PITCH-MARKING BASED ON THE DFE ALGORITHM

6th ECESS me e t i n g

Hynek Bořil & Petr Pollák

Czech Technical University in Prague, Faculty of Electrical Engineering CTU FEE K13131, Technická 2, 166 27 Prague, Czech Republic Phone: +420 224 352 820; e-mail: borilh@gmail.com, pollak@fel.cvut.cz

Pitch-marks (PMs)

- Locations of significant instantenous energy peaks in the pitch periods.
- Correspond to the glottal closure instants (GCI).

s(k)**→**

- Crucial for pitch-synchronous speech analysis and synthesis (LPC, PSOLA).
- Energy peak locations to reduce distortions during the overlapping.

Envelope detector →

Pitch detector

• Detected from electroglottograph (EGG) or extracted from the speech signal.

MOTIVATION MOTIVATION

PM

Pitch Extraction

- Autocorrelation better time/frequency resolution than STFT or LPC.
- Signal segmentation required.
- Phase information loss.
- Multiple variable-variable multiplications => computation costs.

Goals of DFE

- Comparable time/frequency resolution to autocorr.
- Phase information preserved.
- No signal segmentation.
- Reduction of computation costs.
- PM detection as an integral part of the algorithm.

DFE CHAIN

Envelope detector - a short-time moving average of the signal energy.

- realized by low-pass FIR filtering of the squared signal.
- FIR order compromise envelope smoothing
 - ability to follow fast energy changes on the voiced/unvoiced (V/U) boundaries.
- Pitch detector frequencies are detected from significant peak-to-peak distances.

 Evaluation truth criteria are applied to the data from the envelope and pitch detector.

PITCH DETECTOR

• Due to the low order of the filter, some "false" peaks and zero-crossings still may remain in the signal.

 $P_1 < 0 \cup ZC(P_{last}, P_1) = 0 \cup P_1 < P_2 \cdot th \cup (P_1 < P_2 \cap ZC(P_1, P_2) = 0)$

• To identify locations of singificant extremes, the adaptive significant peak detection based on the

• ZC(X, Y) = 1 if there is at least one zero-crossing between peaks X and Y, else 0.

Criteria

Evaluation

Example of significant peak properties

Example - significant peak detection in additive noise

Pitch-mark Extraction

- Neighboring significant peaks bound a pitch period.
- Within the pitch period, the pitch-mark is determined as

$$k_{PM} = \underset{k}{\operatorname{arg\,max}}(s(k)) \text{ or } k_{PM} = \underset{k}{\operatorname{arg\,min}}(s(k)), \quad k_{P1} \leq k \leq k_{P2}$$

- The min/max function is chosen to follow peaks that exceed neighboring local extremes more significantly.
- Consistency of the pitch-marks, i.e. PM distance vs. pitch period length, is

Example - 5-order Majority Criterion

evaluated.
If it is not possible to detect PM positively as a signal extreme, actual PM position is determined from the previous PM and actual pitch period length.

CRITERIA

Energy

• Then P₁ is significant peak related to the maximum only if not:

After spectral shaping, all local extremes are detected.

neighboring peaks thresholding is performed.

Plast - last significant peak detected before P1.

Frequency Range

M-order Majority Criterion

- Actual level of energy E(k) is evaluated by the envelope detector.
- No frequency estimations for signal level lower than the threshold Eth.
- No frequency out of the specified range 60 600 Hz can be a valid estimation.

MAJORITY CRITERION

 More than half of M consecutively detected freqs must lie in the same frequency band of a chosen width ⇒ voiced/unvoiced classification.

Definition

• {fm} - sequence of M consecutively detected frequencies.

- Let fk ∈{fm}.
 Counts ({fm}) = 1
- count_{fk}({fm}) number of f that

$$f \in \{f_m\} \quad \cap \quad f \in \left(\frac{f_k}{\sqrt[24]{2}}; f_k \cdot \sqrt[24]{2}\right) \tag{1}$$

• The interval in (1) equals to the frequency bandwith of 1 halftone, centered to fk. $p = \max_{f}(count_{fk}(\{f_m\})), \ q = \arg\max(count_{fk}(\{f_m\})), \ k = 1,...,M$

If
$$p > \left| \frac{M}{2} \right| \Rightarrow f_{est} = f_q$$
. (3)

- If more than one fk satisfies (2) and (3) => fest = fmin(k).
- If majority criterion is satisfied => actual signal is evaluated as voiced.

Set the set of the set

Criterion - Principle

Solution of the frequency doubling problem

Pitch-tracking Evaluation

- #f number of detected frequencies that were compared to the referential channel frequencies.
- Average difference

$$\overline{\Delta} = \frac{1}{N} \sum_{n=1}^{N} \Delta_n, \quad \Delta_n = 1200 \cdot \log_2 \frac{f_2}{f_1}$$
 (%).

• **VE - voiced error** - *Tref* and *T* are total voiced times in the referential and evaluated channel.

$$VE = \left| \begin{array}{c} T_{ref} - T \\ T_{ref} \end{array} \cdot 100 \right| \quad (\%)$$

TESTS

• Standard deviation - octave errors excluded

$$\sigma = \sqrt{\frac{1}{N} \sum_{n=1}^{N} (\Delta_n - \bar{\Delta}^*)^2}, \quad \Delta_n < 1200 \quad (\%)$$

SNR/SNR _{ref} (dB)	#f	$\overline{\Delta}$ (%)	OE (%)	σ (%)	VE (%)
D/P 28.1/28.1	188734	39.69	1.11	64.31	N/A
D/D 17.9/28.1	147545	33.14	0.25	60.06	0.47
P/P 17.9/28.1	76957	80.44	3.16	66.50	N/A
D/D 9.6/28.1	94516	103.47	4.98	102.66	21.53
P/P 9.6/28.1	72742	133.64	5.48	92.12	N/A
D/D 4.9/28.1	5100	246.43	15.01	141.48	92.24
P/P 4.9/28.1	48096	1157.76	51.36	206.76	N/A

- D DFE channel.
- P Praat autocorrelation channel.
- Tests were performed on the Czech Speecon database.
- Performance was compared to the Praat modified autocorrelation algorithm (www.praat.org).
- OE octave errors number of differences equal or greater than one octave.