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the original training data to train the DNN–HMM acous-
tic model of a speech recognizer. The proposed method is 
evaluated on small-sized sets of neutral and whisper data 
drawn from the UT-Vocal Effort II corpus. It is shown that 
phoneme error rates (PERs) of a DNN–HMM based speech 
recognizer are considerably reduced when incorporating 
the generated pseudo-samples in the training process, with 
+ 79.0 and + 45.6% relative PER improvements for neu-
tral–neutral training/test and whisper–whisper training/test 
scenarios, respectively.

Keywords Speech recognition · Deep neural networks · 
Gaussian mixture models · Random sampling · Small 
datasets

1 Introduction

Deep neural networks (DNNs) have been successfully 
deployed in automatic speech recognition (ASR) primar-
ily due to the recent advances in machine learning meth-
ods and computer hardware. It has been shown by many 
researchers that a hidden Markov model (HMM) with DNN 
models (DNN–HMM) has the potential to model sequences 
of acoustic observations better than an HMM system with 
Gaussian mixture model (GMM) states (GMM–HMM) in 
a variety of tasks, including very large databases and large 
vocabularies (Dahl et al. 2012; Deng et al. 2013; Hinton 
et al. 2012; Seide et al. 2011). While traditional GMMs have 
been a convenient means of modeling HMM state distribu-
tions for decades (Liporace 2006; Rabiner (1990; Young 
1996), DNNs have recently demonstrated a superior quality 
in modeling data space nonlinearities (Hinton et al. 2012). In 
speech systems, DNN models employ multiple hidden lay-
ers and a large output layer mapped to senone states. While 

Abstract State-of-the-art speech recognition solutions 
currently employ hidden Markov models (HMMs) to cap-
ture the time variability in a speech signal and deep neural 
networks (DNNs) to model the HMM state distributions. 
It has been shown that DNN–HMM hybrid systems out-
perform traditional HMM and Gaussian mixture model 
(GMM) hybrids in many applications. This improvement 
is mainly attributed to the ability of DNNs to model more 
complex data structures. However, having sufficient data 
samples is one key point in training a high accuracy DNN 
as a discriminative model. This barrier makes DNNs unsuit-
able for many applications with limited amounts of data. In 
this study, we introduce a method to produce an excessive 
amount of pseudo-samples that requires availability of only 
a small amount of transcribed data from the target domain. 
In this method, a universal background model (UBM) is 
trained to capture a parametric estimate of the data distri-
butions. Next, random sampling is used to generate a large 
amount of pseudo-samples from the UBM. Frame-Shuffling 
is then applied to smooth the temporal cepstral trajectories 
in the generated pseudo-sample sequences to better resem-
ble the temporal characteristics of a natural speech signal. 
Finally, the pseudo-sample sequences are combined with 

 * John H. L. Hansen 
 john.hansen@utdallas.edu

 Shabnam Ghaffarzadegan 
 shabnam.ghaffarzadegan@utdallas.edu

 Hynek Bořil 
 borilh@uwplatt.edu

1 Center for Robust Speech Systems (CRSS), University 
of Texas at Dallas, Richardson, TX 75083-0688, USA

2 Electrical Engineering Department, UW-Platteville, 
Platteville, WI 53818-3099, USA

http://crossmark.crossref.org/dialog/?doi=10.1007/s10772-017-9461-x&domain=pdf


1064 Int J Speech Technol (2017) 20:1063–1075

1 3

the DNN–HMM paradigm becomes increasingly popular for 
acoustic modeling in ASR engines as well as other speech-
oriented applications, there are still numerous instances 
where a GMM–HMM is arguably a better choice. Due to 
their parametric nature, GMMs tend to be far more con-
servative in terms of the amount of training data required to 
learn and generalize the underlying structure of the modeled 
classes, and moreover, are easily adaptable to new scenarios 
when seeing small amounts of target-domain samples. On 
the contrary, DNNs tend to underperform or completely fail 
in situations where only limited sample sizes are available 
for training (Lasserre et al. 2006; Ng and Jordan 2002).

For a DNN model, having access to an excessive amount 
of training samples is a major factor in order to capture the 
non-linearity in the data structure and allow the model/train-
ing algorithm to converge. However, there are numerous 
speech applications where only small training or adaptation 
sets are available and acquiring more data is either challeng-
ing or not feasible, such as in specialized medical recordings 
[e.g., bladder cancer (Li et al. 2007b)], or alternative speech 
modes for communication such as whisper, where acquiring 
and transcribing larger amounts of data is costly and tedious 
(Ghaffarzadegan et al. 2014a, b, 2015, 2016).

To address insufficient data sizes in training, one solu-
tion could be adding artificial samples to the training set. 
Recently, there have been several studies on using small 
datasets for training neural networks (NNs). In Mao et al. 
(2006), a NN training method based on posterior probabili-
ties was proposed. In Li et al. (2007a), a mega-diffusion 
function was introduced to train the NN for dynamic manu-
facturing environments. The authors in Huang and Moraga 
(2004) proposed an information diffusion technique to derive 
new samples from a fuzzy set. However, none of these stud-
ies have considered DNNs operating in such a complex opti-
mization space as seen in speech recognition systems. Pro-
duction of artificial training samples in the context of speech 
recognition was considered in Bou-Ghazale and Hansen 
(1994), (1996), and shown to provide gains when only lim-
ited stressed speech samples were available for training, but 
the approaches relied on excessive a priori knowledge of the 
underrepresented target stressed speech domain and focused 
solely on accommodating GMM–HMM models. The goal 
of our study is to bridge the gap between DNN–HMM and 
GMM–HMM in the cases where the available data is suf-
ficient for successful GMM training but at the same time too 
limited to extract meaningful DNN models.

Studies on generative and discriminative classifiers (Ng 
and Jordan 2002); Rubinstein and Hastie 1997) suggest that 
generative models tend to be more successful in learning 
from small datasets as far as balanced/representative sam-
ples of the underlying data structure are available, and when 
the modeled process matches the assumptions made by the 
generative model (e.g., assumptions about the structure of 

the modeled distributions). Inspired by this, we introduce a 
new pseudo-sample generation scheme that utilizes a gen-
erative GMM trained on a small training dataset to produce 
large amounts of artificial samples. The artificial samples are 
then supplied to a DNN to learn the generalized structural 
information captured by the GMM.

The method proposed in this study uses only a small 
amount of data from the target domain to produce large 
quantities of pseudo-samples. The method utilizes a simple 
sampling algorithm to generate the pseudo-samples from 
the generative GMM model trained on the target data. The 
generated pseudo-samples are combined with the original 
target domain data and used to train a DNN–HMM rec-
ognizer. It will be shown that supplying the DNN–HMM 
system with the artificial samples considerably reduces rec-
ognition errors when compared to a DNN–HMM trained 
only on the original training data, and moreover, yields an 
acoustic model that surpasses a GMM–HMM trained on the 
original samples.

This paper is organized as follows. First, we introduce the 
method for producing artificial samples for DNN training. 
Next, the speech corpora used in the evaluations are briefly 
described. Finally, the effectiveness of the proposed method 
is evaluated on neutral and whisper datasets of the UT-Vocal 
Effort II corpus.

2  Proposed method

A number of speech recognition studies have demonstrated 
the effectiveness of DNNs in modeling state emission distri-
butions in HMMs (Dahl et al. 2012; Hinton et al. 2012; Selt-
zer et al. (2013). However, DNN modeling accuracy reduces 
dramatically when faced with insufficient training data. A 
straightforward solution is to provide additional labeled 
data that would contain the task-relevant information in a 
quantity that makes the information accessible to the DNN 
model through the learning process. Encouraged by the 
DNN success on large databases, in this section we propose 
a strategy to produce a large population of pseudo-samples 
from small available datasets. The goal of the method is to 
improve DNN–HMM learning from limited data and enable 
effective use of DNN–HMM acoustic models in constrained 
resource scenarios that have been so far widely dominated 
by GMM–HMM systems. Figure 1 outlines the proposed 
approach.

In the initialization step, a universal background model 
(UBM) is trained on the available small training dataset. The 
UBM is a GMM that captures general speech characteristics 
of the training samples in terms of a multimodal statistical 
distribution. In this study, a GMM with diagonal covariance 
matrices is used to model the distribution of Mel frequency 
cepstral coefficients (MFCC Davis and Mermelstein 1980) 
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extracted from the speech signal. A diagonal rather than a full 
covariance matrix is used, reflecting the common choice in 
acoustic modeling for ASR, and following the usual assump-
tion that MFCC feature vectors are reasonably decorrelated. 
Subsequently, pseudo-samples that reflect the training set dis-
tribution can be drawn from the GMM.

2.1  Random sampling of a GMM–UBM

There are various sampling methods available in the litera-
ture for synthesizing observations from sample distributions. 
A simple random sampling from the cumulative distribution 
function (CDF) is the most straightforward way of drawing 
samples. However, this method is directly applicable only 
when a closed form of the probability density function and its 
integral are known. However, in many real-world problems, 
the closed form representations are not available and other 
sampling methods need to be used. As an alternative, the 
Markov chain Monte Carlo (MCMC) algorithm is one of the 
most popular approaches for sampling multivariate probability 
density functions. Here, a Markov chain and random walks 
are utilized to numerically sample the CDF (Brooks 1998). 
Various modifications of the MCMC method are also avail-
able, such as the Gibbs sampling (Casella and George 1992) 
that generates samples from the marginal distribution, or the 
hybrid Monte Carlo (HMC) method that eliminates the need 
for random walks during the state space search (Neal 2010).

In our study, we devise a simple sampling algorithm that 
leverages the fact that the target posterior distribution is 
modeled by a GMM. In the GMM–UBM, the probability 
density function for the feature vector at time t, �(t), is mod-
eled by a mixture of weighted Gaussians:

where N() represents the normal distribution function; M is 
the number of Gaussian mixture components; �m and Σm are 

(1)f (�(t)) =

M
∑

m=1

wmN(�(t);�m,Σm),

the m-th mixture component vector of means and covariance 
matrix, respectively, and wm is the component weight.

To draw a sample from this distribution, we use the 
algorithm detailed in Table  1, which consists of two 
stages: (i) random Gaussian component selection, and (ii) 
within-component sampling. The task of the first stage 
(A) is to randomly select one component from the pool 
of the GMM Gaussians. While the selection is random, 
it has to reflect the distribution of component weights; 
components with higher weights will be chosen more 
frequently than those with lower weights. More specifi-
cally, with increasing number of draws, the normalized 
frequency with which a certain component is selected over 
others needs to approach the component weight (note that 
component weights within a GMM sum up to 1). To assure 
this, in Table 1, Step A.1, we define a so-called Cumula-
tive Weight Function (CWF) which integrates component 
weights. To randomly select a component, we draw a ran-
dom number between 0 and 1 from a uniform distribution 
(Step A.2), and use it as an argument to the inverse CWF 
(Step A.3). This sampling procedure is directly inspired by 
the traditional CDF sampling, where in our case the CDF 
is replaced by the CWF and the output k of the inverse 
CWF represents the index of the selected mixture compo-
nent rather than the final sample.

In the second stage (B), a random sample from the 
selected k-th component is drawn. First (Step B.1), a ran-
dom sample is drawn from a multivariate standard normal 
distribution, i.e., a normal distribution with zero means and 
an identity covariance matrix. Subsequently (Step B.2), the 
sample is scaled, dimension-wise, by the standard deviations 
captured in the square-rooted diagonal covariance matrix, 
and superposed with the vector of means of the k-the mix-
ture component.

With repeated draws, the sampling procedure will be pro-
ducing observations whose distribution will approach the 
one captured in the GMM–UBM. Since the UBM captures 
an acoustic-phonetic space of the training speech samples, 
phones present more prominently in the training set will 

Fig. 1  DNN training using 
pseudo-samples generated from 
GMM–UBM
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have a greater impact on the overall UBM statistics. In turn, 
random sampling from the UBM will produce samples that 
will reflect the phonetic balance seen in the original train-
ing set.

An example of the training dataset histograms and histo-
grams of the pseudo-samples produced using the proposed 
sampling procedure is shown in Fig. 2. Here, the first two 
cepstral coefficients c0 and c1 extracted from a UT-Vocal 
Effort II training set (introduced in Sect. 3.1) are presented 
in the upper plots and the histograms of the generated 
pseudo-samples in the bottom plots. It can be seen that the 

histogram contours for the generated data are approaching 
the ones of the original real speech.

After generating the artificial speech feature vectors, 
the sampled data are grouped into sequences to form 
pseudo-utterances. The pseudo-utterances are then fed 
to a GMM–HMM ASR engine trained on the original 
labeled training set to estimate state label alignments and 
provide target state emission probabilities for the DNN 
training. This is a common step required for DNN–HMM 
training. The slight difference is that the orthographically 
labeled training data used in typical ASR engines need 
only a forced alignment pass, while in our case the ortho-
graphic, and hence also phonetic, transcriptions of the 

Table 1  Random sampling from a Gaussian mixture model

A) Random Gaussian component selection:
   1) Compute a Cumulative Weight Function defined as:

      
CWF(m) =

m
∑

i=1

wi ;

   2) Draw a random sample x from a uniform distribution:
      U(0, 1) ↦ x;
   3) Select a corresponding Gaussian mixture component k using the inverse of CWF defined as:

      
k = CWF−1(x) = arg min

m

|CWF(m) − x| m = 1,… ,M
.

B) Within-Component Sampling:
   1) Draw a random sample r from a standard multivariate normal distribution
      N(�0, �n) ↦ �,
   where �0 is a vector of zero means, �0 = (0, 0,… , 0),
   and �n is an identity matrix �n = diag(1, 1,… , 1);
   2) Extract a pseudo-sample from the k-th component of the Gaussian mixture model:

      �Pseudo = � ×
√

diag(�k,0,�k,1,… ,�k,D−1) + �k

   where �k is the vector of means and �k,0…D−1 the D
   diagonal entries in the covariance matrix of the k-th mixture component, and × is the matrix product.

Fig. 2  Cepstral distributions in 
neutral training set and in neu-
tral pseudo-utterances sampled 
from GMM–UBM
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pseudo-utterances are not a priori known and need to be 
estimated through a decoding pass.

2.2  Smoothing pseudo‑utterances

The generated pseudo-utterances contain random sequences 
of samples drawn from the GMM–UBM. While the indi-
vidual samples are produced to resemble real speech fea-
ture vectors, their sequential order is random. In the real 
speech signal, each phone segment is typically represented 
by at least several consecutive feature frames. The random 
sampling procedure does not impose any constrains on inter-
frame phone transitions. As a result, the pseudo-utterances 
are likely to contain abrupt phone transitions between adja-
cent frames. At the same time, the individual samples in 
the pseudo-utterances already contain meaningful first- and 
second-order time derivatives, as those are modeled together 
with the static coefficients by the GMM–UBM. In this way, 
the state models trained on the pseudo-utterances will be 
still be exposed to a source of realistic temporal informa-
tion. Since the pseudo-utterances are to be decoded by a 
GMM–HMM recognizer in order to estimate frame-level 
phone labels and state emission probabilities, it seems mean-
ingful to first adjust the temporal cepstral trajectories in the 
pseudo-utterances to better resemble those in real speech 
accommodate the GMM–HMM transition models. In addi-
tion, it may be also helpful to adjust the ratio of the acoustic 
model versus phone-level language model (LM) weights 
in the pseudo-utterance decoding in favor of the acoustic 
weight as the LM will tend to favor hypotheses with phone 
transitions seen in real speech over the actual rare transitions 
captured in the pseudo-utterances.

In the following section, two approaches to temporal 
smoothing of cepstral trajectories are discussed.

2.2.1  RASTALP filtering

Relative spectral filtering (RASTA) (Hermansky and Mor-
gan 1994) uses a band-pass filter to eliminate the compo-
nents in the speech signal that vary either too slow (e.g., 
the DC component) or too fast to be related to the speech 
content. RASTA is typically applied either on the log energy 
outputs of the feature extraction filterbank or directly on the 
cepstral vectors, which is the choice in our study. Assum-
ing filtering in the cepstral domain, the high-pass portion 
of the RASTA filter eliminates the DC bias and the low-
pass smoothens the cepstral trajectories and suppresses 
abrupt amplitude changes. Recently, a modified RASTA 
filter, RASTALP (Bořil and Hansen 2011), has been intro-
duced and shown to outperform the original RASTA in 
ASR under various adverse conditions (Bořil et al. 2011). 
RASTALP reduces the original high-order band-pass fil-
ter to a low-order low-pass filter, effectively alleviating 

transient distortions of the original while enabling engage-
ment of other normalizations (e.g., cepstral mean normaliza-
tion (CMN) (Atal 1974) to eliminate the DC component). 
The transfer function of the second-order infinite-impulse 
response (IIR) RASTALP filter is defined:

w h e r e  t h e  f i l t e r  c o e f f i c i e n t s  a r e 
� = [b0, b1, b2] = [0.10408, 0.20816, 0.10408]  a n d 
� = [a0, a1, a2] = [1,−0.90342, 0.31973], assuming a 10 ms 
frame step (Bořil and Hansen 2011). RASTALP filtering has 
a good potential to smoothen abrupt frame-to-frame trajec-
tory changes in pseudo-utterances, making them closer to 
real speech. At the same time, linear filtering will impact the 
pseudo-sample distributions and make them depart from the 
GMM–UBM (note that this will be the case even when the 
original speech samples are also RASTALP-filtered prior to 
building the GMM–UBM). In summary, RASTALP filter-
ing may have both positive and negative contribution to the 
effort of making pseudo-utterances more realistic. Sect. 3.5 
will experimentally investigate which of those will prevail 
in terms of ASR performance.

2.2.2  Frame-shuffling

As discussed in the previous section, linear filtering of tem-
poral trajectories in pseudo-utterances may yield smoother 
and more natural cepstral contours that will better fit transi-
tion models in a GMM–HMM trained on real speech. Unfor-
tunately, the filtering will also impact the distributions of the 
processed samples and may increase their mismatch with the 
GMM–HMM state models. In this section, we introduce an 
algorithm called Frame-Shuffling which aims at making the 
temporal contours in pseudo-utterances more realistic while 
keeping the cepstral distributions intact. As a result, the tem-
poral trajectories may better fit the transition models without 
the decoding accuracy of the state models being jeopardized.

Frame-Shuffling reorders the sequence of pseudo-utter-
ance frames so that the distribution of their between-frame 
Euclidean distances would approach the one seen in real 
utterances. Clearly, reordering frames will have no impact 
on the overall frame distribution. The Frame-Shuffling algo-
rithm is detailed in Table 2. To guide the shuffling process, 
a single Gaussian model is first estimated for Euclidean dis-
tances between neighboring frames in real training utter-
ances (Steps 1, 2). Note that in Step 1, I denotes, for simplic-
ity, the total number of feature frames in the training set. In 
reality, the number of measured distances would be slightly 
reduced as between-utterance distances (i.e., distances 

(2)H(z) =

∑M

m=0
bm

∑N

n=0
an
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between the last frame of one utterance and the first frame 
of a subsequent utterance) are excluded.

The shuffling procedure is initiated by taking the first 
sample from the unshuffled frame sequence and using it as 
a starting anchor point in the shuffled sequence (Steps 3, 
4). Subsequently, a random distance DPseudo,l is drawn from 
the distance probability density function (PDF) fD (Step 
5.i) and a sample from the unshuffled sequence whose dis-
tance from the current anchor vector is closest to DPseudo,l 
is found and added to the shuffled sequence (Steps 5.ii and 
5.iii), becoming the new anchor point for the next distance 
matching. Throughout the shuffling algorithm, samples that 
were already included in the shuffled sequence are automati-
cally excluded from the subsequent searches (see the search 
boundaries in Step 5.ii). The procedure is repeated from Step 
5.i until the completion of the shuffled sequence (Step 6).

While the Frame-Shuffling algorithm is intended to be 
intuitive and straightforward, the authors experienced several 
issues during its implementation and testing. The measured 
distance histograms for the original data had ‘well behaved’ 
unimodal contours that resemble a slightly skewed normal 
distribution (or more precisely, a generalized extreme value 
distribution – GEV), suggesting that a single Gaussian PDF 
would provide for a reasonable distance model. After Frame-
Shuffling, the distance histograms of the pseudo-utterances 
would in most part match the shape of the target Gaussian 
distribution fD, however, there was always an additional left 
side lobe emerging close to the y-axis. This is a direct con-
sequence of drawing distance samples from a PDF whose 

left tail extends to negative values (which is unavoidable for 
Gaussian PDFs). This causes Frame-Shuffling to occasion-
ally draw negative DPseudo,l. Given that samples with negative 
Euclidean distances cannot exist and the nearest meaningful 
(i.e., nonnegative) Euclidean distance is zero, the algorithm 
will automatically reach for a sample with a minimum dis-
tance from the current anchor. This will be the case for all 
negative DPseudo,l, causing occasional plateaus in the tem-
poral trajectories and building up an additional side lobe 
in the distance histogram. To address this, we have added 
a constraint on the draw that any DPseudo,l < Th would be 
discarded and a new draw would follow. The threshold value 
was experimentally set to Th = 8, following the minimum 
distance values seen in the real speech GEV-like histogram.

In addition, we have noticed that once Frame-Shuffling 
is getting close to its completion, the fewer samples left 
to be shuffled, the greater departure of the available dis-
tances from DPseudo,l can be expected. In particular, we 
have observed that samples gathered in a tight Euclidean 
space tend to pile up towards the end of the shuffling pro-
cess, contributing once again to the unwanted side lobe 
in the vicinity of the y-axis, in spite of the Th constraint 
introduced in the previous paragraph. To alleviate this 
effect and impose a greater variability in the leftover vec-
tors, we have loosened the search criterion in Table 2, Step 
5.ii; instead of searching for the best match with DPseudo,l, 
the first sample in the sequential search whose distance is 
within ±5 % of DPseudo,l is taken. While this will result in a 
slight departure of the shuffled PDF from fD, it will limit 

Table 2  The Frame-Shuffling algorithm

Shuffling pseudo-utterance frames:
   1) Extract euclidian distance for adjacent frame-level feature vectors for all real utterances:
      Di = d(�i, �i+1) i = 0, 1,… , I − 2;
   2) Estimate a Gaussian pdf for D:

       fD = N(D;�D, �
2
D
)

   3) Input: unshuffled sequence of pseudo-utterance frame vectors
      �Pseudo = (�Pseudo,0, �Pseudo,1,… , �Pseudo,L−1);
   4) Shuffling initialization: �Shuffled_Pseudo,0 = �Pseudo,0;
   5) For l = 0∶ L − 2,
      (i) Draw a random distance sample from

      N(�D, �
2
D
) ↦ DPseudo,l

      (ii) Find a frame vector from �Pseudo that has not yet been included in �Shuffled_Pseudo and that has the closest distance to DPseudo,l from the 
current �Shuffled_Pseudo,l:

      

q(l) = arg min
q

|

|

|

d(�Shuffled_Pseudo,l, �Pseudo,q) − DPseudo,l
|

|

|

q = 0,… ,L − 1 ∧ q ≠ q(k), k = 0,… , max(l − 1, 0);

      (iii) Add the frame vector in the �Shuffled_Pseudo sequence:
      �Sorted_Pseudo,l+1 = �q(l)

      (iv) Next;
   6) �Shuffled_Pseudo has been completed.
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the production of outlier distances towards the end of the 
shuffled sequences, keeping the trajectory dynamics in a 
range typical for real speech (see examples in Sect. 3.5).

It is noted that Frame-Shuffling is a simple dynamic pro-
gramming algorithm that, due to its sequential search nature, 
provides suboptimal ordering of the feature frames with 
respect to the desired global between-frame distance distri-
bution. More sophisticated methods that would minimize the 
global distance error costs over the whole pseudo-utterance 
could further improve the shuffling procedure. However, as 
shown in Sect. 3.5, the current algorithm is quite effective 
in approximating the desired distance characteristics while 
requiring only a minimal computational overhead.

After the temporal smoothing is completed using either 
RASTALP or Frame-Shuffling, state labels and emission 
probabilities are extracted via GMM–HMM decoding and 
used for DNN training.

3  Experimental results

The following sections experimentally evaluate the proposed 
sampling and smoothing algorithms in terms of ASR per-
formance. Sample distributions and temporal trajectories in 
the real speech samples and produced pseudo-utterances are 
also studied.

3.1  UT‑vocal effort II corpus

The UT-Vocal Effort II (VEII) corpus (Zhang and Hansen 
2009) is used for evaluations in this study. The corpus cap-
tures neutral (modal) and whispered speech recordings, 
which allows us to test the proposed algorithms in two sub-
stantially different scenarios. Whisper is an example of a 
strongly underrepresented speech modality in terms of pub-
licly available resources, and hence may provide a practical 
insight into the applicability of the suggested schemes.

The corpus captures read and spontaneous speech from 
112 speakers (37 males and 75 females). The spontaneous 
part of the corpus was recorded in a simulated cyber cafe 
scenario inside a 12� × 12� sound booth where two people 
were communicating in neutral and whispered modes and a 
third person was trying to overhear as much key information 
as possible. The read portion of the corpus contains three 
parts: (i) whole sentences – 41 TIMIT sentences (Zue et al. 
1990) read in neutral and whispered modes; (ii) whispered 
words – two paragraphs from a local newspaper read in 
modal voice, with some words being whispered; (iii) whis-
pered phrases – two paragraphs from a local newspaper read 
in modal voice, with some phrases being whispered. In our 
experiments, a subset of the read part of the VEII corpus 

– neutral and whispered whole sentences from 39 females 
and 19 males are utilized. All recordings were downsampled 
from 44.1 to 16 kHz/16 bits.

3.2  Experimental setup

In all experiments, gender-independent ASR models are 
built using the state-of-the-art ASR toolkit the Kaldi 
(Povey et  al. 2011). In the GMM–HMM setup, three-
state left-to-right triphone HMMs with GMM are used to 
model 48 English phones including silence. The number of 
mixture components per state is optimized by the Kaldi’s 
training algorithm and varies across states. 13 static 
MFCCs and their first- and second-order time derivatives 
are extracted using a 25 ms window shifted with a skip 
rate of 10 ms. All feature vectors are mean-normalized 
(Atal 1974).

GMM–HMM training is divided into two stages, a pre-
liminary stage and the main stage. In the preliminary stage, 
a basic triphone GMM–HMM recognizer is trained on the 
training dataset and subsequently used to label the training 
data into classes representing clustered HMM states. The 
state-labeled training data are then used to train a linear dis-
criminant analysis (LDA) (Haeb-Umbach and Ney 1992) 
which takes sequences of 9 consecutive feature vectors as an 
input. Once the LDA is established, it is applied on all train-
ing feature vectors. This whole procedure is repeated one 
more time to train the maximum likelihood linear transform 
(MLLT) (Gales 1998). Here, the LDA-transformed features 
are taken as an input. Similarly as in the LDA training, state 
alignments from a new GMM–HMM recognizer trained on 
the LDA-transformed features are used as targets for the 
MLLT training.

In the main stage, the LDA and MLLT transforms are 
hardwired in the feature extraction front-end for fea-
ture decorrelation and dimensionality reduction. The 
LDA–MLLT processed training samples are used to train 
the resulting GMM–HMM system using speaker adaptive 
training (SAT) (Matsoukas et al. 1997).

In the DNN–HMM system, a neural network with three 
hidden layers is used. Each hidden layer contains 2048 
nodes with p-norm (p = 2) activation functions (Zhang 
et al. 2014). The layers are pretrained in a generative fashion 
using layer-wise supervised backpropagation (Zhang et al. 
2014). The output layer comprises 5175 neurons with soft-
max nonlinearities. The DNN takes 9-frame segments of 
the MFCC vectors transformed by LDA–MLLT as its input. 
When using the original real speech training data, the tar-
get HMM state probabilities for DNN training are extracted 
via forced alignment with the GMM–HMM system. For 
pseudo-utterances, the target labels are obtained through a 
decoding pass with the GMM–HMM. Once the training is 
completed, the posterior probabilities from the DNN output 
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are converted to log-likelihoods to model the HMM state 
emission probabilities.

Both the GMM–HMM and the DNN–HMM training 
closely follow Kaldi’s TIMIT/s5 recipe.

3.3  Baseline experiments

In the initial experiment, a GMM–HMM recognizer is 
evaluated on the VEII neutral and whisper tasks. In the 
neutral task, the recognizer is trained and tested on the 
Ne VEII sets and in the whisper task on the Wh VEII sets 
(Table 3). As shown in the third column of Table 4, the 
recognizer reaches a phoneme error rate (PER) of 27.5% 
on the neutral task and 45.0% on the whisper task. The 
results are in agreement with the results in Ghaffarzadegan 
et al. (2014b), where whisper-trained recognizer tested on 
whisper data yielded a lower recognition rate compared 
to a neutral-trained model tested on neutral data. As dis-
cussed in Ghaffarzadegan et al. (2014b), the main cause of 
this disparity may be attributed to the higher confusability 
of the whisper phone set where voiced and unvoiced phone 
groups seen in neutral speech are now all mapped to the 
unvoiced acoustic space, causing wide overlaps of origi-
nally voiced and unvoiced fricative and stop pairs.

In the next experiment, performance of a DNN–HMM 
system is evaluated on the same neutral and whisper VEII 
tasks from the previous paragraph. It is noted, and this 
becomes especially prominent in the DNN case, that the 
available training data is very limited –30 min of neutral 
speech and 45 minutes of whispered speech (Table 3). 
As expected, these amounts are insufficient for the DNN 

models to fully learn the acoustic-phonetic characteristics 
required for a successful speech recognition. As shown in 
the fourth column of Table 4, the DNN–HMM PERs reach 
62.0% on the neutral task and 70.0% on the whisper task, 
notably lagging behind GMM–HMM.

3.4  DNN training with pseudo‑samples

In this section, we study the effect of including pseudo-
utterances in the DNN–HMM training set on ASR perfor-
mance. The pseudo-utterances considered here are produced 
using the random sampling algorithm from Sect. 2.1 and 
exclude smoothing, which will be investigated separately in 
Sect. 3.5. In all experiments, a task-specific GMM–UBM 
with diagonal covariance matrices is trained on the respec-
tive training dataset (either Ne or Wh). Two aspects are 
studied: (i) DNN–HMM performance as a function of the 
number of pseudo-utterances added to the training set, and 
(ii) DNN–HMM performance as a function of the number of 
mixture components in the GMM–UBM used for the pseudo-
utterance generation.

In the first experiment, we create training sets of various 
sizes by pooling together the original training set (either Ne 
or Wh) and a varying number of pseudo-utterances with 

Table 3  Speech corpora 
statistics

M/F males/females, Train training set, Test test set, Ne/Wh neutral/whispered speech, #Sents number of 
sentences, Dur total duration in minutes, Open Speakers different speakers in Train/Test

# Sessions

Corpus Set Style M F # Sents Dur # Wrds

VEII Train Ne 13 26 766 30 154
Wh 779 45 159

Test Ne 5 13 351 14 152
Wh 360 20 137

Table 4  Performance of GMM–HMM and DNN–HMM recognizers 
on neutral and whisper tasks; PER (%)

Train Test GMM–HMM DNN–HMM DNN–HMM 
Pseudo-sam-
ples

Ne-VEII Ne-VEII 27.5 62.0 13.1
Wh-VEII Wh-VEII 45.0 70.0 42.4

Fig. 3  DNN–HMM performance as a function of the number of 
pseudo-utterances included in the training set; PER (%)
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300-frame length. The GMM–UBM used here comprises 30 
Gaussian mixture components and each generated pseudo-
utterance has a fixed length of 400 frames (4 seconds). Fig-
ure 3 shows performance of the DNN–HMM systems as 
a function of the number of pseudo-utterances included in 
the training set. The leftmost result, ‘0’ pseudo-utterances, 
refers to the baseline scenario from Sect. 3.3 where only the 
original training data is used. It can be seen that by adding as 
few as 15 pseudo-utterances, the Ne PER dropped from 62.0 
to 36.0% and the Wh PER from 70.0% to 58.6%.

The results also show that incrementing the number of 
pseudo-utterances in the training set does not have a mono-
tonic impact on the DNN–HMM accuracy, as there are 
multiple local minima and maxima in both the neutral and 
whisper PER trends. This is likely caused by the inherent 
randomness in the sample generation and the related fluc-
tuating quality of the pseudo-utterances in terms of their 
resemblance of real utterances, especially with respect to 
their temporal characteristics, as well as the convergence of 
the DNN training process which is bound to settle in local 
optima. This being said, Fig. 3 shows descending global 
trends for both the Ne and Wh PERs.

In the neutral task, the performance is improving rapidly 
with the number of added pseudo-samples and reaches mini-
mum at 14.5 % PER for 300 pseudo-utterances. The whis-
per task also witnesses a considerable PER reduction, even 
though less dramatic and more variable. Here, the best PER 
of 42.4% is reached for 600 pseudo-utterances. As discussed 
in Sect. 3.3, whisper recognition is arguably more challeng-
ing due to the higher confusability of phone classes in the 
acoustic space, which results in reduced ASR performance 
compared to the neutral task.

In the next step, we evaluate the impact of the num-
ber of mixture components in the utterance-generating 

GMM–UBM on the DNN–HMM performance (see Fig. 4). 
Here, the number of pseudo-utterances extending the origi-
nal training set is fixed to 300. In the neutral task, the PERs 
show a steady, slightly increasing trend with the increasing 
number of mixture components. The lowest PER (13.1 %) 
is achieved with 7 components. The whisper task is more 
sensitive, with an abrupt PER increase between 30 and 60 
components. The best PER (42.4 %) is provided by 30 mix-
tures. The trend differences between neutral and whispered 
data may be likely attributed to the different phonetic diver-
sity in the neutral and whispered speech acoustic spaces. The 
authors hypothesize that the neutral acoustic-phonetic space 
is more spread and in spite of the limited size of the training 
data, can be successfully approximated by a higher number 
of Gaussians, while the whispered space is more monolithic 
and does not present a structure detailed enough to benefit 
from the higher number of Gaussians.

In summary, the experimental results in this section sug-
gest that the proposed random sampling-based DNN train-
ing is successful in considerably reducing the DNN–HMM 
PERs compared to the baseline DNN–HMM trained only 
on the real samples. In addition, the new training strategy 
also helps to level or even surpass the performance of a 
GMM–HMM system which has access to the same original 
training data (GMM vs. DNN PERs: 27.5 vs. 13.1 % Ne; 
45.0 vs. 42.4 % Wh). This suggests that random sampling-
based DNN training has a good potential to bridge the gap 
between DNN–HMM and GMM–HMM systems in tasks 
where only sparse training data is available.

3.5  Temporal smoothing

As discussed in Sect.  2.2, random sampling from 
GMM–UBM produces feature vectors whose distributions 
approach those of the training data. However, after the sam-
ples are concatenated into pseudo-utterances, the result-
ing temporal trajectories are completely random. This will 
cause mismatch with the state transition models in the basic 
GMM–HMM used for the pseudo-utterance labeling (see 
Sect. 3.2, preliminary stage) and may also affect the effi-
ciency of the LDA–MLLT transformations that were trained 
on concatenated real speech segments, and hence real speech 
trajectories. At the same time, the generated feature vectors 
still contain realistic first and second-order time derivatives 
from the GMM–UBM sampling and this temporal informa-
tion will be meaningfully modeled by the HMM states. In 
this section, two approaches to temporal smoothing—RAS-
TALP (Sect. 2.2.1) and Frame-Shuffling (Sect. 2.2.2) are 
experimentally studied.

Figures  5 and 6 show examples of the original and 
RASTALP-filtered cepstral trajectories (C1 and C2) in a real 
utterance and a pseudo-utterance, respectively. It can be 
seen that in both cases, the filter suppresses fast changes 

Fig. 4  DNN–HMM performance as a function of the number of 
Gaussian components in the GMM–UBM; PER (%). 300 pseudo-
utterances included in the training set
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in the temporal contours. As expected, cepstral tracks in 
the pseudo-utterance contain fast fluctuations and RAS-
TALP is reducing their rate. At the same time, unlike in 
the real speech utterance, the filtered trajectories here 
considerably depart from the original ones, which may 
impact the frame feature distributions. As shown in Fig. 7, 
RASTALP has relatively small impact on the sample his-
tograms in the real utterance (upper plots), while for the 
pseudo-utterance, the histograms before and after filtering 
differ significantly (center plots). This is an unfortunate 
artifact of linear filtering which will cause the RASTALP 
processed pseudo-utterances to depart from real speech in 
terms of frame vector distributions and in turn, affect the 
accuracy of the DNN–HMM state models. In the initial 
DNN–HMM experiment (following the setup from Sect. 3.4 

with a 30-component GMM–UBM and 300 pseudo-utter-
ances added to the training set), the DNN–HMM PER on 
the neutral task dropped from 13.1 % (without RASTALP) 
to 60.5%. In the RASTALP setup, the temporal filter was 
included in the feature extraction front-end and applied on 
all training and test data, including the GMM–UBM training 
stage. Clearly, the departure of the filtered pseudo-utterance 
distributions from those of real speech had a prevailing effect 
over the benefits of having less scattered temporal tracks.

In the next step, Frame-Shuffling (Sect. 2.2.2) is studied. 
The main purpose of this method is to reorder the pseudo-
utterance frames so the Euclidean distances of the con-
secutive feature vectors would follow the ones seen in real 
speech, in terms of distance distributions. This is expected 
to result in more natural temporal contours while, unlike in 
RASTALP, preserving the frame distributions intact. The 
bottom plots in Fig. 7 capture cepstral histograms for the 
sample pseudo-utterance before and after Frame-Shuffling, 
which are clearly identical. Corresponding temporal ceps-
tral trajectories before and after Frame-Shuffling are shown 
in Fig. 8. Here, the abrupt amplitude changes are notably 
reduced after shuffling, even though not to the extent seen 
in RASTALP.

Figure 9 presents between-frame distance histograms 
of real speech samples from the whole Ne set (upper plot), 
generated neutral pseudo-utterances (center plot), and shuf-
fled neutral pseudo-utterances (bottom plot). The center plot 
confirms that the pseudo-utterance trajectories considerably 
depart from real speech in terms of variance. The bottom 
plot shows that Frame-Shuffling is successful in transform-
ing the temporal variability towards real speech, in spite of 
introducing some artifacts in the resulting histogram due to 
the factors discussed in Sect. 2.2.2.

The effect of Frame-Shuffling on ASR is shown in 
Table  5. The PER on the neutral task is only slightly 
reduced, from 13.1 to 13.0%, and for whisper drops from 
42.1 to 38.1%. Neither of these two gains are statistically 
significant (at a 95% confidence level). These feature anal-
yses and ASR results show that Frame-Shuffling some-
what helps refining pseudo-utterances in a good direction, 
but at the same time also suggest that our concern about 
smoothing temporal trajectories to accommodate the state 
transition models in HMM might have been overstated. 
The DNN–HMM system in Sect. 3.4 trained on unshuffled 
pseudo-utterances was already well capable of outperform-
ing its GMM–HMM counterpart. This implies that either the 
transition models were not considerably hurt by the expo-
sure to the temporal randomness in the pseudo-utterances, 
or that the transition models have only a limited impact on 
the overall quality of an HMM. While the authors hypoth-
esize that both factors are involved in some way, the latter 
hypothesis has been supported by studies that went as far as 
setting all HMM state transition probabilities to a constant, 

Fig. 5  Cepstral temporal trajectories in a real speech sample before 
and after RASTALP filtering

Fig. 6  Cepstral temporal trajectories in a pseudo-utterance before 
and after RASTALP filtering
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while attaining meaningful performance [e.g., Ketabdar and 
Bourlard (2010)]. Finally, it is noted the pseudo-utterances 
still retain a good portion of the meaningful temporal infor-
mation through the first- and second-order time derivatives 
included in the frame feature vectors, and this information is 
learned by the state models of the HMM system.

Fig. 7  Cepstral histograms in 
a real speech sample before 
and after RASTALP and in a 
pseudo-utterance before and 
after applying RASTALP or 
Frame-Shuffling 

Fig. 8  Cepstral temporal trajectories in a pseudo-utterance before 
and after Frame-Shuffling 

Fig. 9  Euclidean distance histograms in real speech data (neutral 
training set), pseudo-utterances, and shuffled pseudo-utterances

Table 5  Performance of DNN–HMM trained on pseudo-samples vs. 
shuffled pseudo-samples; PER (%)

Train Test Pseudo-samples Shuffled 
pseudo-
samples

Ne-VEII Ne-VEII 13.1 13.0
Wh-VEII Wh-VEII 42.4 38.1
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4  Conclusions

DNN–HMM acoustic models have been increasingly popu-
lar in various speech–oriented applications, including speech 
recognition. Current DNN-HMM systems typically surpass 
traditional GMM–HMM based engines due to more efficient 
modeling of HMM state emission probabilities. However, 
the superior performance of DNN models comes at the 
cost of requiring more training data. There are numerous 
application domains where the available data is limited, yet 
sufficient for training/adapting meaningful GMM models, 
while being too sparse to train accurate DNNs. This is due 
to the inherently different nature of GMM and DNN mod-
eling where GMMs, being parametric models, need access 
to modest sample sizes to generalize the distribution con-
tours while DNNs rely on excessive examples to learn class 
boundaries.

The goal of this study was to bridge the gap between the 
DNN–HMM and GMM–HMM training when only sparse 
training samples are available. The proposed algorithm 
relies on a generative GMM–UBM model that will produce, 
through random sampling, an excessive number of pseudo-
samples. The pseudo-samples effectively carry information 
about the source data space as learned by the GMM, and 
thanks to their quantity, this information can be success-
fully mediated to the DNN. Two methods were introduced—
random sampling of a GMM–UBM which is used to generate 
pseudo-utterances for DNN training, and Frame-Shuffling, 
which reorders the pseudo-utterance frames to better match 
temporal trajectories of real speech. The proposed scheme 
was evaluated on a neutral and a whisper speech recogni-
tion task were only very limited training data were avail-
able (30 and 45 minutes, respectively). While the baseline 
GMM–HMM recognizer considerably outperformed the 
DNN–HMM setup, incorporating the proposed strategies in 
the DNN training helped the DNN–HMM to level and even 
surpass the GMM–HMM system. The evaluations showed 
79.0 and 45.6% relative PER reduction from the baseline to 
the random-sampling trained DNN–HMM, on the neutral 
and whispered tasks. The random-sampling DNN–HMM 
provided a 52.7 and 15.3% relative PER reduction compared 
to the GMM–HMM system trained on the original data.
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