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Abstract In this study, we present advanced feature normal-
ization and rapid model adaptation for robust in-vehicle speech
recognition. For feature normalization, we use a combination of
recently established quantile-based cepstral dynamics normaliza-
tion (QCN) and low pass temporal filtering (RASTALP). Similar to
cepstral mean normalization (CMN), QCN aims at alleviating the
mismatch between ASR acoustic models and the decoded speech
signal. QCN relaxes CMN assumptions concerning feature distri-
butions, making the normalization more stable in varying adverse
environments. RASTALP is a low-pass approximation of RASTA
filtering which significantly reduces transient distortions introduced
by the original band-pass filter. Using the normalized features, we
adapt the speaker-independent acoustic model to specific speakers.
The adaptation method is based on an aspect model (a “mixture-of-
mixtures” model). To enable adaptation requiring only extremely
small amounts of adaptation data (i.e., a few seconds), we train a
small number of mixture models which can be interpreted as mod-
els of probabilistic “speaker clusters” for in-vehicle environments.
In this work, we use fMLLR to represent individual speaker mod-
els. The speaker models are mixed using weights determined from
adaptation data. Experimental results show that the normalization
employing QCN-RASTALP is consistently superior to CMN. We
also observe that in contrast to the conventional methods, the adap-
tation based on the aspect model improves word error rates for the
in-vehicle noise environments.

Keywords Robust speech recognition, in-vehicle environment,
QCN-RASTALP, aspect-model-based adaptation

1. INTRODUCTION
Background noise is considered one of the most challenging prob-
lems for in-vehicle speech recognition systems. For solving this mis-
match problem caused by varying car noises, many different meth-
ods have been proposed: These methods can be divided into three
types: recording-based, analysis-based, and model-based methods.
Among these approaches, we focus on the model-based method. In
particular, we introduce advanced front-end feature normalizations
and model adaptation for in-vehicle environment using small amount
of adaptation data.

For feature normalization, we investigate several traditional
schemes: cepstral mean normalization (CMN), cepstral gain normal-
ization (CGN) [1], and recently established quantile-based cepstral
dynamics normalization (QCN) [2] and a low pass temporal filtering
(RASTALP) [3]. While conventional CMN and CGN are known to
alleviate the effects of background noise and speaker/channel vari-
ability, their efficiency strongly depends on assumptions of Gaus-
sianity or symmetricity of the sample distributions. QCN is designed
to align dynamic ranges of the sample occurrences using quantile
intervals estimated from the sample histograms and as such has no

requirements on the shape of the sample distribution contours. QCN
is combined with a temporal filtering strategy RASTALP that is in-
spired by the popular RASTA filter [4]. RASTALP approximates the
low-pass portion of the RASTA band-pass filter by a second order
Butterworth filter. The low order RASTALP significantly reduces
transients effects seen in traditional RASTA [5]. Both separate and
combined, QCN and RASTALP were previously found to provide
superior normalization performance in noisy [5], Lombard effect [2],
and reverberated [6, 7] speech recognition tasks. In addition, they
displayed a competitive performance in the recent NIST SRE 2012
speaker recognition evaluation [8].

For model adaptation, there are two major approaches for the
adaptation: Bayesian-based maximum a posteriori (MAP) [9] adap-
tation and the transform-based maximum likelihood linear regres-
sion (MLLR); unconstrained MLLR and constrained MLLR (equiv-
alently fMLLR) [10–13]. The MAP approach is sufficiently stable
for limited adaptation data (even though there is very little or no im-
provement). Maximum likelihood linear regression (MLLR) which
is used for speaker adaptation, can easily be applied for noise adapta-
tion. Although MAP and MLLR are effective for speech recognition
in noisy environments, they require large amounts of adaptation data
(more than 10 sentences; this could be worse in unsupervised adap-
tation case) for achieving sufficient performance.

In this paper, we introduce model adaptation based on aspect
models. For in-vehicle environment ASR systems, the adaptation
must be fast and rely on limited adaptation data. To realize a rapid
adaptation, efficient approximation of inherent speaker/environment-
specific characteristics is needed using extremely small number of
adaptation data. The proposed Bayesian adaptation method exploits
an aspect model: a “mixture-of-mixture” model. The difference
from the previous work is that each speaker model is represented
using speaker specific fMLLR transformation matrices (i.e., fMLLR
adaptation in the training phase) instead of training speaker model
using speaker specific data. In the presented framework, small
numbers of “aspect models” are trained first based on maximum
likelihood estimation, which are mixtures of distributions of the
original unadapted model. When the adaptation data are given, the
aspect models (i.e., basis models) are combined so that the likeli-
hood for the adaptation data is maximized. The mixture weights are
determined based on the maximum likelihood maximization (MLE).
We evaluate the effectiveness of the proposed feature normalization
and model adaptation methods by employing a speech recognition
experiment under the in-vehicle environment.

2. FEATURE NORMALIZATION
The following cepstral normalizations are considered in our study:
cepstral mean normalization (CMN) [14], cepstral gain normaliza-
tion (CGN) [1], and recently proposed quantile-based cepstral dy-
namics normalization (QCN) [2] combined with RASTALP tempo-
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ral filtering [3].

2.1. CMN
Cepstral mean normalization is a widely used technique compensa-
tiong for the speech signal variability in the cepstral domain [14].
The main focus of CMN is on convolutional distortions, however,
it is partially effective also in reducing the effects of talking style
variability and additive environmental noise [2]. In our study, CMN
is applied on the speaker level, i.e., all speaker utterances are used
to estimate the mean cepstral vector utilized in CMN. While this ap-
proach allows for a more accurate estimation of the cepstral means, it
may not be available in online processing scenarios where utterance
by utterance decoding is required. The other normalizations consid-
ered in this paper are applied in an online, per-utterance fashion.

2.2. CGN
Cepstral gain normalization, CGN [1], is similar to cepstral mean
and variance normalization (CMVN). In CGN, the variance normal-
ization is replaced by dynamic range (estimated from minimum and
maximum samples) normalization. Both [1] and later studies [5]
found CGN providing superior performance to CMVN in noisy ASR
tasks.

2.3. QCN-RASTALP
Quantile-based cepstral dynamics normalization, QCN [2], is in-
spired by both CMVN and CGN; in QCN, the dynamic range of
cepstral sample occurrences is estimated from histogram quantiles.
In the subsequent step, the histograms are centered to the quantile
mean and their variance is normalized to a unit inter-quantile inter-
val:

cQCNj
n,i =

cn,i −
(
qCn
j + qCn

100−j

)
/2

qCn
100−j − qCn

j

, (1)

where qCn
j and qCn

100−j are jth and (100 − j)th quantile estimates
in the nth cepstral dimension. The quantiles are estimated on the
utterance-level from the dimension-wise cepstral sample histograms.
QCN was shown to provide good performance in both small and
large vocabulary tasks on neutral and LE speech in noisy conditions
[2, 5] and reverberation [6].

Band-pass filtering in RASTA [4] eliminates low frequency
components (including DC) as well as components varying faster
than typical for speech. RASTA is typically applied either on the
filterbank outputs in the spectrum domain or in the cepstral domain
and has been found to improve ASR robustness in noise and rever-
beration. The high order of the original IIR band-pass RASTA filter
tends to introduce transient distortions at the signal instances where
the energy changes rapidly (e.g., beginning/end of speech islands).
In [3], it was shown that these transients can be significantly reduced
when replacing the band-pass by a low order low pass filter denoted
RASTALP that approximates the characteristics of RASTA around
the high cut-off region. The DC suppression can be realized sep-
arately by CMN or similar normalizations. The coefficients of the
second-order infinite-impulse response (IIR) RASTALP filter

H (z) =

M∑
m=0

bm

/
N∑

n=0

an (2)

with: B = [b0, b1, b2] = [0.10408, 0.20816, 0.10408], A =
[a0, a1, a2] = [1, - 0.90342, 0.31973], assuming a 10ms window
step. In our study, the low-pass filter is combined with QCN, yield-
ing a compensation called QCN-RASTALP.

3. MODEL ADAPTATION
In this section, we briefly review the related approaches first, then
we explain the proposed aspect model.

3.1. Maximum a Posteriori Estimation
In most speech recognition systems using HMMs, the model param-
eters such as means and variances are estimated using maximum
likelihood estimation (MLE). The formula for MAP adaptation of
mean parameters as the follows:

µ̂ =
Naµa + τµ

Na + τ
, (3)

where µ̂ is the updated mean, µa is the mean of the adaptation data,
µ is the original mean,Na is the number of available adaptation data
and τ is a control variable determined empirically. The MAP method
can be regarded as finding the optimal combination of existing data
and adaptation data [9].

3.2. Feature Space Maximum Likelihood Linear Regression
fMLLR is widely used for feature space adaptation. We note that we
only consider global feature transformation matrix in this work. The
transformed feature vector ô(t) is given by

ô(t) = AFo(t) + bF

= WFξ(t),
(4)

where AF is a regression matrix, bF stands for a bias term, WF

represents a transformation matrix, and ξ is an augmented feature
vector. A more detailed explanation of the direct method can be
found in [13].

3.3. Speaker Adaptation Using Aspect Model
3.3.1. Aspect Model Training
In the training phase, we train a reduced core set of aspect models so
that the linear combination of these aspect models can approximate
each of the speaker matrices.

First, let us consider estimating a basis model for a specific state.
In our approach, each state has its own weighting. These basis mod-
els are used for estimating speaker specific aspect models. Defini-
tions of symbols are as follows:
• λk,z: the first-level weighting of the k-th speaker and the z-th

aspect basis
• ξk,z: the second-level weighting of the k-th speaker and the
z-th aspect basis

• o(t): the t-th feature vector
• ψk(o): a posterior probability for speaker k using the feature,
o, and corresponding transformation matrix,W (k)

where the function ψk(ô) is represented as follows:

ψk(o) =

M∑
m=1

cmN (W (k)o;µm,Σm). (5)

We keep the original GMMs as represented in Eq. (3). The original
GMMs are expanded by the total number of speaker, K in the train-
ing data. We define the probability distribution function for speaker
k and transformed feature vector ô as,

p(o|Ξk, λ) =

Z∑
z=1

K∑
k=1

ξk,zλk,zψk(o(t)), (6)
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where
Ξk = {ξ1,1, · · · , ξk,Z}. (7)

The optimal λk,z and ξk,z can be found as [15, 16],

λk,z =

∑
t αt,zβt,k∑

k

∑
t αt,zβt,k

, ξk,z =

∑
t:vt=k

αt,z∑
t

∑
t:vt=k

αt,z
, (8)

where αt,z and βt,k are the expectations of being in the z-th aspect
model and k-th speaker models, respectively. This process is applied
to all states sharing ξz .

3.3.2. Weighting Combination for Adaptation
For adaptation of the aspect models, a weighted combination is per-
formed using all available adaptation data. For this, this expectation
maximization (EM) algorithm is applied for estimating ξ̄z , which is
the updated ξz . When the adaptation data y(1),y(2), · · · ,y(T ) are
given, ξ̄z is calculated as,

ξ̄(n+1)
z =

∑
s

∑
t ξ̄

(n)
z

∑
k ψk,s(y(t))∑

z

∑
s

∑
t ξ̄

(n)
z

∑
k ψk,s(y(t))

. (9)

where n represents the number of iterations and s is the specific
model state.

4. EXPERIMENTS
Speaker adaptation performance for the proposed method was eval-
uated using the CU-Move Corpus [17] in an unsupervised fashion.

4.1. Experimental conditions
The training data consists of 32556 utterances (prompt reading) from
98 speakers (46 males and 52 females) of a certain topic collected
in vehicle (about 33.7 hours of speech data; we selected training
speaker based on documentation about CU-Move corpus [18]). The
test set consisted of 13760 utterances (9.98 hours, 6704 words) from
40 speakers (20 males and 20 females). Table 1 shows the experi-
mental setup.

Table 1. Experimental setup
Sampling rate 16 kHz
Feature vector MFCC + Energy + ∆ + ∆∆ (39 dims.)

LDA + MLLT
Frame length 25 ms
Frame shift 10 ms

No. of categories 43 phonemes
HMM topology Context-dependent

1577 (CMN) and 1612 (QCN) states
≈ 8 mixtures per state
3-state left-to-right HMM

Training method ML Baum-Welch

Language model 3-gram
Vocabulary size 85,808
Perplexity 151.05
OOV rate 15.07 1

The acoustic model training, decoding, and the following acous-
tic model adaptation procedures were performed with the Kaldi
speech recognition toolkit [11].

1We note that the OOV rate is high, and improved language models will
be considered in the future.

4.2. Effect of Feature Normalization
The first round of evaluation experiments is focused on establishing a
baseline ASR performance on the CU-Move task. Three approaches
to front-end cepstral normalization (see Sec. 2) – CMN, CGN, and
QCN-RASTALP (for space reasons denoted ‘QCN’) – are compared
in Table 2. It can be seen that the order of performance is identical
for setups with and without LDA and MLLT, with CGN reducing
the WER of CMN and QCN outperforming both CMN and CGN. In
both cases, QCN provides more than 1.3 % absolute WER reduction
compared to CMN. The superior performance of QCN can be at-
tributed to two factors – (i) more accurate alignment of the dynamic
ranges of non-Gaussian cepstral distributions (low cepstral coeffi-
cients c0–c2 that reflect the energy and spectral slope of the speech
signal tend to be multimodal and are very sensitive to the presence
of environmental noise [2]) and (ii) the employment of RASTALP
filtering that alleviates the impact of non-stationary noises [5].

Table 2. Word error rate comparison using CMN, CGN, QCN (%).

Model Training
Feature Normalization

CMN CGN QCN

MLE (MFCC) 40.57 40.50 39.22
MLE (LDA+MLLT) 38.61 37.39 37.24

4.3. Comparison with Existing Adaptation Methods
We performed experiments using conventional MAP, fMLLR, ba-
sis method [19], and the proposed aspect-model-based method. For
MAP, we empirically set the control parameter τ to 20. For fMLLR,
we used global diagonal full transformation matrix for the adapta-
tion. For basis method, we set the number of coefficients dn as same
value in [19] (i.e., η = 0.02). In the proposed approach, we set the
number of aspect models to 20. The experimental results are shown
in Tables 3 and 4.

Experimental results show that all existing methods suffer from
data sparsity problem when adaptation data is small. Even MAP and
basis methods degrade performance which can be attributed to the
unsupervised adaptation in this experiment. The proposed method
did not degrade the performance for small adaptation data. In fact,
the proposed method provided the best performance among all adap-
tations for small amounts of adaptation data (less than 15 seconds).
Finally, it can be seen that all adaptation approaches consistently
benefitted from applying QCN-RASTALP. The most dramatic WER
reduction when switching from CMN to QCN-RASTALP can be
observed in full-covariance fMLLR with absolute WER reduction
by over 17 % for the smallest adaptation set. In addition, QCN-
RASTALP increased the WER margin between the aspect model
approach and MAP for the smallest adaptation set. These results
demonstrate that the novel techniques presented in this paper do
not only provide superior performance to their counterparts in the
respective domains, but display also complementary benefits when
combined together.

The small number of aspect models could adjust numerous pa-
rameters of reference speaker models. The advantage of the pro-
posed method is that we can set different weightings for each state.
However, the free parameters for adaptation are small because only
ξz must be estimated in the adaptation phase (i.e., 20). We can also
decide the set of aspect models using a regression class tree. This
increases the number of free parameters, and therefore we can ex-
pect performance improvement according to the amount of adapta-
tion data.

S.-J. Hahm, H. Bořil, P. Angkititrakul, and J.H.L. Hansen, – 3



The 6th Biennial Workshop on Digital Signal Processing for In-Vehicle Systems, Sep. 29-Oct. 2, 2013, Seoul, Korea

Table 3. Word error rate comparison using MAP, fMLLR, basis method, and the proposed basis method with CMN (%).

Adaptation
Method Baseline

Average amount of adaptation data (average length in frames and seconds)

500 1000 2000 5000 10000 20000 50000 100000 All
(4.8) (8.1) (14.9) (36.4) (69.2) (135.4) (330.8) (646.7) (848.4)

MAP (20) 38.80 38.85 38.82 38.97 39.12 39.14 38.91 38.63 38.32
fMLLR (Full) 38.61 75.69 57.40 46.99 40.35 38.35 37.60 36.80 36.51 36.36
Basis 43.06 41.20 40.03 38.28 37.67 37.37 36.90 36.55 36.38
Aspect (20) 38.23 38.23 38.23 38.22 38.23 38.23 38.23 38.23 38.23

Table 4. Word error rate comparison using MAP, fMLLR, basis method, and the proposed basis method with QCN (%).

Adaptation
Method Baseline

Average amount of adaptation data (average length in frames and seconds)

500 1000 2000 5000 10000 20000 50000 100000 All
(4.8) (8.1) (14.9) (36.4) (69.2) (135.4) (330.8) (646.7) (848.4)

MAP (20) 37.37 37.34 37.31 37.43 37.51 37.47 37.30 37.10 37.00
fMLLR (Full) 37.24 58.26 43.13 38.47 36.77 36.31 35.98 35.71 35.49 35.40
Basis 38.04 37.75 37.72 37.26 36.71 35.99 35.73 35.49 35.43
Aspect (20) 36.78 36.78 36.78 36.78 36.78 36.78 36.78 36.78 36.78

5. CONCLUSIONS
In this paper, we investigated advanced feature normalization and
rapid model adaptation for robust in-vehicle speech adaptation. For
feature normalization, we exploit advanced feature normalization,
QCN-RASTALP, instead of CMN and CGN. For model adaptation,
we used training information and a trained aspect model. Finally, we
demonstrated performance gains using only weighted optimization.
In the experiments, we confirmed that the proposed normalization
and adaptation methods result in improved performance, even when
the amounts of adaptation data was small.
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[5] H. Bořil, “Front-end compensation methods for LVCSR under
Lombard effect,” .
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