due to the simplicity of the task (digit recognition vs. LVCSR).
Also, the recognition deterioration is much milder when switching
from anechoic to T60=250 ms conditions. Similarly, the small vocabu-
lary recognition accuracy reduces less when switching from neutral to
increased vocal effort speech. It can be assumed that the word mod-
els in general small vocabulary task are more easily distinguishable in
the acoustic feature space and are less affected by the speech deterio-
ration due to reverberation compared to the LVCSR triphone acoustic
models.

Surprisingly, all feature extraction strategies in the CLSD‘05 task
paired with different ‘optimal’ normalizations than in the UT-Scope
task. Similar to UT-Scope, MFCC maintains the best performance on
anechoic neutral and increased vocal effort sets. This transfers also to
the T60=250 ms condition here. Similar to UT-Scope, NMF dominates
in T60 = 480ms for both types of speech. On CLSD‘05, the combi-
nation of MFCC and QCN represents the best choice across most of
the conditions, MHEC-SN and QCN being the second best front-end.

It can be seen that while plain MFCC front-end does not deal well
with either reverberation or increased vocal effort in both UT-Scope
and CLSD‘05, it becomes quite competitive when paired with a well
chosen normalization – see Fig. 2 in the UT-Scope task and Fig. 4–6
in the CLSD‘05 task.

5. Conclusion
This study analyzed the individual as well as combined impacts of re-
verberation and increased vocal effort on large and small vocabulary
recognition in English and Czech languages, respectively. Robustness
of several standard and state-of-the-art feature extraction techniques
and normalizations was evaluated in the varying reverberation/vocal
effort conditions. Several similar trends were observed for both the
English large and Czech small vocabulary tasks. In particular, it was
observed that ASR performance deteriorated with increasing vocal ef-
fort and reverberation time. However, this deterioration is milder in
the low vocabulary task, presumably due to the lower confusability
of the small vocabulary models in the acoustic feature space. When
combined with an ‘optimal’ normalization, MFCC front-end always
outperformed other schemes in anechoic conditions, both for neutral
and increased vocal effort speech. In addition, its performance re-
mained competitive with other front-ends in T60=250 ms for increased
vocal effort speech in the large vocabulary task as well as both neutral
and increased vocal effort speech in the small vocabulary task. NMF
front-end was consistently inferior in anechoic conditions, but became
competitive in T60=250 ms and dominated in T60 = 480ms in all
evaluations. Recently established MHEC feature extraction front-end
provided well balanced performance in both LVCSR and small vocab-
ulary tasks and state-of-the-art QCN and CGN-RASTALP normaliza-
tions ranked among the top choices for most front-ends considered in
this study.

1In an ideal world, the previous best front-end configuration might be ex-
pected to provide a sustained superior performance also here.
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