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Estimating speaker height can assist in voice forensic analysis and provide additional side knowledge

to benefit automatic speaker identification or acoustic model selection for automatic speech recogni-

tion. In this study, a statistical approach to height estimation that incorporates acoustic models within a

non-uniform height bin width Gaussian mixture model structure as well as a formant analysis approach

that employs linear regression on selected phones are presented. The accuracy and trade-offs of these

systems are explored by examining the consistency of the results, location, and causes of error as well

a combined fusion of the two systems using data from the TIMIT corpus. Open set testing is also pre-

sented using the Multi-session Audio Research Project corpus and publicly available YouTube audio

to examine the effect of channel mismatch between training and testing data and provide a realistic

open domain testing scenario. The proposed algorithms achieve a highly competitive performance to

previously published literature. Although the different data partitioning in the literature and this study

may prevent performance comparisons in absolute terms, the mean average error of 4.89 cm for males

and 4.55 cm for females provided by the proposed algorithm on TIMIT utterances containing selected

phones suggest a considerable estimation error decrease compared to past efforts.
VC 2015 Author(s). All article content, except where otherwise noted, is licensed under a Creative
Commons Attribution 3.0 Unported License. [http://dx.doi.org/10.1121/1.4927554]
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I. INTRODUCTION

Recent years have witnessed an increased interest in the

use of voice-based biometrics as complementary traits for

person identification, access authorization, forensics, and

surveillance. While the identity traits extracted from a per-

son’s voice do not reach the level of distinction as seen in

fingerprints, iris patterns, or DNA, they have the potential to

complement and benefit the accuracy and robustness of other

biometric processes (Jain et al., 2004). In comparison with

other biometric domains, voice acquisition is less intrusive

and its implementation and deployment are easier and less

costly (Mporas and Ganchev, 2009). Moreover, in some

application domains (e.g., emergency calls), voice may rep-

resent the only accessible biometric source.

Current automatic voice-based speaker identification

systems, while very useful, are limited in the information

they provide. A typical speaker identification system can

identify an individual from a specific set of speakers

(Reynolds, 1995) or claim the individual does not belong to

the group of target speakers and is out of set (Angkititrakul

and Hansen, 2007), or verify whether the speaker is the

claimed individual or an impostor (Kinnunen and Li, 2010;

Hasan et al., 2013). These systems require access to a suffi-

cient amount of training samples from each in-set speaker

during the design stage, and when exposed to an out-of-set

speaker during identification, besides rejecting the individual

from the in-set, they do not generate any additional cues that

could be used in the follow-up identification efforts.

By extracting supplementary physical traits from the

speaker’s voice, if the subject is an out-of-set speaker, or if

insufficient training data are available, useful information

about the individual can still be determined for further foren-

sic purposes or simply for general analysis (Pellom and

Hansen, 1997) (i.e., determining the gender balance of all

users of a system; estimating a height or age distribution,

etc.). The physical characteristic that will be estimated in

this study is height. The overall goal is to determine a speak-

er’s height strictly from an input audio sequence with mini-

mal error and to evaluate the strengths and weaknesses of

the algorithm to determine the appropriateness for other

speech and language applications.

II. BACKGROUND

A majority of studies on height estimation from voice

rely on the assumed correlation between individual’s height

and vocal tract length (VTL), supported by the evidence

from magnetic resonance imaging (MRI) (Fitch and Giedd,

1999). Among other speech production features, low fre-

quency energy (van Dommelen and Moxness, 1995), glottal

pulse rate (Smith et al., 2005), subglottal resonances

(Arsikere et al., 2012), fundamental frequency (Lass and

Brown, 1978; K€unzel, 1989; van Dommelen and Moxness,

1995; Rendall et al., 2005; Ganchev et al., 2010a), formants

(van Dommelen and Moxness, 1995; Rendall et al., 2005;

Greisbach, 1999), and Mel frequency cepstral coefficients

(MFCC) and linear prediction coefficients (LPC) (Pellom

and Hansen, 1997; Dusan, 2005) were studied in the context

of height.a)Electronic mail: John.Hansen@utdallas.edu
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The acoustic theory of speech production suggests that

formant center frequencies are inversely proportional to

VTL (Lee and Rose, 1996). In this sense, the strong correla-

tion of VTL with height found in Fitch and Giedd (1999)

could be expected to transfer also to formant frequencies. In

reality, formant frequencies are not determined solely by

VTL but rather depend on the complex configuration of the

vocal tract cavity. For example, the first formant F1 is known

to vary inversely with the tongue height and the second

formant F2 varies with the posterior-anterior dimension dur-

ing vowel articulation (Kent and Read, 1992). On the other

hand, higher formants tend to be more steady and better

reflect the actual VTL, a property successfully exploited in

parametric VTL normalization techniques in automatic

speech recognition (Eide and Gish, 1996).

In Greisbach (1999), a linear regression-based height

prediction from the first four formant frequencies revealed

significantly higher correlations of the third and four for-

mants F3 and F4 with height compared to F1 and F2 for the

best height estimation-suited sustained vowels. The study

also observed varying suitability of different vowels for the

task. The authors hypothesized that this might be attributed

to the phenomenon of free variation, i.e., linguistically toler-

able variations of vowel quality across speakers and social

or geographical environments. The best result from that

study was a standard error of 6.83 cm for males and 6.20 cm

for females. Only long sustained vowels were considered;

this might not be practical in some applications but could es-

tablish a reasonable upper bound on performance.

Other studies used multiple regression techniques on a

large feature vector, which included prosodic and spectral

features obtained from the open SMILE toolkit (Eyben

et al., 2009), resulting in a mean average error (MAE) of

5.3 cm for males and 5.2 cm for females from the TIMIT

database (Ganchev et al., 2010a; Mporas and Ganchev,

2009). A more recent study (Arsikere et al., 2012) consid-

ered using the second subglottal resonance, which was sug-

gested as being more stable as the phoneme sequence

changes, unlike formant frequencies, which are phone de-

pendent. An MAE of 5.33 cm for males and 5.45 cm for

females was achieved using the TIMIT database with a tradi-

tional regression technique. That study was further explored,

whereby estimating the first through third subglottal resonan-

ces an MAE as low as 5.3 cm was achieved, which is compa-

rable to the top performing height estimation systems

(Arsikere et al., 2013).

One of the first studies in the area of automatic height

estimation from speech used a statistical approach based on

a Gaussian mixture model (GMM) class structure with 19

static MFCCs as the feature vector (Pellom and Hansen,

1997). Using the TIMIT corpus, an accuracy of 70% was

achieved within 5 cm, but it should be noted that the speaker

independent height models were trained on selected senten-

ces from all available TIMIT speakers and hence, the evalua-

tion set contained samples from the same speakers (yet

different sentences). This approach achieved text independ-

ence, which is beneficial for practical applications but,

unlike regression techniques, did not produce a specific

numeric height, only a height bin range. A later study

(Dusan, 2005) investigated correlations between height and

various acoustic features including fundamental frequency,

the first five formants, and MFCC and LPC features in a

phone-dependent approach. The results confirmed the good

correlation of MFCC features with height as previously sug-

gested in Pellom and Hansen (1997) and also demonstrated

benefits of combining cepstral features with formant

frequencies.

The approach taken in this study is to employ a regres-

sion technique that utilizes formant frequency location and

line spectral pair frequency structure (LSF) as well as a sec-

ondary MFCC-GMM system with data driven dynamic

height bins that includes a confidence score. These two sys-

tems are then combined to achieve the best overall accuracy.

By using a regression based method leveraged with a GMM

based solution, the strengths and weaknesses of these alter-

native schemes will help balance error in the overall height

estimation system. The regression system is phoneme de-

pendent and provides a point estimate of height, while the

GMM system is phone independent and provides a height

class (i.e., high interval) estimate. It is noted that the regres-

sion system requires occurrence of at least one of the phones

from the selected phone set to perform height estimation.

LSFs have not been used previously in height estimation, but

they were chosen due to the fact that they effectively repre-

sent spectral data including formant related structure. In

addition, using data driven dynamic height bins and estimat-

ing a confidence score for the GMM based solution is also

novel because previous GMM based solutions (Pellom and

Hansen, 1997) employed uniformly distributed height bins

with non-uniform speaker training data and also did not

incorporate any confidence score. A preliminary version of

the Gaussian mixture model height distribution based classi-

fication (GMM-HDBC) algorithm proposed here was consid-

ered in Williams and Hansen (2013). In the current study,

further algorithm development as well as a variety of experi-

ments are performed to judge performance. The distribution

of error as well as average error for each height is estab-

lished for each method to determine under what circumstan-

ces each approach performs well or fails. The effect of

speaker session-to-session variability with respect to per-

formance consistency for height estimation is determined as

well as the consistency of the necessary regression coeffi-

cients when the training speakers change. In addition, open

set height estimation, which employs speech from 10 male

and 10 female actors obtained from the audio portions on

YouTube video, is presented.

III. CORPUS

Little to no formal data collection for height estimation

has been undertaken in the field, so the primary data used in

this study is from the TIMIT (National Institute of Standards

and Technology, 1988) database. TIMIT was chosen because

it includes height information for each speaker, and it has

also been used in previous studies (Pellom and Hansen,

1997; Ganchev et al., 2010a; Mporas and Ganchev, 2009;

Arsikere et al., 2012, 2013; Dusan, 2005; Williams and

Hansen, 2013). The height distribution of the TIMIT
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speakers closely resembles that of the U.S. population height

distribution, which would allow for more effective testing.1

The heights available from the TIMIT corpus, however, are

self-reported; this could potentially introduce error.

However, studies have shown that while people tend to over-

estimate their height, a majority of the people only overesti-

mate by a small amount (Perry et al., 2011). Therefore the

error introduced by any potential self-reported bias is

expected to be minimal. Moreover, because Institutional

Review Board protocol was followed in the collection of

TIMIT where specific individuals cannot be identified with

speaker labels, there would be less incentive to overestimate

or underestimate their height.

IV. MODIFIED FORMANT/LINE SPECTRAL
FREQUENCY TRACK REGRESSION (MFLTR)

A. Formant and LSF estimation

As is shown Fig. 2, the MFLTR height estimation

approach employs both LSF based height estimation as well

as direct formant location estimation. It is a well known

speech processing challenge that when estimating formant

locations from LPC analysis, there is an inherent uncertainty

in ordering the resulting all-pole model (because the all-pole

speech model lies in the z-plane, the poles are not naturally

ordered in two-dimensional space). As such, for very strong

sharp formants, a double pole is possible so direct formant

location estimation from LPC analysis needs to know when

to assume a single pole pair is a true representation of a

formant location or if a double pole pair represents the form-

ant or if a pole pair is actually contributing to an overall

shaping effect of the vocal tract response.

Many speech processing engineers/scientists address this

issue by reducing the number of pole pairs in the LPC analy-

sis with the hope of having the resulting LPC model focus

more on the formant peaks and less on the overall vocal tract

response/shape (i.e., for 8 kHz sample speech, a tenth order

LPC analysis is reduced to eighth order in the hopes of having

four pole-pairs to represent the four formants over a 4 kHz fre-

quency range). In the MFLTR solution, we do perform LPC

analysis to directly estimate the formants and height informa-

tion (subsequent removal of “extreme values” was done partly

because of this ordering issue). In addition to the direct form-

ant estimation approach via LPC analysis, we also performed

LSF—line spectral pair analysis. The convenient property of

LSFs is that the two-dimensional set of LPC poles are pro-

jected onto the unit circle, so the resulting LSF position pa-

rameters can be more associated with formant locations.

Basically, LSFs are associated with LSF position and differ-

ence parameters (i.e., the even and odd LSF frequencies

become the position and difference parameters; one is the

position, the other represents the movement from the LSF

position, making it a “delta” shift in frequency). Small values

of the LSF difference parameter suggest the LSF pair is asso-

ciated with a sharp resonant peak corresponding to a formant

location, while large difference parameter values associate the

LSF pair more with an overall shaping pole pair. LSF also

have better interpolation properties and more reliable in char-

acterizing formant tracks. Figure 1 shows an example of LSF

position (solid lines) and difference parameters (these have

been thresholded in this example where if the difference pa-

rameter is within a delta of the position parameter, they are

marked as “þ” or “�” depending on if they are closer to the

upper or lower LSF position parameter track. It is easy to see

those tracks associated with formant tracks when the þ/� dif-

ference parameters are present. The ease by which LSFs can

be analyzed along a one-dimensional space (i.e., unit circle)

make them ideal for automatic analysis of formant structure.

To estimate formant frequencies, the poles from the all-

pole speech model need to be determined. To accomplish

this, the number of coefficients is determined as

n ¼ fs
1000

þ 2; (1)

where n is the number of coefficients and fs is the sampling

frequency. The LPC coefficients can then be calculated and

the roots of the all-pole model found. Once the roots of the

all-pole model have been determined, the formant frequen-

cies are estimated by

F̂i ¼
fs
2p

arctan
Im rð Þ
Re rð Þ

� �
; (2)

where r refers to the roots of the all-pole model. With the

formant frequencies estimated, the LSFs can then be calcu-

lated. LSFs are a robust way of representing the all-pole

speech model (Itakura, 1975)

H zð Þ ¼ 1

A zð Þ
¼ G

1�
Xn�1

k¼0

akz�k

: (3)

The polynomial A(z) is then split into two different polyno-

mials as follows,

PðzÞ ¼ AðzÞ � znþ1Aðz�1Þ; (4)

QðzÞ ¼ AðzÞ þ znþ1Aðz�1Þ: (5)

FIG. 1. Example of LSF position (Solid Lines) and difference parameters

(Hansen, 1988).
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From Eqs. (4) and (5), n is found by Eq. (1). The all-pole

model can then be rewritten as

H zð Þ ¼ 2

P zð Þ þ Q zð Þ
: (6)

Next, the zeros of P(z) and Q(z) are found, which results in

the individual LSFs which effectively project the roots of

A(z) onto the unit circle in the z-plane. When examining the

LSFs, the formant information can be inferred by two closely

paired LSFs (Itakura, 1975; Crosmer and Barnwell, 1985).

Once the raw formant locations and LSFs have been calcu-

lated, they can be smoothed over time to reduce estimation

errors that are known to occur. The first step in smoothing

the LSF tracks and formant tracks is to represent the raw

data as a cubic function (Greenwood and Goodyear, 1994).

The cubic track is then sorted from lowest to highest value.

Once the sorting is complete, half of the frames will be

FIG. 2. (Color online) Flow diagram of modified formant track/LSF regression algorithm (MFLTR, left) and GMM height distribution based classification

(GMM-HDBC, right) method.
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eliminated by removing the upper 25% of the frames with

the highest values as well as removing the lower 25% with

the smallest values for each track. The final tracks are

expected to be smooth and fairly constant with estimation

errors being minimized.

B. Algorithm—FLTR

Having estimated the formant and LSF structure, the

next step is to estimate height. The MFLTR for height esti-

mation is based on solving an equation that represents the

height of a speaker in terms of the first four formants along

with 18 LSFs and then performing a post-processing clean-

up phase for the height estimates (see the left hand side of

Fig. 2).

Past literature on non-linguistic speech feature extrac-

tion (e.g., gender or speaker information) often utilizes pho-

netic segmentation (Lamel and luc Gauvain, 1995) to

address signal variability during phonation of different

speech sounds. Studies focused on height estimation from

speech typically favor the use of vowel segments for their

relative stationarity and regular structure compared to other

phone classes (Greisbach, 1999; Dusan, 2005). In Dusan

(2005), a set of vowels well represented in the TIMIT

recordings were utilized in height estimation. Corresponding

utterance segments were parameterized by formant center

frequencies and MFCC and LPC features. The study pro-

vides a rank-ordered list of vowels with respect to the corre-

lation of their parameterized segments with height.

Following Greisbach (1999) and Dusan (2005), the

MFLTR algorithm proposed in this section focuses on vowel

segments. Four vowels /aa/, /ae/, /ao/, and /iy/ were chosen

due to the quantity of TIMIT speakers that produced them as

well as their separation in the F1–F2 space. In addition, these

four vowels ranked among the top ten (/iy/ being the rank

number one) in Dusan (2005). Vowel formants are generally

consistent over time because there is little vocal tract articu-

latory movement during their production. As a result, the

features extracted from the vowel segments can be expected

to be more stable compared to other phone classes. At the

same time, due to the distinct articulatory configurations

across the four vowels, it is beneficial to perform a separate

modeling for each vowel class.

Time boundaries of the selected vowels in TIMIT utter-

ances can be estimated with high accuracy using for example

a freely accessible BUT phone recognizer (Schwarz, 2009).

Because the information about phone boundaries is already

available in the TIMIT transcription files and Lamel and luc

Gauvain (1995) have demonstrated that their usage does not

provide any advantage over automatically extracted phone

boundaries in terms of paralinguistic information extraction,

we follow the approach in Dusan (2005) and directly utilize

the available labels rather than re-extracting them through an

external phone recognizer. In general, the accuracy of the

automatic phone alignment will be affected by the presence

of environmental noise and channel variation as well as

speaker variability. In the cases of recordings acquired under

adverse conditions that might break the phone recognition,

the MFLTR method can be utilized in a semi-supervised

fashion where the phone boundaries would be perceptually

labeled by a human expert.

After the smoothed formant location tracks and LSF

tracks have been calculated in the vowels segments, they are

incorporated into separate equations that relate height on a

frame by frame basis. In Greisbach (1999) and also our pre-

liminary study (Williams and Hansen, 2013), a subject’s

height was estimated through a linear regression function of

the first four formants. It may be reasonable to assume that a

person’s height and VTL exhibit linear relationship.

However, as discussed in Sec. II, center frequencies of

higher formants tend to be inversely proportional to VTL,

and lower formants are rather driven by the articulation of

individual speech sounds. In this sense, representing height

simply as a linear function of the formant center frequencies

may be a rather crude approximation. For this reason, we

propose to extend the linear function from Greisbach (1999)

and Williams and Hansen (2013) to a polynomial to better

accommodate the complex interdependencies of the formant

structure, phonation, and height.

The height estimation from formants is defined in Eq.

(7) where the coefficients bi, ci, di, ei, gi are found by linear

regression,

Hrf ¼
Xn

i¼1

biF
4
i þ ciF

3
i þ diF

2
i þ eiFi þ gi; (7)

and where n is the number of formants, and Fi refers to the

formant center frequencies. For LSFs, the equation is shown

in Eq. (8) where the coefficients are also found by linear

regression,

Hrl ¼
Xm

i¼1

aiLSFi; (8)

where m is the number of LSFs and ai are the coefficients

found by regression. Once the height is estimated at a frame

level, where frames here are 20 ms in duration, the frame-

level heights are sorted from smallest to highest and the bot-

tom 25% and upper 25% height values are eliminated. This

is performed to alleviate possible effects of coarticulation at

the phone boundaries on phone-specific height estimation

and, more generally, to reduce the number of outliers in the

frame-level height estimates.

In the following step, the height estimates are averaged

together to obtain a height estimate for each speaker for each

phoneme. To combine the phoneme speaker height esti-

mates, the heights mean or median is found depending on

the standard deviation of the four height samples. For a high

standard deviation, it is assumed that the phoneme-specific

height estimates contain outliers that would decrease the ac-

curacy of the mean height estimation. In this case, a median

of the estimates is taken. Median represents a non-linear fil-

ter and is less sensitive to outliers (in our case, the shortest

and tallest outliers) than mean. For a low standard deviation,

all phoneme-specific height estimates are assumed to be

meaningful and their mean is taken. Once this step is com-

plete, there are two height estimates available for each
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speaker, one based on formant locations and another on

LSFs. To combine these two estimates, the average is calcu-

lated, resulting in one overall height estimate for each

speaker.

C. Training

A total of 268 male and 127 female sessions from the

TIMIT corpus sampled at 16 kHz were utilized in the evalua-

tions. The gender-dependent sets were split approximately in

half to form training and test sets with non-overlapping

speakers. The lists of training and open test set sessions are

available online (CRSS, 2015). The training and test sets

were specifically designed to have speakers across the entire

height range to achieve effective training and independent

testing. Not all data could be used due to the phoneme de-

pendence of the MFLTR method. The four vowels were cho-

sen because a large number of speakers produced them for

the sa1 sentence (“She had your dark suit in greasy wash

water all year”). For the other nine sentences produced by

each of these speakers, all were examined to see if they con-

tained any of the four vowels of interest and if so, these sen-

tences were included.

It is noted that the partitioning of the TIMIT data into

training and test sets here differs from those in Dusan

(2005), Ganchev et al. (2010a), and Arsikere et al. (2013)

and also that each of these studies introduced their own

unique partitioning. In this sense, the height estimation accu-

racies reported by these studies (including the present one)

cannot be compared in strictly absolute terms. However, it

can be argued that the task difficulty should be comparable

as the samples are drawn from the same corpus and the

height ranges captured in the sets can be expected to be

similar.

V. HEIGHT DISTRIBUTION BASED CLASSIFICATION—
GMM-HDBC

In this section, a second alternative height estimation

scheme, GMM-HDBC, is formulated based on statistical

modeling concepts.

A. Feature estimation

The feature used for this method consists of 19 static

MFCC coefficients including normalized energy. MFCCs

have been shown in a previous study to be effective in

reflecting a speaker’s height (Pellom and Hansen, 1997;

Dusan, 2005). This is possible because the static MFCC

coefficients tend to be related to a person’s vocal tract con-

figuration (Pellom and Hansen, 1997; Dusan, 2005). The

normalized energy is included to accommodate

thresholding-based silence and low energy speech segments

since those are not expected to provide any useful

information.

B. Algorithm

This method (see the right hand side of Fig. 2) is

focused on a sentence level analysis and extracts 19 static

MFCC coefficients as described in Sec. V A. From there, the

features are processed into different GMMs with pre-defined

mixture sizes. For the GMM structure to be effective, the

speaker heights need to be grouped within height ranges.

Instead of employing an equally spaced scale where heights

are distributed along a uniform scale (as was performed in

Pellom and Hansen, 1997), the height bins were partitioned

using a data driven approach based on the amount of data

available for each height (see Fig. 3).

In this manner, the intrinsic a priori probability of the

height distribution of the population under train/test would

be incorporated that also allows for data balancing of the

height models. Because some heights have significantly

more data than others, especially around the centroid of the

height distribution scale, this ensures less speaker dependent

characteristics within each height range GMM model. By

using a linear partitioned scale, the tails of the height models

do not have as much training data, so the height GMMs

become more speaker dependent versus central height mod-

els that are more speaker independent. To address this prob-

lem, a minimum threshold was set for the number of

speakers needed to construct each height range GMM. Using

this strategy, height bin groups are formed based on the dis-

tribution of how many speakers are present for each height,

and if insufficient speaker data are available, that bin group

is added to the neighboring group. The minimum number of

speakers for males was set to 30, and for females, it was set

to 15. These thresholds consider the total number of avail-

able speakers per bin including pooled training and test

speakers and were arbitrarily chosen to provide a reasonable

speaker variability for speaker-independent height bin model

training and evaluation. The disproportion between gender

samples reflects the gender population in TIMIT.

In this way, a balanced height coverage for both training

and evaluation is assured. This configuration will reduce the

speaker dependency and ensure an effective height class esti-

mate for each speaker. The nine centroids in meters for

males are as follows: (1.635, 1.73, 1.75, 1.78, 1.8, 1.83, 1.85,

1.88, and 1.935), while the eight centroids for females are:

(1.51, 1.6, 1.63, 1.65, 1.68, 1.7, 1.73, and 1.79). It seems

FIG. 3. (Color online) Height classes with height distribution for male

speakers. Boxes below x axis represent height bins modeled by individual

gender-specific GMMs.
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useful to also include a confidence measure to communicate

how likely that height class might be for the user. The confi-

dence measure used here is the probability closeness mea-

sure (Rabiner and Schafer, 2011),

confidence s1 ¼

1

p1

1

p1

þ 1

p2

þ 1

p3

; (9)

where the confidence measure for a single speaker s1 is cal-

culated by using the probability of the most likely class p1,

the probability of the second most likely class p2, and the

probability of the third most likely class p3. This confidence

measure will state how separable the top three height mod-

els’ probabilities are; this reflects the confidence in the

model choice. The greater the top height model probability

is compared to the second and third models, the closer the

confidence measure is to one. With this strategy, each

speaker is assigned a detected height bin class as well as a

corresponding confidence measure within (0, 1).

C. Training

Due to the text independent nature of the GMM-HDBC

solution, all TIMIT utterances per speaker could be used.

The training set for males contains 15 speakers for each

height bin class and the training set for females contains 9

speakers for each height bin class. The remaining speakers

are set aside for the test set. The TIMIT session partitioning

follows the one from Sec. IV C and is detailed in CRSS

(2015).

Acoustic models in automatic speech recognizers typi-

cally utilize 16–32 mixture GMM states to model speaker/

gender independent phone distributions. Similar choices can

be found in phone modeling for paralinguistic information

extraction (Lamel and luc Gauvain, 1995). In Pellom and

Hansen (1997), 128 mixture GMMs were employed in

phone-independent height estimation. To accommodate the

fact that the GMMs in the current study are phone-specific,

which would suggest to use less mixtures than in Pellom and

Hansen (1997), yet should provide a more detailed resolution

of the non-linguistic content than speech recognition-

oriented models, all height-bin GMMs here are facilitated

with 64 mixtures. It is noted that this choice was found

meaningful also in our preliminary study (Williams and

Hansen, 2013).

VI. FUSION METHOD

Two independent algorithms have been determined for

height estimation based on speech. In this section, an

approach to fuse these estimates for an overall single esti-

mate is formed.

A. Algorithm

The MFLTR algorithm produces a specific height esti-

mate for each speaker, while the GMM-HDBC method

assigns a height class along with a confidence score. This

section describes a fusion strategy proposed to incorporate

both method outputs into a single height estimate for each

speaker (see Fig. 4). The first step in combining the two

methods is to find the lower and upper height boundaries for

the top two height classes and average the two lower and

upper boundaries together. Next the height value from the

MFLTR method is compared to the new upper and lower

boundary to determine which is closer. If the MFLTR height

value is within the upper and lower boundary, then the

height value is calculated as

HF ¼ ð1� CÞHR þ CB; (10)

where C is the confidence score and B is the closest bound-

ary to the MFLTR height value, HR. For greater confidence

measures, more emphasis is placed on the boundary while

for low confidence measures, more emphasis is placed on

the regression result. If the MFLTR height value is not

within the upper and lower boundaries, then the final height

is calculated as

HF ¼
Bþ HR

2
: (11)

This results in a compromised height estimate because it

effectively averages the closest boundary height B with the

estimated MFLTR height output HR. With this method, there

will be a single height result per speaker, HF.

B. Training

The data set used for tuning the height fusion solution is

the same as the data set used for training the MFLTR system

because that method has the smallest number of training and

testing speakers. So for the GMM-HDBC method only a por-

tion of the entire test speakers are used.

VII. RESULTS

A. MFLTR

The results for the MFLTR method are displayed in

Tables I and II. MAE (in cm) is the measure chosen to reflect

performance of the MFLTR method because it has been

used in previous studies for height estimation (Ganchev

et al., 2010a; Mporas and Ganchev, 2009; Arsikere et al.,
2012, 2013; Williams and Hansen, 2013). MAE was calcu-

lated on a per speaker basis. As mentioned in Sec. IV C, dif-

ferent reference studies utilized different partitioning of the

TIMIT data sets; this makes the comparison of the reported

MAEs somewhat difficult. However, it should be safe to

assume that the samples tested in all these studies are drawn

from the same population of speakers and present a compa-

rable level of difficulty in estimating speakers height. It

should also be noted that test duration will also influence

overall system performance, so care should be exercised

when comparing results if test durations are not equivalent.

Table I summarizes height estimation error results at

the phoneme level to demonstrate the performance early in

the MFLTR method after the frame level is complete (see

Fig. 2). The results show consistent, close results for the
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MFLTR approach for both formant and LSF features for

males and females. Performance can differ between pho-

nemes due to coarticulation effects because these phonemes

were extracted from within words in spoken sentences. Error

in terms of MAE (in cm) ranges from 5.14 to 5.53 cm for

males and 4.72 to 6.32 cm for females. Again note, these

height estimates are based on a single vowel (�0.25–0.5 s).

In Table II, the results shown are obtained after the phoneme

level in Fig. 2. Here the solution combines estimates from

one to four phonemes to obtain an overall result for the LSF

feature as well as the formant feature. The combination

result is the final accuracy of the MFLTR method, which

achieves very effective performance for males (4.93 cm) and

females (4.76 cm).

It is clear that LSF and formant based results are more

accurate when combinations of four phonemes are used ver-

sus single phoneme results. This is expected because the

LSF and formant based results consider multiple phonemes

and if height information from one phoneme is erroneous for

certain speakers, the results from the other phonemes can

compensate for that. The combined result is approximately

the same as the LSF result but better than the formant result

for male speakers, and for female speakers, the combined

result is slightly better than both the LSF and formant results

individually. To demonstrate the accuracy of the MFLTR

method, the estimated heights are plotted against the actual

heights of all speakers in Fig. 4. The center line demonstrates

perfect accuracy while the outer lines represent the error

range being 5 cm. All of the points in between the lines show

FIG. 4. (Color online) Flow chart for

fusion method. Left branch represents

MFLTR system and right branch

GMM-HDBC system. Bottom part out-

lines fusion process of soft height

scores from MFLTR and heights bins

and confidences from GMM-HDBC.

TABLE I. Comparison of height estimation MAEs (in cm) in MFLTR

method on the level of individual phones—LSF vs. formants.

Male

LSF

Phoneme /AA/ /AE/ /AO/ /IY/

MAE (cm) 5.39 5.29 5.53 5.07

Formants

Phoneme /AA/ /AE/ /AO/ /IY/

MAE (cm) 5.14 5.26 5.45 5.49

Female

LSF

Phoneme /AA/ /AE/ /AO/ /IY/

MAE (cm) 5.55 5.61 6.32 5.08

Formants

Phoneme /AA/ /AE/ /AO/ /IY/

MAE (cm) 5.06 4.72 5.44 5.35

TABLE II. Comparison of Height estimation MAEs (in cm) in MFLTR

method after phone combination—LSF vs formants.

Male

LSF Formants Combined

MAE (cm) 4.92 5.06 4.93

Female

LSF Formants Combined

MAE (cm) 5.23 4.80 4.76
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speakers with height estimates that have less than 5 cm of

error.

These plots suggest that the majority of the speakers

have error less than 5 cm (59.2% of the male speakers,

55.9% of the female speakers). The correlation coefficient

for males was determined to be 0.26, while for females the

correlation coefficient is 0.34. These coefficients are not con-

siderably high, but when considering both males and females

together, the correlation coefficient is 0.72, which demon-

strates a better relationship between estimated and actual

height. The poor gender dependent performance can be

explained by considering the MAE and Fig. 5. With a large

number of speakers’ errors ranging from 65 cm from the

actual height, this causes the ideal linear relationship to

become more spread out. When males and females are

grouped together, the range of heights is increased; this

counteracts the spreading effect and improves the overall

correlation coefficient.

B. GMM-HDBC

The results for the statistical GMM-HDBC height esti-

mation method are determined by considering accuracy

within a 5 cm range. For each confidence measure, only

those speakers with at least that number are considered. As a

result, a reduced number of speakers are included in the

results as the confidence measure increases. The results are

summarized in Fig. 6. The vertical lines represent 25%

speaker elimination and 50% speaker elimination,

respectively.

Here the male speaker results demonstrate a steady

increase in accuracy as the confidence measure increases and

achieve perfect accuracy for the highest confidence score,

which is an ideal situation. The female speaker results

remain fairly consistent for most values of the confidence

measure and only increase slightly toward the higher end.

Higher accuracy results when considering the top two mod-

els as displayed in Fig. 6. The accuracy results are displayed

in such a way so as to compare the accuracy of the top model

and the top two models. The female results do not increase

FIG. 5. Estimated height vs actual

height for MFLTR method and fusion

method with accuracy line and 65 cm

error line. Note distinctive gender-

specific characteristics of height

distributions.

FIG. 6. (Color online) GMM-HDBC results with top model and top 2 mod-

els within 5 cm classification accuracy. Trends demonstrate accuracy of

height bin assignment with respect to confidence score. Each confidence

measure point represents accuracy across all samples that achieved equal or

higher confidence score.
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as much when the confidence measure increases as com-

pared to the male speakers for the top model and top two

models. However, accuracy does experience a significant

rise when considering the top two models as opposed to only

the single model (50.37% to 67.69% accuracy for males,

50.9% to 79.08% accuracy for females) and approaches the

maximum accuracy sooner.

C. Fusion of MFLTR and GMM-HDBC

Having demonstrated individual MFLTR and GMM-

HDBC performance, the fusion of these systems are now

considered. The fusion result is shown in terms of MAE to

compare performance with MFLTR. The fusion result is

tabulated in Table III.

The combined fusion method achieves an MAE with the

highest accuracy of all methods. The GMM-HDBC method

when combined with the MFLTR method provides an added

level of assurance when the phoneme results are combined.

This scheme can be effective when both systems are suffi-

ciently accurate but can still maintain a meaningful perform-

ance when a single system does poorly. The improved

accuracy of fusion over the MFLTR method demonstrates

the benefits of combining the individual MFLTR and

GMMHDBC systems. To demonstrate accuracy of the fusion

method, the estimated heights are plotted against the actual

heights for all speakers in Fig. 5. The center line illustrates

perfect accuracy while the outer two lines represent error

within a 5 cm range. All points in between the lines show

speakers that have height estimates which are less than 5 cm

in error. These plots show that a majority of the speakers

have error less than 5 cm (63.1% of male speakers, 62.7% of

female speakers). Compared to MFLTR, the fusion results

are very similar. Considering the close proximity of MAEs

for both methods, it is reasonable to expect the plots showing

the estimated versus actual height to appear very similar as

well. The correlation coefficient for male speakers is 0.33,

while for female speakers it is 0.43. When both males and

females are grouped together, the overall correlation coeffi-

cient increases to 0.73. This is an improvement compared to

the MFLTR system alone. The male speaker’s correlation

coefficient increased by 27% and females by 26%. The com-

bined correlation coefficient, however, only increased from

0.72 to 0.73. This means that the tighter clustering around

the perfect accuracy line for males and females was not as

beneficial as the increased range of heights when combining

male and female speakers for the correlation coefficient

calculation.

VIII. CONSISTENCY

A. Error

To explore why each system achieves a particular MAE,

as well as any potential shortcomings of a particular method,

it is meaningful to explore the specific distribution of error

TABLE III. Height estimation MAEs (in cm) after fusion of MFLTR and

GMM-HDBC methods.

Fusion

MAE (cm) Male 4.89

Female 4.55

FIG. 7. (Color online) Histogram of

error for MFLTR method and fusion

method.

J. Acoust. Soc. Am. 138 (2), August 2015 Hansen et al. 1061

 Redistribution subject to ASA license or copyright; see http://acousticalsociety.org/content/terms. Download to IP:  207.118.137.57 On: Mon, 07 Sep 2015 20:59:12



for each speaker. To examine this error more closely, two

different graphs are examined. One is a histogram of speaker

error and the second is the average error versus height. For

the GMM-HDBC system, the within 5 cm classification ac-

curacy is considered per class because an MAE would not be

feasible a system that assigns speech samples to height bins

rather than soft height scores. Ideally, the method should

have a histogram clustered within zero to low error marks

and have the same low error across all heights.

The first method examined is the MFLTR method. The

MFLTR error profiles for the MFLTR method are displayed

in Figs. 7 and 8.

The error distributions show that most of the error is

concentrated in the short and tall ends of the height range for

male and female speakers with the best performing heights

being in the middle. This could be due to the fact that there

are a very small number of speakers for the short and tall

heights, and those few speakers do not provide an excellent

model to represent the general speaker in these height distri-

bution tails. The histogram demonstrates that for male and

female test speakers, most of their heights are estimated with

high accuracy and the number of speakers that are estimated

poorly are very few. The next method examined is the

GMM-HDBC method. The accuracy within 5 cm is dis-

played for each class in Fig. 9 to see which height classes

are more accurate.

The GMM-HDBC method for male speakers has a sin-

gle poor performing class (class bin 1) representing the

shortest speaker heights. The average and tall bin classes

ranging from 3 to 9 perform well, with the best being classes

3, 4, and 6. The performance tends to increase or stay the

same as the confidence measure increases and also has

higher initial accuracies. For female speakers, class bin 1

also displays the poorest performance. However, classes 2

through 4 decrease in accuracy as the confidence measure

increases. The best performing classes for females are

classes 5 through 8, which happen to be the class bins related

to average heights and taller heights.

The next method examined is the dual system fusion

method. The histogram and error profile are displayed in Figs.

7 and 8. For the fusion method, most of the error is concen-

trated in the short and tall ranges. Most speakers have low

height estimation errors, which are also seen for the MFLTR

method. By combining the MFLTR and GMM-HDBC sys-

tems, the height error has decreased for all but three of the

heights for males, 1.96, 1.8, and 1.78 m and all but three of the

heights for females, 1.63, 1.65, and 1.78 m. For female speak-

ers using the GMM-HDBC method, the upper half of the

height range shows superior performance with accuracy

improving when combined with MFLTR for taller heights. For

male speakers, the heights that perform poorly can be matched

to a poor performing class in the GMM-HDBC method or one

that experienced a decline in accuracy as the confidence mea-

sure increased. The histogram of error for MFLTR and fusion

methods has the same overall general shape with a higher num-

ber for speakers having low estimation errors with a sloping

downward trend as the error increases.

B. Coefficients

Another way to assess MFLTR consistency is to analyze

the rate of changes in the correlation coefficients and system

performance changes when the training set changes (i.e.,

exploring the repeatability of the evaluations based on the

training speakers). To evaluate this, five different training

and testing sets are considered. Each set is produced by

switching a portion of training and test speakers falling into
FIG. 8. (Color online) Average error vs height for MFLTR method and

fusion method.

FIG. 9. (Color online) Comparative analysis of accuracy within 5 cm across

height classes in GMM-HDBC method, (a) male speakers and (b) female

speakers.
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the same height category. In this way, new training sets that

contain different speakers but exhibit the same height distri-

butions are generated. The first set is the original set. The

second, third, fourth, and fifth sets contain a 10.9%, 18.8%,

26.1%, and 33.3% change in training speakers, respectively,

from the original for male speakers and a 16.17%, 29.41%,

42.65%, and 52.94% change in training speakers for female

speakers. To compare the differences caused by this change

in training set speakers, the MAE, regression coefficients,

histogram of height error, and average error versus height

are compared for the five sets. In ideal case, the error per-

formance would be consistent for all five sets, confirming

the reliability of the MFLTR system. The first measure

examined is the regression coefficients stemming from the

training of the regression equations in the MFLTR approach.

The coefficients are displayed for each phoneme, and for all

five sets, in a scatter graph in Figs. 10 and 11. The graph

with 16 coefficients refers to the formant equation [e.g., Eq.

(7)] while the graph with 18 coefficients refers to the equa-

tion using LSFs [e.g., Eq. (8)].

For both male and female speakers, all regression coeffi-

cients for the formant equation are extremely close with the

exception of 1, 5, and 9, which applies for both males and

females. Regression coefficients 1, 5, and 9 refer to the coef-

ficients in front of the first three formants raised to the 4th

power. The effect of this discrepancy will be examined by

comparing height performance. The regression coefficients

for the LSF equation are generally consistent for male speak-

ers but have a wider variability for female speakers. For

male speakers, regression coefficients 1 and 2, which are the

coefficients for the first and second LSF, are spread out,

which was similarly seen for female LSF equation coeffi-

cients. Again the effect of this will be examined in the per-

formance metrics. The next evaluation will compare the

overall MAE and phoneme/feature dependent MAE for the

five different sets (e.g., see Tables IV and V). The LSF refers

to LSF Eq. (8) and 4 F refers to the formant Eq. (7).

The MAEs for the five training sets for the LSF equation

are not as tightly clustered as that for the formant equation.

However, some of the formant equation sets have a signifi-

cant shift as in the /AE/ phoneme for both male and female

speakers. This matches the observations made for regression

coefficients. The regression coefficients for the formants

were generally tightly clustered, and the LSFs regression

FIG. 10. Coefficients for formant

equation [Eq. (7)] with five different

training sets; left/right, coefficients for

males/females, respectively. Note high

variation in coefficients 1, 5, 9.

FIG. 11. Coefficients for LSF equation

with five different training sets; left/

right, coefficients for males/females,

respectively.
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coefficients while close were not as compact. The next item

examined is the error histogram and the average error versus

height for all five sets (e.g., see Figs. 12 and 13).

The average error versus height for the five different

training sets show the same general shape with greater aver-

age error in both the short and tall end of the height scale.

The average errors for each height are also quite close except

for 1.65 m for males and 1.52 and 1.75 m for females. The

histogram for all five sets follows the same pattern where the

number of speakers with that error decreases as the error

increases. Between the five training sets, the frequency for

the greater errors stays practically the same while for the

smaller errors there are more changes. Overall between the

MAE, histogram, average error versus height, and regression

coefficients, the five training sets perform in an extremely

consistent manner. From this, it can be concluded that vary-

ing the speakers in the training set has little impact on the

MFLTR method which is what is expected.

C. Session to session variability

Another way to consider system consistency is to exam-

ine a single speaker across multiple sessions recorded on dif-

ferent days. This is a typical performance challenge in

achieving effective algorithm performance for speaker rec-

ognition (Godin and Hansen, 2010). In repeated trials for the

same speaker over different recording sessions with the

same data capture setup, height estimation schemes should

result in the same height. To examine this, an in-house cor-

pus, Multi-session Audio Research Project (MARP), was

used that consisted of speakers reading sentences in various

sessions throughout a 3 yr period (Godin and Hansen, 2010).

For consistency consideration, three male and three female

speakers were chosen as well as one sentence from three dif-

ferent sessions, see Tables VI and VII. The regression coeffi-

cients and height GMMs used are those trained from the

independent TIMIT data. The actual heights of these speak-

ers are unknown, so the absolute accuracy cannot be exam-

ined. As a result, the consistency of the estimated height

results across the sessions is the only item considered for the

MFLTR method and the GMM-HDBC method.

The MFLTR results for each subject are all consistent

with no more than a 4 cm difference among all of the session

heights for any speaker. The GMM-HDBC results show sim-

ilar level of consistency. Speaker AAA and ABA result in

the same class for all three sessions, while the remaining

speakers are assigned neighboring classes for at least one of

the sessions. It should be noted that the time difference

between each session in MARP is 1 month with a total

elapsed time across all sessions of as much as 36 months.

Not all speakers were captured each month due to travel or

other personal reasons. Between the two different height

estimation methods, the results are very close for all but

speaker ABA. The remaining speakers for MFLTR results

are either close to the boundaries of the height range or

within the limit. For speaker ABA, there is approximately a

10 cm difference between the upper height range and the

MFLTR results. Considering that the overall system is not

flawless in height estimation, having the two individual

methods disagree for some speakers can be expected. Both

methods demonstrate strong consistency even with open test

data not seen by the system during training.

IX. OPEN SET TESTING

As a final exploration, the individual height estimation

solutions are evaluated on open public speaker data. Earlier

results in this study for the MFLTR and GMM-HDBC meth-

ods considered open training and test speakers; however,

both of these speaker groups were drawn from the same

speech corpus, TIMIT. A true open test of the height estima-

tion solution would be to use data that the system was in no

way originally trained to be able to handle. It should be

noted that microphone, communication hand-set, communi-

cation channel, or other acoustic mismatch could impact per-

formance for any speech based system. To accomplish this

last evaluation, eight male and eight female movie/TV actors

were chosen to be test speakers due to the availability of

speech from interviews, movies, etc. The speech was drawn

from YouTube where at least one of the four vowels, /AA/,

/AE/, /AO/, and /IY/, had to be included in the specific test

speech. The speech data were chosen to have minimal back-

ground noise. This constraint was very easy to accomplish

due to the plethora of words associated with these vowels.

The male and female actors’ names with actual heights were

obtained from the internet movie database and summarized

TABLE V. Overall MAE (in cm) and phone/feature dependent MAE for

MFLTR method for five different female speaker train sets; LSF refers to

LSF height prediction Eq, (8) and 4 F to formant prediction Eq. (7).

Set

MAE (cm)

r21 2 3 4 5

/AA/ LSF 5.55 5.43 4.98 4.84 5.25 0.298

/AA/ 4 F 5.06 5.10 4.95 5.28 5.00 0.127

/AE/ LSF 5.61 4.88 4.78 4.71 4.55 0.411

/AE/ 4 F 4.72 4.22 4.83 4.72 4.57 0.238

/AO/ LSF 6.32 7.14 6.95 7.50 6.87 0.431

/AO/ 4 F 5.44 5.24 5.24 5.82 5.63 0.252

/IY/ LSF 5.08 5.66 5.66 6.13 5.77 0.377

/IY/ 4 F 5.35 5.04 4.85 5.75 4.90 0.374

Overall 4.76 4.76 4.67 4.79 4.51 0.114

TABLE IV. Overall MAE (in cm) and phone/feature dependent MAE for

MFLTR method for five different male speaker train sets; LSF refers to LSF

height prediction Eq, (8) and 4 F to formant prediction Eq. (7).

Set

MAE (cm)

r21 2 3 4 5

/AA/ LSF 5.39 5.76 5.85 5.62 5.77 0.181

/AA/ 4 F 5.14 5.13 5.11 5.26 5.15 0.059

/AE/ LSF 5.29 5.69 5.53 5.77 5.66 0.188

/AE/ 4 F 5.26 5.33 6.91 5.02 4.91 0.814

/AO/ LSF 5.53 5.66 5.47 5.48 5.33 0.119

/AO/ 4 F 5.45 5.38 5.52 5.44 5.30 0.083

/IY/ LSF 5.07 5.47 5.46 5.73 5.56 0.242

/IY/ 4 F 5.49 5.41 5.25 5.26 5.25 0.111

Overall 4.93 5.18 5.10 5.10 5.05 0.092
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in Table VIII as well as the estimated height resulting from

the individual MFLTR and the GMM-HDBC methods. The

error for both methods is included in this table as well. For

MFLTR, the error is calculated by subtracting the actual height

from the estimated height. For the GMM-HDBC method, if

the actual height is within the height bin class, then the label

“IN” is presented together with the height class. If it is outside

the height class bin, then the actual height is subtracted from

the median of the height class and shown.

Using open YouTube audio data, both MFLTR and

GMM-HDBC methods perform well and achieve similar

results when compared to the previous TIMIT open test

results. For male actors, the MFLTR method produced indi-

vidual errors ranging from 1.58 to 6.53 cm. The highest error

occurred with the tallest speaker. For females, the MFLTR

performed similarly with individual errors ranging from 1.7

to 8.29 cm. The highest errors generally also occurred for the

tallest females as well. The error for all speakers is consist-

ent across the height ranges unlike the TIMIT test results,

which had greater error in the height distribution tails.

However, the TIMIT test results did have many speakers

with error under 1 cm (17.69% of the male speakers, 16.94%

of the female speakers). For the GMM-HDBC method, two

male speakers were classified correctly with another four

male speakers actual heights being close to one of the boun-

daries. The female set had four speakers correctly classified

with another three having an actual height close to one of the

boundaries. The same pattern is seen with the TIMIT data;

this was one of the reasons that the combined fusion method

helped improve MFLTR results because the closest

boundary to the MFLTR result is used to calculate the final

height. Overall, the height estimation system trained with

TIMIT data can meaningfully estimate a speaker’s height

even with channel mismatch as seen in open YouTube audio

sets.

X. CONCLUSION

In this study, the problem of accurate height estimation

from speech was investigated. Two alternative solutions

were developed for engaging in automatic speaker height

estimation as well as a fusion of the two individual methods.

The first method, MFLTR, obtains a point estimate of height

for each speaker but requires an occurrence of at least one of

four specific vowels in the test sample. The proposed GMM-

HDBC statistical method is text independent, but rather than

exact height, it assigns a height bin class representing a

range of heights. This classification method also produces a

complementary confidence measure. To utilize the comple-

mentary information produced by the two methods, a fusion

system was also developed. The fusion system produces a

single height estimate per speaker and improves the accuracy

of the MFLTR regression method by utilizing the additional

height bin class information and confidence score. An error

analysis in the MFLTR, GMM-HDBC, and fusion systems

was performed to provide better understanding of the respec-

tive performances. All of solutions showed higher error for

subjects in the short and tall height range (i.e., the tails of the

height distribution for males and females). Evaluations were

performed using multiple alternate training sets and open

FIG. 13. Average error vs height for

MFLTR method with five different

training sets; left/right, coefficients for

males/females, respectively.

FIG. 12. Histogram of error for

MFLTR method with five different

training sets; left/right, coefficients for

males/females, respectively.
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session-to-session test speakers and open public speech data

from TV/movie actors. The MFLTR and GMM-HDBC sys-

tems demonstrated their consistency and accuracy through

open testing as well as across session-to-session speaker

with recordings over extended time periods. Compared to

previous investigations on height estimation, these systems

are at least equal or in most cases outperform previous meth-

ods in terms of MAE. The MFLTR method achieved an

MAE of 4.93 and 4.76 cm, and the fusion method achieved

an MAE of 4.89 and 4.55 cm for males and females from the

TIMIT database, respectively. It should be noted that the

partitioning of the TIMIT data in our study differs from the

reference studies and also differs among the reference stud-

ies themselves (e.g., Ganchev et al., 2010a versus Arsikere

et al., 2013). In this sense, the obtained results cannot be

compared in absolute terms. However, it is assumed the task

difficulty is comparable as the training and test samples were

all drawn from the same TIMIT speaker population.

A majority of the previous studies that used MAE as a

performance measure achieved errors exceeding 5 cm

(Ganchev et al., 2010a; Mporas and Ganchev, 2009;

Arsikere et al., 2012, 2013; Williams and Hansen, 2013).

An exception can be found in Ganchev et al. (2010b),

where a MAE of 4.1 cm was reached for one of the open

environment test sets (an indoor set) with a Gaussian pro-

cess based regression scheme. The same scheme yielded a

MAE of 5.3 cm on a TIMIT test set. It is noted that the test

set followed the traditional training/test set partitioning

introduced by the TIMIT authors for automatic speech rec-

ognition experiments, and hence the MAE cannot be

directly compared to the results in our study in absolute

terms.

Overall the MFLTR and GMM-HDBC methods have

been shown to provide a reasonably accurate height estima-

tion when utilized separately as well as in combination. The

MFLTR method relies on the occurrence of a particular set

of phones; however, as shown with the open set testing, it is

not a requirement that all designed vowels be present. The

algorithms presented in this study are not limited to merely

performing height estimation as a speaker trait. As future

directions, height estimations could be employed to help

improve speaker identification systems as well as vocal-tract

length normalization (VTLN) algorithms for normalizing

speaker differences in speaker independent speech recogni-

tion. For speaker identification systems, height estimation as

a speaker trait could be used as confidence measures or help

cluster in-set/out-of-set speaker models (Angkititrakul and

Hansen, 2007) in the selection of speaker identity. For

VTLN, the work here could be used to help calculate an

improved warping factor to increase ASR system perform-

ance. Height estimation could be employed in the selection

of cohort speakers in audio lineups for forensic speaker anal-

ysis. Overall height estimation could be used in various

capacities to help improve speech processing or language

technology systems with advances not being limited to

TABLE VI. MFLTR height estimation results across speaker sessions in

MARP Corpus; three sessions per speaker acquired throughout a 3-yr

period.

Session

MFLTR [Height (m)]

Male

1 2 3

AAA 1.8526 1.8688 1.8897

AAL 1.8566 1.8741 1.8404

AAN 1.8290 1.8384 1.8367

Female

Session 1 2 3

AAH 1.6890 1.7036 1.6911

ABA 1.6985 1.6779 1.6504

ACC 1.6257 1.6379 1.6328

TABLE VII. GMM-HDBC height interval results across speaker sessions in

MARP corpus; three sessions per speaker acquired throughout three year

period.

Session

GMM-HDBC [Height range (m)]

Male

1 2 3

AAA 1.790-1.815 1.790-1.815 1.790-1.815

AAL 1.790-1.815 1.840-1.865 1.790-1.815

AAN 1.765-1.790 1.840-1.864 1.790-1.815

Female

Session 1 2 3

AAH 1.615-1.640 1.640-1.665 1.615-1.640

ABA 1.450-1.585 1.450-1.585 1.450-1.585

ACC 1.665-1.690 1.450-1.585 1.640-1.665

TABLE VIII. Corpus of actors speech—open test set results for MFLTR

and GMM-HDBC methods.

Actual

height (m)

MFLTR (m)

[Error (cm)]

GMM-HDBC (m)

[Error from median (cm)]

Male

Adam Baldwin 1.93 1.8647 (�6.53) 1.765–1.79 (�15)

Christian Kane 1.78 1.7396 (�4.04) 1.9–1.96 (þ15.5)

David Boreanaz 1.85 1.8174 (�3.26) 1.765–1.79 (�7)

Jim Parsons 1.86 1.7955 (�6.45) 1.765–1.79 (�8)

Johnny Galecki 1.65 1.6480 (�0.2) 1.57–1.715 (IN)

Nicholas Brendan 1.80 1.8413 (þ4.13) 1.765–1.79 (�2)

Seth Green 1.63 1.6458 (þ1.58) 1.57–1.715 (IN)

Simon Helburg 1.70 1.6769 (�2.31) 1.765–1.79 (þ8)

Female

Alyson Hannigan 1.68 1.6420 (�3.80) 1.665–1.69 (IN)

Amy Acker 1.73 1.7129 (�1.72) 1.74–1.83 (þ6)

Gina Torres 1.78 1.8286 (þ4.86) 1.74–1.83 (IN)

Kaley Cuoco 1.65 1.6247 (�2.53) 1.45–1.585 (�14)

Mayim Bialik 1.63 1.6493 (þ1.93) 1.45–1.585 (�12)

Melissa Rauch 1.52 1.5504 (þ3.04) 1.45–1.585 (IN)

Sara Gilbert 1.60 1.5830 (�1.70) 1.45–1.585 (�9)

Sarah Rafferty 1.75 1.6671 (�8.29) 1.74–1.83 (IN)

1066 J. Acoust. Soc. Am. 138 (2), August 2015 Hansen et al.

 Redistribution subject to ASA license or copyright; see http://acousticalsociety.org/content/terms. Download to IP:  207.118.137.57 On: Mon, 07 Sep 2015 20:59:12



merely improving algorithm accuracy but providing further

knowledge of subjects for human-computer interaction.
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