
Czech Technical University in Prague
Faculty of Electrical Engineering

Doctoral Thesis

March 2008 Hynek Bořil





Czech Technical University in Prague
Faculty of Electrical Engineering
Department of Circuit Theory

Robust Speech Recognition:
Analysis and Equalization of Lombard Effect in

Czech Corpora

Doctoral Thesis

Hynek Bořil

Prague, March 2008

Ph.D. Programme: Electrical Engineering and Information Technology
Branch of Study: Electrical Engineering Theory

Supervisor: Doc. Ing. Petr Pollák, CSc.





Abstract

When exposed to noise, speakers will modify the way they speak in an effort to maintain intelligible
communication. This process, which is referred to as Lombard effect (LE), involves a combination
of both conscious and subconscious articulatory adjustment. Speech production variations due to
LE can cause considerable degradation in automatic speech recognition (ASR) since they introduce a
mismatch between parameters of the speech to be recognized and the ASR system’s acoustic models,
which are usually trained on neutral speech. The main objective of this thesis is to analyze the impact
of LE on speech production and to propose methods that increase ASR system performance in LE.
All presented experiments were conducted on the Czech spoken language, yet, the proposed concepts
are assumed applicable to other languages.
The first part of the thesis focuses on the design and acquisition of a speech database comprised of

utterances produced in neutral conditions (neutral speech), and in simulated noisy conditions (Lom-
bard speech), and on the analysis of the speech production differences in these two speech modalities.
A majority of the previous studies on the role of LE in ASR neglected the importance of the commu-
nication loop in evoking Lombard effect, and instead analyzed data from subjects who read text in
noise without being provided feedback regarding whether their speech was intelligible. In this thesis, a
novel setup imposes a communication factor to the Lombard recordings. An analysis of the recordings
shows considerable differences between neutral and Lombard data for a number of speech production
parameters. In ASR experiments, the performance of both large and small vocabulary recognizers
severely degrade when switching from neutral to LE tasks.
The second part of the thesis describes the design of new methods intended to reduce the impact

of LE on ASR. The methods employ LE equalization, robust features, and model adjustments. The
goal of LE equalization is to transform Lombard speech tokens towards neutral before they enter the
acoustic models of the ASR engine. For this purpose, a modified vocal tract length normalization and
formant-driven frequency warping are designed, both significantly improving the recognition perfor-
mance under LE. In addition, a commercial voice conversion framework is evaluated and found to be
partially effective for LE-equalization. A set of robust features are proposed in a data-driven design.
Filter banks better reflecting the distribution of linguistic content in frequency are constructed and
used as replacements for mel and Bark filter banks in MFCC (mel frequency cepstral coefficients) and
PLP (perceptual linear prediction) front-ends. When employed in a recognition system on LE data,
the novel features considerably outperform standard MFCC and PLP front-ends as well as state-of-the-
art MR–RASTA (multi-resolution relative spectra) and Expolog front-ends. In the domain of model
adjustments, an independently furnished acoustic model adaptation, which transforms neutral models
towards Lombard speech characteristics, is shown to provide a substantial performance improvement
on LE speech data. Finally, a two-stage recognition system (TSR) utilizing neutral/LE classification
and style-specific acoustic modeling is proposed. Compared to multi-stage systems presented in other
studies, TSR requires only neutral samples for training the style-specific models. On the mixture
of neutral and Lombard utterances, TSR also significantly outperforms discrete style-specific recog-
nizers. These contributions serve to advance both knowledge and algorithm development for speech
recognition in Lombard effect.
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Abstrakt

Vystaveni hlučnému prostředí, mluvčí mění způsob, jakým mluví, ve snaze dosáhnout srozumitelné
komunikace. Tento proces, nazývaný Lombardův efekt (LE), představuje kombinaci vědomých a pod-
vědomých změn artikulace. Změny řečové produkce vyvolané LE mohou způsobit značné zhoršení
přesnosti automatického rozpoznávání řeči (ASR) v důsledku rozdílu mezi parametry zpracovávané
promluvy a akustickými modely ASR systému, obvykle trénovanými na neutrálních promluvách.
Hlavním cílem této disertační práce je analýza dopadu LE na parametry řečové produkce a návrh
metod zvyšujících odolnost ASR systémů vůči LE. Všechny presentované experimenty byly prováděny
na českých promluvách, nicméně lze očekávat, že předkládané koncepce budou použitelné i v jiných
jazycích.
První část disertace se zabývá návrhem a sběrem databáze obsahující promluvy produkované v

neutrálních podmínkách (neutrální řeč) a simulovaných hlučných podmínkách (Lombardovu řeč) a
analýzou změn řečové produkce v těchto dvou modalitách. Většina předchozích studií věnovaných roli
LE v ASR zanedbávala důležitost komunikace při vzniku LE a analyzovala data od mluvčích, kteří četli
text v hluku, aniž by jim byla poskytnuta zpětná vazba o tom, zda je jejich projev srozumitelný. V této
práci je pro sběr Lombardových promluv použit nový systém, zajišťující přítomnost komunikačního
faktoru. Analýza získaných nahrávek ukázala významné rozdíly mezi neutrálními a LE daty pro řadu
parametrů řečové produkce. Přechod z neutrální na LE řeč v ASR experimentech způsobil podstatné
zhoršení úspěšnosti rozpoznávání v úlohách s velkým i malým slovníkem.
Druhá část disertace se zaměřuje na návrh metod omezujících dopad LE na ASR, založených

na ekvalizaci LE, robustních parametrizacích a modifikacích modelů. Cílem ekvalizace LE je trans-
formace příznaků Lombardovy řeči směrem k neutrální ještě před jejím zasláním akustickým mod-
elům. Pro tento účel byly navrženy algoritmy modifikované normalizace vokálního traktu a formanty
řízeného borcení frekvenční osy. Obě metody výrazně zvýšily přesnost rozpoznávání řeči pod LE.
Další, částečně úspěšný, způsob ekvalizace LE byl realizován komerčním systémem hlasové konverze.
Na základě daty řízeného návrhu byla získána sada robustních parametrizací. Parametrizace byly zkon-
struovány nahrazením bank filtrů v MFCC (mel-frekvenční kepstrální koeficienty) a PLP (perceptuální
lineární predikce) bankami lépe korespondujícími s rozložením lingvistické informace ve frekvenci.
Použitím nových parametrizací v ASR systému bylo dosaženo podstatného zlepšení odolnosti vůči LE
v porovnání se standardními MFCC a PLP parametrizacemi a state-of-the-art MR-RASTA (multi-
resolution relative spectra) a Expolog parametrizacemi. V oblasti modifikace modelů se ukázala adap-
tace akustických modelů jako vhodný prostředek redukce rozdílů mezi neutrálními charakteristikami
modelovanými v ASR systému a parametry Lombardovy řeči. Na závěr byl navržen dvoustupňový
rozpoznávací systém (TSR) sestávající z klasifikátoru stylu řeči (neutrální/LE) a stylově-specifických
akustických modelů. V porovnání s vícestupňovými systémy prezentovanými v literatuře TSR pro
trénovaní stylově-specifických modelů postačuje pouze neutrální řeč. V ASR úloze na směsi neu-
trálních a Lombardových promluv TSR výrazně překonal diskrétní stylově-specifické rozpoznávače.
Přínosy předkládané práce rozšiřují dosavadní poznatky o Lombardově efektu a přispívají k vývoji
robustního rozpoznávání řeči v hlučném prostředí.
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Chapter 1

Introduction

Speech is one of the most advanced means of conveying thoughts, desires, and emotions between
human beings. Currently, due to the remarkable progress in the field of speech technology and natural
language processing, speech has become also a convenient and effective component of human–machine
interaction, spanning application domains such as voice control and dictation, information retrieval,
and travel arrangements. Moreover, automatic speech processing plays an important role in the tran-
scription of broadcast news and sound archives, and in speech-to-speech translation, which performs
a real-time interpretation from one spoken language to another. The last case demonstrates how
advances in speech and language technology not only improve communication between humans and
machines, but also between humans.
One of the key stages in speech-oriented applications is extraction of linguistic information from the

acoustic speech signal and its conversion into text representation. This task, called automatic speech
recognition (ASR), is handled by speech recognizers. An ideal speech recognizer transforms the speech
signal into the corresponding text regardless of who is talking and what is being said, independent
of the environment where the speech is produced, as well as the type of channel used to deliver the
speech signal to the recognizer. In spite of the relative success of the last decades in transferring ASR
technology from laboratory conditions to the real-world tasks, state-of-the-art recognizers are still
very sensitive to disfluencies in speech and to changes in environmental and speaker characteristics
from those considered during the system design. In particular, the following factors strongly impact
recognition performance:

• Environmental variability: additive noises, convolutional distortions (reverberation, micro-
phone/channel characteristics), (Junqua, 2002),

• Speaker variability: gender (Olsen and Dharanipragada, 2003), age (Blomberg and Elenius,
2004), dialect (Clarke and Jurafsky, 2006), and stress (environmental, emotional, workload),
(Yapanel and Hansen, 2008),

• Disfluencies in speech: editing terms (‘oops’), repetitions, revisions (content replacement),
restarts, fragments, filled pauses, and discourse markers (‘Well, you know, I mean, . . . ’), (Liu
et al., 2006).

Numerous research groups within the speech processing community are searching for ASR solu-
tions more resistant to these factors. This thesis attempts to contribute to these efforts, focusing in
particular on the impact of noise-induced environmental stress known as Lombard effect.
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Chapter 1: Introduction

1.1 Objective

In a noisy environment, speakers tend to adjust the way they talk in order to maintain intelligible
communication over noise, (Junqua, 1993), (Hansen, 1996). This phenomenon is called Lombard
effect (LE) after the French oto-rhino-laryngologist Etienne Lombard, who first described the impact
of noise on speech production, (Lombard, 1911). The speech production variations due to LE may
considerably deteriorate the performance of ASR systems trained on neutral speech (modal speech
produced in a calm environment), (Bou-Ghazale and Hansen, 2000). The ASR accuracy degradation
by LE can be significantly stronger than the one caused by the presence of background noise in the
speech signal, (Rajasekaran et al., 1986), (Takizawa and Hamada, 1990).
The goal of this thesis is to analyze differences in the production of neutral speech and speech

under LE (Lombard speech), and to propose algorithms increasing resistance of ASR systems to
LE. All feature analyses and ASR experiments are conducted on Czech speech corpora. It is noted
that previous studies have not considered the Czech language and therefore this represents a new
advancement.

1.2 Motivation

1.2.1 Analysis of speech under LE

During the last hundred years, a number of studies have analyzed the impact of Lombard effect on
speech production. Considerable production differences between neutral speech and speech produced
under Lombard effect were observed across studies, see Sec. 3.2 for a detailed overview. Unfortunately,
at the level of particular speech parameters, the reported trends often disagree, (Womack and Hansen,
1999). This is presumably due to the fact that a majority of the analyses employed only a very
limited number of utterances from a few subjects. The number of participating speakers was ranging
typically from ten (Webster and Klumpp, 1962), (Lane et al., 1970), (Junqua, 1993), to one or two
speakers, (Summers et al., 1988), (Pisoni et al., 1985), (Bond et al., 1989), (Tian et al., 2003), (Garnier
et al., 2006). Another reason for the variability of the observations lies in differences between the
experimental setups used. With a few exceptions, a communication factor has not been involved in
the data collections. Speakers only read utterances without a need to convey the message over noise
to a listener, (Junqua et al., 1999). Here, the motivation for the speaker’s reactions to noise was
not clearly defined, hence, the resulting production changes were strongly time-varying and speaker-
dependent.
Although a majority of analyses focused on English speech corpora, several studies considered

also other languages, e.g., Spanish (Castellanos et al., 1996), French (Garnier et al., 2006), Japanese
(Wakao et al., 1996), Korean, (Chi and Oh, 1996), or Mandarin Chinese (Tian et al., 2003). So far, no
systematic research on LE in Czech speech has been conducted. The aim of this thesis is to analyze
speech production differences in Czech neutral and Lombard speech and use this knowledge for the
design of LE-robust ASR algorithms. To address some of the LE analysis issues occurring in past
studies, the following steps are conducted:

• Proposal of a data-collection setup imposing a communication factor into the recording,

• Acquisition of a Czech speech database comprising an extensive set of neutral and Lombard
speech utterances from a larger number of subjects.

1.2.2 Automatic Recognition of Lombard Speech

Acoustic models in state-of-the-art ASR systems are typically trained on neutral speech data.
Speech production changes introduced by LE cause a mismatch between neutral-trained models and
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1.3 Original Contributions

the processed speech, often resulting in a severe deterioration of ASR performance. Despite the fact
that the impact of LE on ASR is known to the speech community, it receives only limited attention
in the design of state-of-the-art recognition systems.
The efforts to increase the ASR resistance to LE can be divided into the following groups (a

detailed overview is provided in Sec. 3.5):

• Robust features – a search for speech signal representations less sensitive to LE, (Hanson and
Applebaum, 1990a), (Bou-Ghazale and Hansen, 2000), (Yapanel and Hansen, 2008),

• LE-equalization – transformations of Lombard speech parameters towards neutral, (Hansen and
Bria, 1990), (Takizawa and Hamada, 1990), (Suzuki et al., 1994), (Hansen, 1996), (Bou-Ghazale
and Hansen, 2000),

• Model adjustments – transformations of neutral-trained acoustic models towards condition-
specific models, (Gauvain and Lee, 1994), (Gales and Woodland, 1996), novel acoustic-modeling
architectures, (Womack and Hansen, 1999),

• Training methods – merging samples from a variety of conditions into a single training set to
obtain condition-independent models (multistyle training), (Lippmann et al., 1987), (Yao et al.,
2004), training condition-specific acoustic models, (Bou-Ghazale and Hansen, 1998).

The approaches based on improved training methods assume that there is a sufficient amount of
data available for modeling the condition-specific characteristics. However, due to a strong variability
of LE with the level and type of background noise, only a limited number of Lombard speech samples
may be available for adapting the real-world system to the actual conditions. Here, model adjustment
techniques employing acoustic model adaptation are preferable.
Although some of the methods proposed in the past provide substantial improvement to Lombard

speech recognition, the attained error rates are still considerably higher than those for neutral speech.
The goal of the present thesis is to design algorithms that further improve performance of ASR under
Lombard effect, with a major focus on the domains of robust features, LE-equalization, and model
adjustments.

1.3 Original Contributions

The primary focus of this work is in the analysis and equalization of Lombard effect in the Czech
spoken language. While previous studies on LE considered several widely spoken languages, no re-
search has been conducted on the Czech speech. An analysis of commercial Czech speech corpora
conducted in the initial stage of this thesis has shown that in the available speech data, in spite of
being acquired in adverse noisy conditions, the occurrence of LE is very sparse (see Chap. 6). Hence,
a new speech corpus, Czech Lombard Speech Database (CLSD‘05), was designed and acquired. To
assure the presence of LE in CLSD‘05, a setup motivating speakers to maintain intelligible commu-
nication over simulated background noise was designed and used in the acquisition of the Lombard
recordings. It is noted that a majority of previous studies on the impact of LE on ASR have ignored
the importance of the communication loop in evoking Lombard effect, and instead analyzed data from
subjects who read text in noise without being provided feedback regarding whether their speech was
intelligible (see Sec. 3.6). To further advance the simulated LE recording setup for the purpose of
future recording, auditory feedback attenuation due to the use of closed headphones was measured
and its compensation was proposed. The major contributions of this thesis are summarized below:
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Chapter 1: Introduction

• Novel pitch detection algorithm: Computationally efficient time-domain pitch tracker is pro-
posed. The algorithm is evaluated side by side with five state-of-the-art pitch trackers on the
ECESS reference database.

• Acoustic model adaptation: Efficiency of speaker dependent/independent adaptation of acoustic
models to Lombard effect is tested1. A considerable recognition performance improvement is
reached when applying both speaker-dependent and speaker-independent model adaptation.

• Voice conversion: Voice conversion framework is trained on parallel Lombard/neutral utterances
and used for normalizing Lombard speech towards neutral2. Voice conversion is included in the
ASR front-end, yielding an improvement in small vocabulary recognition task on LE speech.

• Data-driven design of robust features: Contribution of frequency sub-bands to speech recognition
performance is studied. New front-end filter banks for MFCC and PLP-based front-ends are
designed, providing superior robustness to LE. It is shown that filter banks inspired by auditory
models do not represent the optimal choice for ASR front-ends.

• Vocal tract length normalization: Modified vocal tract length normalization scheme is proposed.
Impact of limiting the speech bandwidth on distribution and evolution of frequency warping
factors is studied. Efficiency of speaker and utterance driven warping is compared, both of them
providing substantial improvement of recognition performance.

• Formant-driven frequency warping: A function mapping average LE formant locations to aver-
age neutral ones is determined and incorporated in the ASR front-end, considerably increasing
accuracy of the LE speech recognition. Surprisingly, the LE–neutral formant transformation
does not significantly deteriorate recognition performance when applied also to neutral speech.

• Classification of neutral/LE speech: Based on the speech feature distributions found in neutral
and LE speech, set of gender/lexicon-independent parameters efficient for neutral/LE classifica-
tion is proposed. Discriminative properties of spectral slopes extracted from various frequency
bands of short-time spectra are studied in detail.

• Two-stage recognition system (TSR): An ASR system for neutral/LE speech recognition is de-
signed. In the first stage, classifier decides whether the incoming utterance is neutral or Lombard.
In the second stage, the utterance is passed to the corresponding neutral-specific or LE-specific
recognizer. When exposed to the mixture of neutral and LE utterances, TSR significantly out-
performs both neutral-specific and LE-specific recognizers. Acoustic models of TSR require only
neutral speech samples for training.

1.4 Thesis Outline

This chapter briefly discussed the automatic speech recognition (ASR) issues introduced by the
presence of environmental noise, with a particular focus on the impact of Lombard effect. Subsequently,
goals and outcomes of the thesis were presented. The following chapters of the thesis are organized as
follows.

1The framework was provided and the model adaptation conducted by Dr. Petr Červa, Technical University of
Liberec. Author of the thesis designed the experiments and provided data for adaptation.

2Using voice conversion (VC) for normalization of Lombard speech was proposed by Prof. Harald Höge, Siemens
Corporate Technology, Munich, Germany. David Sündermann (Siemens) provided the VC system (Sündermann et al.,
2006b) and conducted the system training and data conversion. Author of the thesis provided data for VC training and
for conversion, analyzed impact of VC on speech features, and evaluated VC efficiency in the ASR experiments.
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1.4 Thesis Outline

Chapter 2 defines the task of ASR and describes the algorithms and typical structures used in the
HMM-based ASR systems. The principles and terms introduced in this chapter form the background
for the majority of algorithm formulations and experiments conducted throughout the thesis.
Chapter 3 discusses the impact of Lombard effect on the speech production parameters, and

presents an overview of the state of the art techniques for stress and talking style classification,
robust speech recognition, and Lombard corpora acquisition.
Chapter 4 describes the framework for feature analyses and speech recognition, as well as evaluation

metrics used in the thesis experiments. In addition, a novel algorithm for pitch extraction is proposed
and compared to the state of the art pitch trackers on a reference database.
Chapter 5 details the design, recording setup, and content of the Lombard speech database ac-

quired for the purposes of the thesis algorithm development and experiments. Auditory feedback
attenuation caused by wearing headphones during database recording is analyzed and a speech feed-
back compensation for the attenuation is proposed.
Chapter 6 explores the suitability of selected Czech speech corpora for the study of Lombard

effect. For each of the speech databases, feature analyses and recognition tasks are conducted on
neutral speech and speech uttered in noise.
In Chapter 7, acoustic model adaptation is used to transform neutral speaker-independent mod-

els towards Lombard speech characteristics. The effectiveness of speaker-dependent and speaker-
independent adaptation is compared.
In Chapter 8, voice conversion is applied to normalize Lombard speech towards neutral. Parameters

of the normalized speech are compared to the actual neutral speech samples to evaluate the accuracy of
the conversion. Subsequently, voice conversion is incorporated into the ASR front-end and evaluated
in the recognition tasks.
Chapter 9 presents a novel approach to the design of feature extraction filter banks. In the data-

driven procedure, bands of the initial filter bank are redistributed according to the observed linguistic
information distribution. The procedure is used to design feature extraction front-ends with improved
resistance to Lombard effect. The performance of the newly proposed front-ends is compared to the
traditional methods in the set of ASR tasks employing changes of talking style (neutral, LE), average
fundamental frequency, and noisy background.
In Chapter 10, modified vocal tract normalization and formant-based frequency warping are pro-

posed. The goal here is to address formant shifts due to Lombard effect by warping the speech spectra.
Both algorithms are included into the ASR front-end and evaluated in the recognition tasks.
Chapter 11 establishes a set of speech features effective for neutral/LE classification. Subsequently,

a novel two-stage recognition system comprising neutral/LE classifier and style specific recognizers is
formulated and evaluated on a collection of neutral and Lombard utterances.
Chapter 12 summarizes major findings and contributions of the thesis and discusses possible future

research directions in the field of LE-robust ASR.
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Chapter 2

ASR Background

Early ASR systems were based on knowledge-driven algorithms. System designers were establishing
rules of mapping the acoustic signal to phonetic units, as well as higher level knowledge (lexicon,
syntax, semantics, and pragmatics). The recognition process comprises two steps. First, segmentation
and labeling of the acoustic signal is carried out. Based on the time evolution of the acoustic features,
the signal is divided into discrete regions, each being assigned one or several candidate phonetic labels.
In the second step, artificial intelligence is applied at the higher level knowledge in the extraction of
word strings, (Klatt, 1977). These systems are computationally demanding and reach poor recognition
results, particularly due to the difficulty in establishing a set of rules for reliable acoustic-phonetic
matching, Rabiner and Juang (1993).
In the last thirty years, pattern-matching techniques became preferred in ASR. Here, the relations

between spoken and transcribed speech are searched in the process of training the ASR system on
speech corpora. If there is a sufficient amount of realizations of each of the classes to be recognized
(e.g., phones, words, phrases), the training procedure captures characteristic properties (patterns) of
each class. In the recognition stage, the speech is compared to the stored class patterns and classified
based on the goodness of match. Two main approaches to pattern matching have been widely used
in ASR – deterministic pattern matching based on dynamic time warping (DTW) (Sakoe and Chiba,
1978), and stochastic pattern matching employing hidden Markov models (HMMs) (Baker, 1975).
In DTW, each class to be recognized is represented by one or several templates. Using more than

one reference template per class may be preferable in order to improve the pronunciation/speaker
variability modeling. During recognition, a distance between an observed speech sequence and class
patterns is calculated. To eliminate the impact of the duration mismatch between test and reference
patterns, stretched and warped versions of the reference patterns are also employed in the distance
calculation. The recognized word corresponds to the path through the model that minimizes the ac-
cumulated distance. Increasing the number of class pattern variants and loosening warping constrains
may improve DTW-based recognition performance at the expense of storage space and computational
demands.
In state of the art systems, HMM-based pattern matching is preferred to DTW due to better

generalization properties and lower memory requirements. The speech recognition frameworks con-
sidered in this thesis employed exclusively HMMs. A typical structure of an HMM-based ASR system
is shown in Fig. 2.1. The remainder of this chapter will discuss the individual stages of HMM-based
recognition in detail.
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2.1 ASR Definition
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Figure 2.1: Block diagram of typical HMM-based automatic speech recognition system.

2.1 ASR Definition

The goal of automatic continuous speech recognition is to find the most likely sequence of words
Ŵ = w1, w2, . . . , wN in the language L given an acoustic input O comprising a sequence of parame-
terized acoustic observations O = o1,o2, . . . ,oT . This problem can be expressed probabilistically as
follows:

Ŵ = arg max
W∈L

P (W |O,Θ) , (2.1)

where Θ is a set of model parameters. It is problematic to estimate the probability P (W |O,Θ)
directly, hence Bayes’ rule is applied:

Ŵ = arg max
W∈L

P (O|W ,Θ)P (W |Θ)
P (O|Θ)

. (2.2)

Because the term P (O|Θ) in Eq. (2.2) is constant for all hypothesesW ∈ L, it can be omitted. The
set of model parameters Θ may comprise two components, Θ = {Θa,Θl}, where Θa are parameters
of the acoustic model, and Θl are parameters of the language model. Assuming that Θa and Θl

are independent, and that the prior probability of the word sequence P (W |Θ) will be determined
exclusively by the language model, while the probability of the sequence of acoustic observations given
the sequence of words P (O|W ,Θ) will be determined exclusively by the acoustic model, (2.2) can
be rewritten as:

Ŵ = arg max
W∈L

P (O|W ,Θa)P (W |Θl) . (2.3)

Using this equation, the acoustic model and language model survey can be derived separately in
the following two sections.

2.2 Acoustic Model

To find parameters of the acoustic model, a training set comprising acoustic sequences and their
transcriptions is required. The parameters are estimated so as to maximize the probability of the
training observation vectors:

Θ̂a = arg max
Θa

∏
{O;W}∈T

P (O|W ,Θa), (2.4)

where T represents the set of training utterances and their transcriptions. Since it is not possible to
find the global maximum of the probability for Θ̂a analytically, iterative procedures are used to find
the local maxima.
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Chapter 2: ASR Background

Recently, hidden Markov models (HMMs) have been commonly used for acoustic modeling. In
contrast with Markov models, where to each state of the model an observable event is assigned, in
HMMs, the observation is a probabilistic function of the state. Here, only the resulting observations
generated by the emission probabilities of the states can be seen, while the level of contribution of the
individual states, and thus the sequence of states that would most likely generate the observations,
remains hidden. The HMM model is specified by:

• Set of states Q = {qi}.

• Set of emission probability density functions B = {bj (ot)}, where bj (ot) is a probability density
of ot being generated by state j.

• Transition probability matrix A = {aij}, where aij is the probability of the transition from state
i to state j:

aij = P (qt+1 = j| qt = i) , (2.5)

where qt represents the actual state in time t, and i, j states of the HMM.

• Initial state occupancies π = {πj}, which represent the probabilities that state j is the initial
state, πj = P (q1 = j).

There are two popular approaches to modeling observation likelihoods – Gaussian probability
density functions (PDFs), and multi-layer perceptrons (MLPs), Rabiner and Juang (1993), Jurafsky
and Martin (2000).

• Gaussian probability density function (PDF): the observation probability bj (ot) for an n-
dimensional vector ot is represented by a multi-variate Gaussian function. To better capture the
distribution of the observation samples, multivariate multiple-mixture Gaussian distributions
are often used:

bj (ot) =
M∑

m=1

cjmN
(
ot;μjm,Σjm

)
, (2.6)

where M is the number of mixtures, cjm is the weight of the m-th mixture component of the
j-th state so that

M∑
m=1

cjm = 1, (2.7)

and N is a multi-variate Gaussian with mean vector μjm and covariance matrix Σjm:

bjm (ot) =
1√

(2π)n |Σjm|
· e−

1
2
(ot−μjm)T Σ−1

jm(ot−μjm) . (2.8)

Here, the state emission PDFs are called Gaussian mixture models (GMMs). It is often assumed
that the components of ot are independent. In this case, the full covariance matrix Σjm is
replaced by a diagonal matrix comprising only variances of the components of ot.

• Multi-layer perceptron1 – an artificial neural network comprising a set of computation units
(neurons) connected by weighted links (synapses). In HMMs, MLP has one output for each
state j. The sum of outputs is kept equal to ‘1’. The network estimates a probability of

1The typical structure of the multi-layer perceptron and the process of its training are further discussed in Sec. 11.1.2.
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2.2 Acoustic Model

an HMM state j given the observation vector ot, P (j|ot). To get the observation likelihood
P (ot| j), which is needed for the HMM, Bayes’ rule can be used:

P (j|ot) =
P (ot| j)P (j)

P (ot)
, (2.9)

which can be rearranged as:
P (ot| j)
P (ot)

=
P (j|ot)

P (j)
. (2.10)

The numerator on the right side of (2.10) is the MLP’s output assigned to the state j and the
denominator is the prior probability of the state j, which can be determined from the training
set by calculating the ratio of occurrences of j to the total sum of occurrences of all states. The
ratio in Eq. (2.10) is called scaled likelihood. Since the probability P (ot) is constant for all
state probabilities, the scaled likelihood is as efficient as the regular likelihood P (ot| j).

Given the HMM model, the probability of the state sequence q = q1, q2, . . . , qT being generated by
the model is:

P (q|A,π) = πq0aq0q1aq1q2 . . . aqT−1qT
. (2.11)

The probability of a parameterized acoustic sequence O being generated by the HMM is defined:

P (O|A,B,Q,π) =
∑

q

πq0

T∏
t=1

aqt−1qtbqt (ot). (2.12)

If recognition tasks employ larger vocabularies, it would be very costly to build a unique acoustic model
for every word in the lexicon. Hence, the words are modeled using sub-word units (e.g., phones). The
size of such units can be considerably smaller than the size of the lexicon, since the units are common
to all words. In this case, Equation (2.3) can be re-written as:

Ŵ = arg
W

{
max

W∈L, U∈U

[
P (O|U ,Θa) P (U |W ,Θp) P (W |Θl)

]}
, (2.13)

where U = u1, u2, . . . , uM is the sequence of sub-word units, U is the set of all possible sub-word units’
sequences defined by the pronunciation lexicon (dictionary of word pronunciations), P (O|U ,Θa) is
the probability of the sequence of observations O given the sequence of sub-word units and the acoustic
model, and P (U |W ,Θp) is the probability of the sequence of units given the sequence of words and
so called pronunciation model Θp, representing the probability that U is a transcription of word w.
In the case of MLP-based sub-word models, each of the MLP outputs typically represents a scaled

likelihood of a single context-independent phone (Hermansky and Fousek, 2005). Application of this
approach will be demonstrated in Sec. 9.2.2. GMM-based models usually comprise multiple states
to capture the time evolution of the sub-word units (phones, triphones), Young et al. (2000). Since
no analytical solution to finding model parameters as mentioned in Eq. (2.4) is known, iterative
procedures such as the Baum-Welch forward-backward expectation-maximization (EM) algorithm in
case of GMMs or error back-propagation in MLPs are used, Rabiner and Juang (1993).
Based on the pronunciation lexicon, the sub-word unit models are connected to form the word

pronunciation models. These models form a lattice of the joint ‘acoustic-phonetic’ HMM. Probabilities
of transitions between word models are driven by the language model, which is discussed in the
following section.
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Chapter 2: ASR Background

2.3 Language Model

The language model P (W ), given its parameters Θl, estimates the probability of a word sequence
w1, w2, . . . , wN . This probability can be calculated using the chain rule, Papoulis (2001):

P (W ) = P (w1)
N∏

i=2

P (wi|w1, w2, . . . , wi−1). (2.14)

However, it is not possible to find and store probabilities for all possible sequences of words, hence
(2.14) cannot be directly calculated. One of the ways to estimate probability of the word sequence is
using an n-gram model. In the n-gram model, the history of all previously uttered words is approxi-
mated by the n most recent words:

P (wi|w1, w2, . . . , wi−1) ≈ P (wi|wi−n+1, wi−n+2, . . . , wi−1) . (2.15)

Thus:

P (w1, w2, . . . , wN ) ≈ P (w1, w2, . . . , wn−1)
N∏

i=n

P (wi|wi−n+1, wi−n+2, . . . , wi−1). (2.16)

As shown in the first term on the right side of (2.16), to estimate the probability of the word sequence
using n-grams, n − 1, n − 2, . . . , 2-grams and prior probabilities P (wi) of each word must be known.
In the LVCSR experiments presented in the following chapters, a bigram language model was used.
In this case, the estimation of probability of word sequence reduces to the calculation:

P (w1, w2, . . . , wN ) ≈ P (w1)
N∏

i=2

P (wi|wi−1). (2.17)

The right side of (2.17) represents parameters of the bigram model (i.e., word priors and bigram
probabilities). The prior probabilities can be estimated:

P (wi) =
count (wi)∑

w∈Lex
count (w)

, (2.18)

where
∑

w∈Lex
count (w) represents the total sum of occurrences of word w from the lexicon Lex in the

training corpus. The bigram probabilities can be estimated:

P (wi|wi−1) =
count (wi−1, wi)∑

wj ,wk∈Lex
count (wj, wk)

, (2.19)

where count (wi−1, wi) is a number of representations of the bigram wi−1, wi and the denominator in
Eq. (2.19) is number of representations of all bigrams in the training corpus.

2.4 Decoding

In the decoding stage, as shown in Eq. (2.13), the task is to find the most likely word sequence
W given the observation sequence O, and the ‘acoustic-phonetic-language’ model. The decoding
problem can be solved using dynamic programming algorithms. Rather than evaluating likelihoods
of all possible model paths generating O, the focus is on finding a single path through the network
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2.4 Decoding

yielding the best match to O. To estimate the best state sequence q = q1, q2, . . . , qT for the given
observation sequence, the Viterbi algorithm is frequently used, Rabiner and Juang (1993), Young et al.
(2000). Let

δt (i) = max
q1,q2,...,qt−1

P (o1,o2, . . . ,ot| q1, q2, . . . , qt−1, qt = i,Θ) (2.20)

be the highest probability along a single path ending at time t in state i. Suppose δt (i) is known,
δt+1 (j) can be calculated as:

δt+1 (j) = max
i

[δt (i) aij ] · bj (ot+1) . (2.21)

The path searching is then conducted as follows. First, given the observation o1, the initial probabil-
ities of starting in state i are calculated for all states:

δ1 (i) = πibi (o1) , 1 � i � N, (2.22)

where N denotes a number of model states. Let ψ be a matrix storing state indices of the N path
candidates:

ψ = (ψi,t)N×T , (2.23)

where T is the length of the observation vector. The matrix is initialized:

ψ (i, 1) = 0. (2.24)

In the second stage, for each model state, the most probable evolution of the path is recursively
estimated given the previous δt−1 (i) for all states:

δt (j) = max
1�i�N

[δt−1 (i) aij ] · bj (ot) , 2 � t � T, 1 � j � N. (2.25)

The matrix ψ is updated:

ψ (j, t) = arg max
1�i�N

[δt−1 (i) aij ] , 2 � t � T, 1 � j � N. (2.26)

When oT is reached, the forward pass is terminated and the state in which the most probable path
ends is picked as the most probable word sequence:

P = max
1�i�N

[δT (i)] , (2.27)

qT = arg max
1�i�N

[δT (i)] . (2.28)

Subsequently, using ψ, a path backtracking is conducted, in which the optimal path is traced from
the final state qT to the beginning and the overall probability of the path is calculated. To reduce the
problems in finite precision arithmetic (i.e., all probabilities are less than one and multiplications cause
very small numbers), multiplications in the Viterbi algorithm are usually replaced by summations of
logarithms.
In the case of larger vocabulary recognition tasks, it would be challenging to consider all possible

words during the recursive part of the Viterbi algorithm. To address this, a beam search can be used.
Here, in each Viterbi iteration, only the words with path probabilities above a threshold are considered
when extending the paths to the next time step. This approach speeds up the searching process at
the expense of decoding accuracy.
The Viterbi algorithm assumes that each of the best paths at time t must be an extension of each

of the best paths ending at time t − 1, which is not generally true. The path that seems to be less
probable than others in the beginning may turn into being the best path for the sequence as a whole
(e.g., the most probable phoneme sequence does not need to correspond to the most probable word
sequence). This issue is addressed by extended Viterbi and forward-backward algorithms, Jurafsky
and Martin (2000).
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Chapter 2: ASR Background

2.5 Feature Extraction

The goal of feature extraction in ASR is to transform the speech signal into a parametric represen-
tation of reduced dimensionality, providing a good discriminability between classes to be recognized,
while suppressing variability introduced by speakers, environments, and transfer chains. To be effi-
cient, the features should match the assumptions made during the design of the acoustic model (e.g.,
the assumption that distributions of the feature vector components can be modeled by limited number
of GMM Gaussians).
The majority of features for ASR are derived from the short time spectral envelope of the speech

signal. Especially, Mel-Frequency Cepstral Coefficients (MFCC) (Davis and Mermelstein, 1980) and
Perceptual Linear Prediction (PLP) (Hermansky, 1990) cepstral coefficients have been popular choices
for ASR front-ends recently, Chou and Juan (2003). Block diagrams of MFCC and PLP feature
extraction are shown if Fig. 2.2. Some of the extraction stages can be found similar both for MFCC

WINDOW
(HAMMING) |FFT|2
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Figure 2.2: Feature extraction of MFCC and PLP cepstral coefficients.

and PLP:

• Signal framing and windowing – the speech signal is divided into overlapping quasi-stationary
frames by applying successively shifted Hamming window:

w (n) = 0.54 − 0.46 cos
(

2πn

N − 1

)
, (2.29)

where n is the discrete time and N is the length of the frame/window. In the frequency domain,
the windowing is displayed as a convolution of the signal spectrum and the window spectrum.
Compared to the rectangular window, spectral side-lobes of the Hamming window are more
attenuated, participating less in the distortion of the estimated short-time spectrum of the
signal (Harris, 1978). Window length is chosen typically 20–35 ms and the shift 5–15 ms. 2

• Estimation of the energy spectrum by applying a short-time Fourier transform (STFT) to the
windowed signal, Rabiner and Juang (1993):

|X (k)|2 =
∣∣∣F {s (n) w (n)

}∣∣∣2 =

∣∣∣∣∣
m+N−1∑

n=m

s (n)w (n − m) e−j2πnk/N

∣∣∣∣∣
2

, (2.30)

2Sometimes, a pitch synchronous framing is used. Here, the window length and overlap are varied according to the
length of the actual pitch period (in the case of voiced speech intervals) or averaged nearest pitch periods (in the case of
unvoiced speech intervals).
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2.5 Feature Extraction

where F denotes a discrete Fourier transform, m is the discrete time of the frame beginning, N
is the frame length, and k stands for the discrete frequency, k = 0, 1, . . . , N − 1.

• Warping and decimation of the energy spectrum by a bank of filters. In MFCC, triangular filters
are placed equidistantly on the warped frequency axis called a mel scale (Volkmann et al., 1937):

mel (f) = 1127 ln
(

1 +
f

700

)
. (2.31)

In PLP, trapezoid-shaped filters are distributed equidistantly on the Bark scale (Zwicker, 1961):

bark (f) = 6 ln

⎡
⎣ f

600
+

√(
f

600

)2

+ 1

⎤
⎦ . (2.32)

In both cases, the warping and filtering is conducted to simulate the nonlinear frequency reso-
lution and critical-band integration as observed in human hearing. In addition, the trapezoid
filters in PLP approximate the shape of the cochlea’s critical band masking curves.

• Pre-emphasis – in the first stage of the MFCC extraction, a first-order high-pass filtering is
conducted:

sp (n) = s (n) − α · s (n − 1) , (2.33)

where α is a pre-emphasis factor typically chosen to range in the interval 0.9 � α < 1. The
purpose of MFCC pre-emphasis is to compensate for the spectral tilt due to modeling of speech
using volume velocity versus microphone measurement using sound pressure, which is typically
-6 dB/oct (Childers and Lee, 1991). In PLP, an equal-loudness pre-emphasis is applied to the
filter bank outputs to simulate varying sensitivity of human hearing across frequencies. Up to 5
kHz, the pre-emphasis weighting function is defined:

E (f) =

(
f2 + 1.44 · 106

)
f4

(f2 + 1.6 · 105)2 (f2 + 9.61 · 106)
. (2.34)

If a speech signal of wider bandwidth is processed, (2.34) can be further extended by the term
representing a decrease of the sensitivity of human hearing occurring above 5 kHz (Hermansky,
1990). Although the pre-emphasis in PLP is primarily motivated by the auditory model of
human hearing, in fact, it performs a similar spectral tilt compensation as seen in MFCC (Hönig
et al., 2005). The pre-emphasis assures that all frequency components of the spectral envelope
will be given an equivalent attention in the subsequent steps of the feature extraction process.

In PLP, the equal loudness pre-emphasis is followed by a cubic-root amplitude compression represent-
ing the relation between intensity and loudness. The energy spectrum is then approximated by means
of linear prediction, yielding coefficients of an all-pole filter:

|XLP (k)|2 =
G2∣∣∣∣1 −

p∑
l=1

ale−jkl

∣∣∣∣
2 , (2.35)

where p is an order of the linear predictor filter, {al} are the prediction coefficients, and G is the gain
constant derived from the mean squared prediction error. The prediction coefficients are derived from
the autocorrelation coefficients by applying the Levinson-Durbin recursive algorithm, Rabiner and
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Chapter 2: ASR Background

Juang (1993). In the last step, cepstral coefficients are extracted. Cepstrum of the energy spectrum
envelope is defined, Proakis and Manolakis (1995):

c (n) = F−1
{
ln |XLP (k)|2

}
. (2.36)

Intuitively, coefficients of the energy cepstrum reflect spectral relations in the energy spectrum envelope
|XLP (k)|2. Low cepstral coefficients relate to the slow changes in the envelope while the higher
coefficients to the faster envelope changes. Specially, c (0) refers to the logarithm of DC component
of the energy spectrum, (i.e., to the energy of the signal). The following 1–2 coefficients are typically
related to the overall spectral tilt, (Paul, 1987). Considering the speech production mechanism3,
lower cepstral coefficients are driven by the vocal tract shape, while the higher coefficients relate to
the vocal tract excitation. Since changes in vocal tract shape are believed to carry the main portion
of linguistic information4 (McCandless, 1974), while the excitation is strongly speaker-dependent and
often redundant, it is common to extract only the first 12–14 cepstral coefficients for speech recognition.
In PLP, the cepstral coefficients are derived from the predictor coefficients using a recursion algorithm
equivalent to performing an inverse Fourier transform of the log spectrum as defined in Eq. (2.36),
Rabiner and Juang (1993). Since only the low cepstral coefficients are of interest, a low order LP
(8 � p � 14) approximating slow changes in the energy spectral envelope is used. In MFCC, the
cepstral coefficients are calculated from the inverse discrete cosine transform (IDCT) of the logarithm
of the filter bank outputs:

c (n) =
Q∑

q=1

ln |Xq|2 cos
[
n

(
q − 1

2

)
π

Q

]
, (2.37)

where Q is number of filters in the filter bank, and |Xq|2 is the energy output of the q-th filter.
The MFCC or PLP coefficients c (n) are called static coefficients. It was observed that adding

first and second order time derivatives of the static coefficients into the feature set (i.e., providing
information about the temporal evolution of the static features) improves performance of the ASR
systems, (Furui, 1986), (Hanson and Applebaum, 1990b). The first order time derivatives, delta
coefficients, can be obtained from the regression analysis of the time evolution of the static coefficients,
(Furui, 1986):

Δci (m) =

L∑
l=1

l [ci+l (m) − ci−l (m)]

2
L∑

l=1

l2
, (2.38)

whereΔci (m) is them-th cepstral coefficient in the feature vector of the i-th frame, and L is a number
of frame pairs participating in the linear regression. The second time derivatives, called acceleration
or delta-delta coefficients, can be calculated from the linear regression of delta coefficients:

ΔΔci (m) =

L∑
l=1

l [Δci+l (m) − Δci−l (m)]

2
L∑

l=1

l2
. (2.39)

The delta and acceleration coefficients can be implemented also as the first and second order differences
of the static coefficients, (Hanson and Applebaum, 1990b):

δci (m) = ci+L (m) − ci−L (m) , (2.40)

3Mechanism of speech production will be discussed in more detail in Sec. 3.1.
4In tonal languages, e.g., in Mandarin Chinese, also tonal patterns are employed to distinguish words, see (Lei et al.,

2006).
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2.6 Summary

δδci (m) = δci+LL (m) − δci−LL (m) , (2.41)

where L and LL are optional parameters referring to the half of the distance between the frames
differenced.
While MFCC and PLP as described here represent mainstream speech coding, several studies have

shown that altering the extraction stages can further improve efficiency of the features in ASR systems
(e.g., replacing FFT by LPC in MFCC, (Bou-Ghazale and Hansen, 2000), or substituting triangular
filters for trapezoid filters in PLP, (Psutka et al., 2001))5. In state-of-the-art systems, the basic feature
extraction scheme is usually extended by variety of segmental and suprasegmental, fixed and adaptive
operations, with focus on increasing the class discriminability and invariance to adverse conditions
provided by the features. Some of these techniques are discussed in the following chapters.

2.6 Summary

Putting together parts discussed in the previous sections, the architecture of an HMM-based ASR
system may look as shown in Fig. 2.1. In the ‘feature extraction’ stage, the speech signal is segmented
into overlapping frames. From each frame, a feature vector (parameterized acoustic observation) is
extracted. The feature vectors are passed to the ‘sub-word likelihoods’ section, where the likelihoods
that the feature vector is generated by the given sub-word model are estimated for all sub-word
models using GMM or MLP-based statistical models. In MLPs, to each of the network outputs a
single phone probability is usually assigned. In the case of GMMs, the sub-word unit likelihoods are
usually modeled by multiple GMM models and transition probabilities, forming sub-word HMMs.
In the final stage, the ‘acoustic-phonetic-language’ model is employed. In this model, the sub-

word models are connected into word models comprising single or multiple pronunciations as defined
by the lexicon. The transition probabilities between the word models are given by the language model.
Based on the sub-word likelihoods, a path through the ‘acoustic-phonetic-language’ model giving the
maximum likelihood is searched by the Viterbi algorithm. States passed by the maximum likelihood
path generate the recognizer’s output.

5An impact of altering FFT and LPC, as well as filter bank modifications are studied in Chap. 9.
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Chapter 3

Lombard Effect (LE): An Overview

In the first decade of the twentieth century, French oto-rhino-laryngologist Etienne Lombard pre-
sented results of a series of experiments in which patients were exposed to noise while being engaged
in a conversation1. Lombard observed that the patients increased their vocal effort and pitch when
exposed to noise, and lowered the voice and pitch to the former level once the noise stopped. Similar
increase of vocal level was observed with attenuation of the speaker’s auditory feedback. If speaker
with normal hearing had noise fed into one ear (monaural noise), they raised their voice just slightly
as they still could hear themselves with the other ear. If presented to binaural noise, they raised
their voice close to shouting. Patients with unilateral deafness reacted only slightly or not at all when
having monaural noise fed to the impaired ear, but when the noise was fed to the healthy ear, they
started to nearly shout, as their auditory feedback was masked, (Lane and Tranel, 1971).
When reporting the experiments, Lombard noted, that speakers’ changes in voice production

due to noise seemed to be unconscious. This gave rise to a theory that speech production is kind
of automatic servomechanism being controlled by auditory feedback. The theory was supported by
results of several experiments, e.g., in (Pick et al., 1989), speakers were unable to follow instructions to
maintain constant vocal intensity across alternating periods of quiet and noise. In another experiment
of the same work, the speakers learned to suppress consciously the effect of noise by using a visual
feedback. However, after the feedback was removed, they tended to lower their overall vocal level both
in noise and in quiet, rather than changing their specific response to the noise.
In contrast to this, in other studies, significant differences were observed in speech production

when the speakers were communicating (Webster and Klumpp, 1962) or just reading texts (Dreher and
O’Neill, 1957), showing that the reaction to noise cannot be purely automatic, but rather consciously
driven by the speaker’s effort to maintain effective communication. (Lane and Tranel, 1971) suggests
that the response to noise may be initially learned through the public loop (loop speaker-listener),
and later becomes a highly practiced reaction when communicating in noise.
In the recent study (Junqua et al., 1998), speakers were exposed to noise while communicating

with a voice-controlled dialing system. The system was trained in quiet, reaching the best performance
when processing neutral speech. The speakers were able to consciously compensate for the Lombard
effect and lower their voices to reach efficient response from the system. This confirms the hypothesis
stated in (Lane and Tranel, 1971) that the changes in speech production are driven (at least to some
extent) by the public loop. These observations lead to the definition of Lombard effect, (Junqua,
1993), (Womack and Hansen, 1999), which can be stated as follows: Lombard effect is the process
when speakers change their speech production in an effort to maintain intelligible communication in
a noisy environment.

1The results were published in (Lombard, 1911). Particular Lombard’s experiments and findings are also summarized
and further discussed in (Lane and Tranel, 1971).
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3.1 Model of Speech Production

Lombard’s findings significantly contributed to the following areas:

• Tests of hearing loss and malingering,

• Study of dynamics between hearing and speaking,

• Analysis of speech communication in noise.

Inspired by Lombard’s experiments, an extensive number of studies have analyzed the impact of
LE on speech production. The conditions used to induce LE, as well as the analysis techniques, varied
across the studies, hence the resulting observations might contradict in particular cases. Nevertheless,
majority of the analyses reported consistent shifts of several speech features. Not only voice inten-
sity and pitch varied under LE as observed by Lombard, but also other excitation and vocal tract
parameters were affected.
Recent ASR systems usually rely on the acoustic models trained on the neutral speech uttered

in a calm environment – ‘clean neutral speech’. Hence, feature shifts introduced by LE and by the
presence of additive noise in the speech signal may cause a strong mismatch with the acoustic models,
resulting in a severe deterioration of the recognition performance.
The additive noise is present, to some extent, in all speech signals. Its amount may easily reach a

level impacting the ASR accuracy, even if the environmental noise itself is not strong enough to induce
LE. Hence, alleviating the impact of noise has been a crucial issue on the way to robust recognition.
During the last three decades, a variety of efficient noise suppression/speech emphasis algorithms as
well as noise-modeling algorithms were proposed.
Even though the impact of LE on speech production were analyzed before the rise of ASR, a

relatively little attention has been paid to LE in the design of recognition systems. A necessity to
suppress LE emerges with the voice-controlled applications (navigation, telephony, automated infor-
mation centers, etc.) operated in the real-world environments (e.g., public transport or crowded
places). In general, LE corrupts recognition performance considerably even if the noise is suppressed
or not present in the speech signal (Junqua et al., 1998), (Hansen, 1996), (Bou-Ghazale and Hansen,
2000), and the performance deterioration by LE can be significantly stronger than the one caused by
the corresponding additive noise (Rajasekaran et al., 1986), (Hansen, 1988), (Takizawa and Hamada,
1990). Hence, to improve ASR efficiency in various noisy environments, it is necessary to study feature
variations caused by LE, and employ this knowledge in the system design.
The remainder of this chapter presents an overview of the speech production changes under LE,

and approaches to Lombard speech modeling, classification, recognition, and acquisition.

3.1 Model of Speech Production

The speech waveform can be modeled as a response of the vocal tract to the series of quasi-periodic
glottal pulses or to noise, depending on whether the actual sound is voiced or unvoiced, respectively.
The vocal tract acts as a non-uniform tube of time-varying cross-section (Flanagan, 1957). Resonances
of the vocal tract are called formants. Frequencies and bandwidths of formants are determined by the
shape of the vocal tract. In the natural speech, the configuration of the vocal tract is continuously
varied by articulators (tongue, jaw, lips, and velum) to produce distinct speech units.
The vocal tract is terminated by the glottis (the opening between vocal folds) on one side, and by

lips on the other side. In voiced speech, the stream of air expelled from the lungs is periodically inter-
rupted by the vibrating vocal folds, producing glottal pulses. The pulses form a quasi-periodic volume
velocity waveform. The frequency of the glottal pulses, called fundamental frequency, determines the
speech intonation. In unvoiced speech, the stream of air from the lungs passes the glottis without
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Chapter 3: Lombard Effect (LE): An Overview

interruption, as the vocal folds are left open and do not vibrate. In this case, all audible components
of speech are produced by the articulators.
A linear digital model of speech production, Rabiner and Schafer (1978), is shown in Fig. 3.1.

For voiced speech, an impulse train generator I (z) produces a sequence of unit impulses. Distance
between the impulses is driven by the period length of the desired pitch. The impulse sequence excites
a glottal pulse model G (z), whose impulse response has a shape of the desired glottal pulse. In modal
voice, the average slope of the glottal pulse spectra is approximately -12 dB/oct, (Childers and Lee,
1991). The vocal intensity of the voiced speech is adjusted by the gain AV . For unvoiced speech, the
vocal tract is excited by random noise with a gain AN . The transfer function of the vocal tract is

IMPULSE TRAIN 
GENERATOR I(z)

VOCAL TRACT
MODEL V(z)

RADIATION 
MODEL R(z)

RANDOM NOISE 
GENERATOR N(z)

Voiced/Unvoiced
Switch

Pitch Period
AV

AN

Vocal Tract 
Parameters

GLOTTAL PULSE 
MODEL G(z)

uG(n)
pL(n)

Figure 3.1: Digital model of speech production.

modeled using an all-pole digital circuit2:

V (z) =
G

1 −
N∑

k=1

αkz−k

, (3.1)

where G is the gain constant, N is the order of the filter, {αk} are coefficients of the filter, and z is
the z-plane. The all-pole model is a good representation of vocal tract configurations for a majority
of speech sounds, with the exception of nasals and fricatives, which require the addition of zeros in
the transfer function to model anti-resonances.
In nasals, resonances of the nasal tract form poles and the oral tract is a closed branch causing zeros.

Also nasalized vowels require zeros. Here, the nasal cavity represents an open side branch, adding
extra poles and zeros to the transfer function (McCandless, 1974). In unvoiced fricatives, articulators
are placed close together, forming a narrow constriction. Air is forced through the constriction at high
velocity, producing a turbulent flow. This flow generates a noise which acts as excitation for the part
of the vocal tract anterior to the constriction (i.e., here, the excitation source is located within the
vocal tract rather than in the glottis). In this case, the zeros of the transfer function are caused by
the poles of the part of the vocal tract posterior to the constriction (Heinz and Stevens, 1961).

2In the early works, the transfer function of the vocal tract was modeled as a cascade or parallel connection of the
second order resonator circuits (Dunn, 1950). Although successfully simulating formant frequencies and bandwidths, the
second order resonators introduced a spectral tilt which did not appear in the transfer function of the real vocal tract.
Digital all-pole filters address this drawback of the analog resonators.
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3.2 Speech Production under LE

For nasals and fricatives, the anti-resonances can be modeled by including zeros or adding more
poles into V (z). The latter approach is preferred as it allows for modeling the transfer function by
means of linear prediction (see Sec. 2.5).
The transfer function of sound radiation by lips can be considered to have a constant tilt of

approximately +6 dB/oct for a wide range of mouth opening areas (Flanagan, 1957). In the digital
domain, the lip radiation can be modeled as a first order high-pass filter:

R(z) = R0(1 − z). (3.2)

The complete digital model of speech production can be then expressed:

S(z) =

{
AV I (z) G (z) V (z)R (z) , voiced,

ANN (z)V (z) R (z) , unvoiced.
(3.3)

Considering the average spectral tilt −12 dB/oct of the glottal pulses in modal speech and the constant
tilt of +6 dB/oct introduced by lips, the average tilt of the modal voiced speech spectra reaches −6
dB/oct. For a majority of speech sounds, it can be assumed that the parameters of the excitation
and vocal tract are stationary in 10–30 ms time segments. This assumption is often used as a cue to
speech signal segmentation in feature extraction.
In some modes of speech production, the presented model is rather a crude approximation of reality

and has to be further refined. For example, in breathy speech, the glottis has an imperfect closure
and, during the vocal folds vibration, the vocal tract is excited both by glottal pulses and by noise,
(Childers and Lee, 1991). In such a case, the switch in Fig. 3.1 should be replaced by a summation
unit. Another assumption made in the present linear model is that the airflow propagates through the
vocal tract as a plane wave. However, it was shown in (Teager, 1980) that the airflow rather creates
vortices near the walls of the vocal tract, resulting in separation of the flow into several components,
see Chap. 2–3 in Jr. et al. (2000). Based on this observation, a Teager energy operator (TEO) was
proposed and successfully employed in the speech style classification, (Hansen and Womack, 1996) see
Sec. 3.4.

3.2 Speech Production under LE

Parameters of neutral speech can be analyzed relatively easily as extensive multi-lingual corpora
have been acquired in the past decades. On the other hand, occurrence of LE in the corpora is quite
rare. The first step in the works focusing on LE analysis typically comprises acquisition of Lombard
speech in actual or simulated noisy conditions. In the majority of past studies, utterances from only
a limited number of subjects were considered and the results obtained could hardly be generalized
to a larger population. However, many of the observations are consistent across works, outlining a
speaker-independent picture of the impact of LE on speech production. The following sections attempt
to summarize these observations, with a focus on feature variations affecting ASR or providing a cue
to Lombard speech classification.

3.2.1 Vocal Intensity and Speech Intelligibility

To express vocal intensity, sound pressure level (SPL) is commonly used:

Lp = 20 log10

(
pRMS

p0

)
, (3.4)

where pRMS is the root mean square (RMS) sound pressure and p0 is a reference pressure, p0 = 20μPa
RMS for air environment. The logarithmic expression of the sound pressure correlates almost linearly
with the perceived loudness of sound, (Fletcher and Munson, 1933).
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Chapter 3: Lombard Effect (LE): An Overview

Lombard noticed that speakers engaged in conversation tend to raise their vocal intensity when
exposed to noise3, (Lane and Tranel, 1971). Later, a relation between noise level and corresponding
voice level was studied. It was found that for a wide range of noise levels, the dependency between voice
SPL and noise SPL, called Lombard compensation function, is almost linear. In (Dreher and O’Neill,
1957), for subjects reading a text in noise, Lombard function had a slope 0.1 dB/dB. In another study,
(Webster and Klumpp, 1962), pairs of subjects communicating in various levels of ambient noise had
a direct spoken feedback and were required to maintain relatively error-free communication. In this
case, Lombard function had a slope 0.5 dB/dB. Presumably, the slope is steeper here because speakers
were motivated to react to noise in a way to be understood by others4. Similar slope of Lombard
function was reported in (Lane et al., 1961) also for altered sidetone gain and speech level. When the
sidetone level was increased, speakers lowered their voices, but only halfway compared to the sidetone
increase. Lombard function reaches its minimum in low noises (below 50 dB SPL) where speakers do
not further decrease their vocal intensity with the decrease of noise. In very high levels of noise (above
106 dB SPL) Lombard function approaches maximum as speakers reach limits of capability to further
increase their vocal level, (Lane et al., 1970).
The increase of vocal effort is not uniform across phones produced in noise. Vowels seem to be

more emphasized than consonants, causing a decrease of consonant-vowel energy ratio, (Hansen, 1988),
(Junqua, 1993), (Womack and Hansen, 1996a).
Furthermore, intelligibility of speech produced in noise was evaluated in perceptual tests. In

(Dreher and O’Neill, 1957), speakers read utterances in several noise conditions and in quiet. The
noise was delivered to their headsets, yielding speech recordings with high SNR. For the perceptual
tests, noise was added to the recordings to reach a constant SNR. Utterances originally produced in
noise were found to be more intelligible than utterances produced in quiet. A similar observation
was made in (Pittman and Wiley, 2001). Female Lombard speech was found more intelligible in
noise than male Lombard speech, (Junqua, 1993). The higher the level of noise in which the speech
was originally produced, the higher the intelligibility in perceptual tests was reached in the constant
SNR, (Summers et al., 1988). However, when the vocal effort is increased after a certain point, the
intelligibility of speech starts to deteriorate, (Pickett, 1956), (Lane and Tranel, 1971), (Junqua, 1993).
In (Pickett, 1956), the decrease of intelligibility was found to be almost linear with the increase of
vocal intensity in the range 80–90 dB SPL. Similar deterioration was observed with very weak voice.
The rate of deterioration may vary depending on the number of confusable items in the vocabulary
to be recognized, (Junqua and Anglade, 1990).

3.2.2 Pitch

In pitch perception theory, the fundamental frequency of glottal pulses F0 is often called ‘spectral
pitch’ and the perceived pitch is referred to as ‘virtual pitch’, (Terhardt et al., 1982). In complex
sounds (e.g., in vowels) virtual pitch may differ from F0 as higher harmonics of F0 are sometimes
perceptually more prominent than the fundamental component. It is quite common to use a term
‘pitch’, which can represent either virtual or spectral pitch, depending on the context (e.g., pitch
detection algorithms (PDAs) estimate F0 or virtual pitch, see Sec. 4.1). In this work, the term pitch
will refer to ‘virtual’ pitch when reporting perceptual observations, and to ‘spectral’ pitch in most
other cases, since the use of F0-tracking PDAs is prevalent both in the referred works and in the
experiments carried out within the thesis. There is strong correlation between spectral pitch and
virtual pitch, (Duifhuis et al., 1982), hence, it can be assumed that the observations made for spectral
pitch can be generalized also for virtual pitch, and vice versa.

3Similar increase of intensity can be found in loud speech, (Hansen, 1988), (Bond and Moore, 1990).
4In general, speakers raise their voices proportionally to the subjectively perceived level of the disturbance introduced

by noise. The perceived level is speaker-dependent, (Junqua et al., 1999).
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3.2 Speech Production under LE

Lombard noticed in his experiments that increasing vocal intensity in noise was accompanied
by changes in pitch (Lane and Tranel, 1971). Later works found significant changes in pitch contour,
mean, variance, and distribution when comparing neutral and Lombard speech, (Hansen, 1988), (Bond
et al., 1989), (Junqua, 1993), (Hansen, 1996). An example of typical distribution of pitch in neutral
speech and speech uttered in 85 dB SPL pink noise is shown and compared to angry speech in Fig. 3.2,
as presented in (Hansen, 1996). In noise, the distribution of pitch may become more Gaussian, (Pisoni
et al., 1985). Less significant increase in pitch was observed for female speakers when compared to
male speakers, (Junqua and Anglade, 1990).
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Figure 3.2: F0 distribution in neutral, LE, and angry speech, after (Hansen, 1996).

Changes of fundamental frequency are physiologically related to the vocal effort. The considerable
increase in fundamental frequency of loud and Lombard speech is caused by increased sub-glottal pres-
sure and increased tension in the laryngeal musculature, (Schulman, 1985). Fundamental frequency
changes almost linearly with vocal intensity, when expressed in semitones and SPL, respectively,
(Gramming et al., 1987), (Titze and Sundberg, 1992), (Sulter and Wit, 1996).

3.2.3 Formants

In voiced speech, frequency of the first formant F1 varies inversely to the vertical position of the
tongue and the second formant F2 varies with the posterior-anterior articulatory dimensions, (Kent
and Read, 1992). Due to wider mouth opening during the speech production, accompanied by lowering
the jaw and the tongue, the center frequency of F1 increases in the voiced loud and Lombard speech,
(Schulman, 1985), (Summers et al., 1988), (Bond and Moore, 1990). The increase is independent on
the phoneme context, (Junqua and Anglade, 1990). F2 tends to increase in some phones, (Junqua,
1993), while may decrease in others, (Bond et al., 1989), see also Fig. 3.3. In (Pisoni et al., 1985),
the increases of F1 frequency were accompanied by consistent decreases of F2 while in (Hansen, 1988),
(Hansen and Bria, 1990) locations of both F1,2 increased for most phonemes. In (Takizawa and
Hamada, 1990), formants occurring bellow 1.5 kHz tended to shift upwards in frequency while the
higher formants shifted downwards. The higher formants, the smaller degree of resultant shift was
observed. Average bandwidths of the first four formants decrease for most phonemes, (Hansen, 1988),
(Hansen and Bria, 1990), (Junqua, 1993).
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Figure 3.3: Average center frequencies of F1 and F2 in neutral and LE vowels, after (Bond et al., 1989).

3.2.4 Spectral Slope

As discussed in Sec. 3.1, the speech waveform is generated by joint contribution of vocal tract
excitation, vocal tract transfer function, and radiation by lips. The radiation by lips has an almost
constant spectral tilt of +6 dB/oct for wide range of mouth opening areas, (Flanagan, 1957), and its
contribution to spectral slope changes in short-time speech segments can be neglected.
The vocal tract can be modeled by a lossless tube with zero average spectral slope, Rabiner and

Schafer (1978). It can be assumed that the slope would not change under LE, as only the first two
formants were observed to shift significantly in Lombard speech, see Sec. 3.2.3, while higher formants
remained almost intact. However, due to the band-limiting of speech signals for the purposes of
digital processing, the former vocal tract spectrum comprising infinite number of formants is typically
reduced to just the first 3–5 formants. In this case, the redistribution of F1,2 due to LE may affect
the estimated spectral slope. Presumably, the contribution will be quite limited, since the shifts of
F1,2, even if consistent and statistically significant, reach negligible values compared to the whole
speech bandwidth from which the spectral slope is extracted, see, e.g., (Junqua and Anglade, 1990).
The main contribution to the spectral changes can be credited to the variations of glottal pulse
spectra. In (Monsen and Engebretson, 1977), significant variations of shape and intensity spectrum of
glottal volume-velocity waveforms were found when analyzing speech uttered in various talking styles,
including neutral and loud speech. Similar observations were made in (Cummings and Clements,
1990), where glottal waveforms estimated by inverse filtering of speech samples from eleven talking
styles, including LE, were found to have unique time-domain profiles. In the frequency domain, the
overall spectral slope decreases in loud and Lombard speech5, (Pisoni et al., 1985), (Summers et al.,
1988), (Hansen, 1988), (Hansen and Bria, 1990), accompanied by upward shift of spectral center of
gravity, (Junqua, 1993). In loud and LE speech, speakers tend to concentrate energy into the frequency
range of the highest sensitivity of the human auditory system. This energy migration happens at the
expense of low and high frequency bands. As a result, low-band spectral slope (0–3 kHz) becomes
more gradual and high-band spectral slope (3–8 kHz) becomes steeper, (Stanton et al., 1988). Similar
observations were also made for linguistically stressed syllables in neutral speech, (Sluijter and van
Heuven, 1996), (Crosswhite, 2003).

5The spectral slope of loud and Lombard speech spectral may reach similar values, (Hansen, 1996).
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3.3 Degradation Model of LE

3.2.5 Duration and Speech Rate

When producing speech in noise, syllables are often prolonged, (Dreher and O’Neill, 1957). Du-
ration of vowels tends to increase while duration of consonants is reduced. The duration decrease in
consonants is usually smaller than the duration increase in vowels, resulting in an increase of aver-
age word durations, (Junqua and Anglade, 1990), (Lane and Tranel, 1971). Word duration changes
were found either significant, (Hansen, 1988), (Hansen, 1996), or insignificant, (Bond et al., 1989),
depending on the actual conditions.
As already discussed in Sec. 3.2.1, besides the increase in duration, vowels are also produced with

an increased vocal effort compared to consonants. This may be caused by the fact that vowels are the
most audible speech sounds at high noises and long distances, carrying a major part of the information
to the listener, and are therefore intentionally emphasized by the speaker, (Junqua, 1993).
Speech rate is closely related to the duration of speech units. Some studies observed a decrease of

speech rate under LE, (Dreher and O’Neill, 1957), (Webster and Klumpp, 1962). In the latter work,
the speech rate decreased with the increasing noise but tended to increase with increasing number of
listeners (to a certain point). Others have not found any correlation between LE and speech rate,
(Lane and Tranel, 1971).

3.3 Degradation Model of LE

As discussed in the previous sections, LE affects a wide range of speech production parameters. To
propose ASR algorithms more resistant to LE, it is useful to first consider a general model of speech
degradation by LE, that is, a model transforming clean neutral speech into noisy Lombard speech. In
state-of-the-art systems, speech recognition features are extracted from short-time spectra, hence, it
is reasonable to search a degradation model representing short-time spectral changes introduced by
noisy environment. In (Chi and Oh, 1996), the proposed degradation model has the following form:

SLE(ω) = G · A(ω)SN

[
F (ω)

]
+ N(ω), (3.5)

where SN [·] is the spectrum of clean neutral speech, F (ω) is the nonlinear frequency warping repre-
senting variations of formant locations and bandwidths, A(ω) is the amplitude scaling related to the
redistribution of energy between frequency bands and changes of spectral tilt, G is the gain constant
representing vocal intensity variations, and N(ω) is the spectrum of additive noise. Furthermore,
the model (3.5) can be extended for environmental convolutional distortion, and convolutional and
additive distortions introduced by the transfer chain, (Hansen, 1988), (Hansen, 1996).
Parameters of the degradation model can be found by confronting clean neutral and corresponding

noisy Lombard speech samples (Chi and Oh, 1996). The degradation model can be employed both
in adapting ASR systems to LE, or in ‘equalizing’ Lombard speech towards neutral, which would be
better accepted by neutral-trained systems. Another way to model LE is to use source generator
model, (Hansen, 1994). Here, the differences between neutral and LE speech are represented by a set
of transformations mapping neutral speech production features (e.g., vocal tract, duration, intensity,
glottal source factors) to LE ones.

3.4 Classification of Neutral/LE Speech

In general, talking style classification finds application in various areas, such as in the development
of human-machine interfaces responding and adapting to the user’s behavior, (Lee and Narayanan,
2005), redirecting highly emotional calls to a priority operator, or monitoring aircraft communication
(Womack and Hansen, 1996a).
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Chapter 3: Lombard Effect (LE): An Overview

Neutral/LE speech classification discussed in this section is intended to be used for improving
recognition performance in changing noisy conditions. As mentioned earlier, the mismatch between
LE speech features and neutral-trained acoustic models may result in severe deterioration of the
recognition performance. The mismatch can be reduced by using a neutral/LE classifier to divert
the speech to be recognized into dedicated acoustic models trained on neutral and Lombard speech,
(Womack and Hansen, 1996b), see also Sec. 3.5.
When designing a classifier, it is crucial to find a set of features providing sufficient discriminability

between classes to be recognized. Many of the speech features discussed in the previous sections display
significant shifts between neutral and LE conditions. However, distributions of some of them may be
strongly context or speaker-dependent, and thus would not provide a reliable cue to the classification.
The following features were found to be efficient in actual neutral/LE classification experiments:

• Normalized energy, (Bou-Ghazale and Hansen, 1998),
• Glottal pulse shape, (Cummings and Clements, 1990), and spectral tilt, (Zhou et al., 1998),
(Hansen, 1996),

• Pitch mean, (Kwon et al., 2003), normalized pitch mean, (Bou-Ghazale and Hansen, 1998),
(Zhou et al., 1998), variance, (Hansen, 1996), delta and acceleration, (Kwon et al., 2003),

• Phone class duration, (Womack and Hansen, 1996a), vowel class duration, (Zhou et al., 1998),
intensity of voiced sections, (Womack and Hansen, 1996a), (Zhou et al., 1998),

• Energy shifts from consonants toward vowels, (Womack and Hansen, 1996a).
• Estimated vocal tract area profiles and acoustic tube coefficients, (Hansen and Womack, 1996),
• Mel-band energies, mel-frequency cepstral coefficients (MFCC), (Kwon et al., 2003), autocorre-
lation MFCC, (Hansen and Womack, 1996),

• Linear predictive cepstral coefficients, (Bou-Ghazale and Hansen, 1998),
• Teager energy operator (TEO)6, (Hansen and Womack, 1996), (Zhou et al., 1998).

Mean vowel F1,2 locations are not suitable for classification, (Zhou et al., 1998). This finding is
intuitively supported by the fact that locations of F1,2 vary significantly within each of the talking
styles due to articulation of distinct speech sounds, see Fig. 3.3. MFCC delta and acceleration
coefficients also do not perform well, (Womack and Hansen, 1996a), for being resistant to talking style
changes, (Lippmann et al., 1987), (Hanson and Applebaum, 1990a).
Talking style classifiers typically employ GMMs, (Zhou et al., 1998), (Neiberg et al., 2006), HMMs,

(Zhou et al., 1998), k-nearest neighbors (KNN)7, (Lee and Narayanan, 2005), artificial neural networks
(ANNs), (Womack and Hansen, 1996a), and support vector machines (SVMs)8, (Kwon et al., 2003).
Apart from the choice of classification feature set, the classification performance also depends on

the length of the speech segment being analyzed (represented by the feature vector). It was observed
that with increasing length of the feature vector the classification error rate tends to drop (Zhou et al.,
1998).

6Instead of propagating uniformly through the vocal tract as a plane wave, the airflow creates vortices due to the
energy concentrated near the walls. TEO measures energy resulting from this nonlinear process, (Hansen and Womack,
1996)

7Class-labeled training samples form vectors in a multidimensional feature space. Distances between the classified
sample and all training samples are calculated. The classified sample is assigned to the class which is the most common
among its k nearest neighbors, (Cover and Hart, 1967).

8Support vector machines map vectors to a higher dimensional space. In the space, a hyperplane splitting samples
into two classes is constructed. The hyperplane is searched to maximize the distance between its hypersurface and the
nearest training samples of both classes, (Burges, 1998).
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3.5 Robust Speech Recognition

The performance of recent ASR systems is strongly impacted by environmental and speaker-
related factors. The environmental factors comprise additive noises and convolutional distortions due
to reverberation and microphone/telephone channels. The speaker-related factors are represented by
differences in speech production across speakers (physiological differences, dialects, foreign accents),
and by conscious and reflexive changes in speech production on the speaker level (talking styles,
emotions, Lombard effect, task load, etc.). The physiological properties of speech production correlate
with age and gender of speakers, (Junqua, 2002), being displayed in differences in glottal pulse shapes
and frequencies, and shapes and lengths of the vocal tract9.
In particular, the performance of ASR systems may significantly deteriorate due to the impact of

noise, (Mokbel and Chollet, 1995), reverberation, (Junqua, 2002), inter-speaker variability, (Womack
and Hansen, 1996a), and variability on the speaker level, (Rajasekaran et al., 1986), (Bou-Ghazale and
Hansen, 1998). A variety of algorithms improving ASR robustness to these factors has been proposed,
operating on the level of model training, front-end processing, and back-end processing. Since the
occurrence of LE is displayed in the speaker-related variations of speech features and in the speech
signal contamination by noise, many of the methods popular in the ‘general’ robust ASR design are, to
a certain extent, efficient also when dealing with Lombard speech. In the model training, the following
approaches were found efficient:

• Multi-style training – training models on speech comprising various talking styles has shown to
improve performance of the speaker-dependent system as the training and decoding algorithms
focused attention on spectral/temporal regions being consistent across styles, (Lippmann et al.,
1987), (Chen, 1987). However, in the speaker-independent system, the multi-style training
resulted in worse performance than the training on neutral speech, (Womack and Hansen, 1995a).

• Style-dependent/speaker-independent training – models were trained and tested with speech
from the same talking style, reaching improvements over neutral trained recognizer both for
training on actual or synthetic stressed speech, (Bou-Ghazale and Hansen, 1998), see Fig. 3.4.
In the stressed speech synthesizer, variations of pitch contour, voiced duration, and spectral
contour were modeled for angry, loud, and Lombard speech. The speaker-independent models
were trained with the differences (perturbations) in speech parameters from neutral to each of
the stressed conditions. In the synthesis stage, the trained perturbation models were used to
statistically generate perturbation vectors to modify the talking style of input neutral speech. In
(Iida et al., 2000), a concatenative speech synthesizer10 was used to produce emotional speech
(joy, anger, sadness).

• Training/testing in noise – models were trained and tested in the same noisy conditions, (Yao
et al., 2004).

Improved training methods can increase recognition performance for the conditions captured in the
training sets, but the performance tends to degrade when the conditions change, (Hansen, 1996).
In the front-end processing stage, the aim is to provide speech representation preserving linguistic

message carried in the speech signal, while being invariant to environmental/speaker-induced changes.
A number of feature extraction and feature equalization techniques has been proposed. The feature
extraction techniques employ:

• Auditory-based models, (Seneff, 1986), (Ghitza, 1988), (Hermansky, 1990), (Mak et al., 2004),

9Vocal tract length varies typically from 18 cm for males to 13 cm for females and children, and to 7 cm for new-born
babies (Lee and Rose, 1996), (Vorperian et al., 2005).
10Concatenative speech synthesizer strings together units of recorded natural speech.
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Figure 3.4: HMM-based stressed speech synthesis, after (Bou-Ghazale and Hansen, 1998).

• Temporal-spectral transformations – FFT and LPC (Davis and Mermelstein, 1980), (Hermansky,
1990), wavelets, (Gallardo et al., 2003), Minimum Variance Distortionless Response (MVDR)
– power spectrum derived from the output of data-dependent bandpass filters, (Yapanel and
Hansen, 2008),

• Optimized filter banks, (Biem and Katagiri, 1997), (Bou-Ghazale and Hansen, 2000), (Gallardo
et al., 2003),

• Temporal information – delta, second (acceleration), and third derivatives of feature vectors,
(Lippmann et al., 1987), (Hanson and Applebaum, 1990a).

The feature equalization techniques employ:

• Noise suppression – linear (Boll, 1979), (Hansen and Bria, 1990), and nonlinear (Lockwood
and Boudy, 1991) spectral subtraction of noise spectrum, speech enhancement, (Hansen and
Clements, 1991),

• Cepstral mean subtraction – fixed, (Lee and Rose, 1996), and adaptive, (Bou-Ghazale and
Hansen, 2000),

• Cepstral variance normalization, (Paul, 1987),

• Spectral tilt compensation, (Stanton et al., 1989), (Hansen and Bria, 1990), (Takizawa and
Hamada, 1990), (Suzuki et al., 1994), (Bou-Ghazale and Hansen, 2000),

• Formant shifting/vocal tract length normalization (VTLN), (Hansen and Clements, 1989), (Tak-
izawa and Hamada, 1990), (Suzuki et al., 1994), (Lee and Rose, 1996),

• Formant bandwidth compensation, (Takizawa and Hamada, 1990), (Suzuki et al., 1994),

• Duration compensation, (Takizawa and Hamada, 1990),
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• Whole-word cepstral compensation, (Chen, 1987), (Hansen, 1988), (Hansen, 1996),

• Segmental cepstral compensation, (Wakao et al., 1996)

• Source generator based adaptive cepstral compensation, (Hansen, 1996).

In the back-end processing, the following approaches were found efficient:

• Adding noise characteristics into clean reference models, (Mokbel and Chollet, 1995), parallel
model combination (PMC), (Gales and Young, 1996),

• Model adaptation to actual speaker and conditions – maximum likelihood linear regression
(MLLR), (Gales and Woodland, 1996), maximum a posteriori estimation (MAP), (Gauvain
and Lee, 1994),

• Building stronger duration models – dying exponential e−at modeling state duration likelihoods
in standard HMMs is replaced by the peak-shaped function te−at which better represents average
state durations, (Paul, 1987),

• Signal decomposition to speech and noise components using 2–D HMM – the dimensions contain
speech and noise models respectively, a 2–D state sequence tracing speech and noise models
yielding maximum likelihood is searched by extended Viterbi algorithm, (Varga and Moore,
1990),

• Talking style decomposition by N–channel HMM – to each talking style one HMM channel is
assigned. As the style changes, the style-dependent models yielding maximum likelihood are
traced, (Womack and Hansen, 1999), see Fig. 3.5.

Neutral

Angry 

Lombard

Clear

Figure 3.5: N -channel HMM, after (Womack and Hansen, 1999).

• Talking style decomposition by stress classifier followed by codebook of dedicated recognizers,
(Womack and Hansen, 1996b), or weighting the output of codebook of dedicated recognizers by
stress classifier, (Womack and Hansen, 1995b).

Selected methods from the areas of front-end and back-end processing are further discussed in the
remainder of the thesis.

27



Chapter 3: Lombard Effect (LE): An Overview

3.6 Lombard Speech Corpora

Currently, extensive multi-lingual corpora covering a variety of environments attractive for the
application of human-machine interfaces are available. The environmental scenarios range from calm
places (e.g., offices, providing clean neutral speech recordings, to adverse noisy places, such as public
places and cars, (Iskra et al., 2002), (CZKCC, 2004), capturing noisy speech recordings). These
databases are very valuable for training and testing ASR systems intended to operate in the real-word
conditions. On the other hand, they are not always the best choice for the analysis of LE. The most
significant drawbacks of the data recorded in the real adverse conditions are:

• Changing level and spectral properties of background noise,

• Strong speech signal contamination by noise,

• Absence of communication factor in the recordings – typically, subjects just read text without
need to preserve intelligibility of the speech in noisy conditions, (Junqua et al., 1998).

These factors make it difficult to study separately the impacts of noise and LE on ASR, analyze
reliably variations of speech feature distributions (performance of feature trackers tend to decrease
with noise), or find a relationship between actual noise level and speech feature shifts (the actual noise
levels are not known).
For this reason, the majority of works analyzing LE have preferred to collect Lombard speech data

in simulated noisy conditions11, where noise was introduced to the speaker’s ears through calibrated
headphones while the speech was sensed by a close-talk microphone. This setup yields recordings
with high SNR. Within the literature, the following background noises were used in simulated noisy
conditions:

• Pink noise: 65 dB SPL, 75 dB SPL, (Varadarajan and Hansen, 2006), 85 dB SPL, (Hansen
and Bou-Ghazale, 1997), (Varadarajan and Hansen, 2006), 90 dB SPL, (Stanton et al., 1988),
(Suzuki et al., 1994), 95 dB SPL, (Rajasekaran et al., 1986), (Chen, 1987), (Bond et al., 1989),

• Highway noise: 70 dB SPL, 80 dB SPL, 90 dB SPL, (Varadarajan and Hansen, 2006),

• Speech shaped noise: 40–90 dB SPL, (Korn, 1954), 85 dB SPL, (Lippmann et al., 1987),

• Large crowd noise: 70 dB SPL, 80 dB SPL, 90 dB SPL, (Varadarajan and Hansen, 2006),

• White Gaussian noise: 80 dB SPL, (Wakao et al., 1996), 85 dB SPL, (Hanson and Applebaum,
1990b), (Junqua and Anglade, 1990), 80–100 dB SPL, (Summers et al., 1988),

• Various band-limited noises: 80 dB SPL, (Wakao et al., 1996).

In several works, speakers were provided with adjustable speech feedback (sidetone) allowing for
compensation of the sound attenuation caused by wearing headphones. In (Bond et al., 1989), speakers
adjusted their sidetone to a comfortable level in quiet in the beginning of the session, since then the
level was kept constant both for recordings in quiet and noisy conditions. In (Junqua et al., 1998),
the sidetone level adjustments were allowed throughout the whole session. This scheme might have
blurred differences between the speech produced in quiet and the speech produced in noise as in the

11Advantages and disadvantages of using simulated noisy conditions can be found similar to those mentioned in
(Murray and Arnott, 1993) for elicited emotional speech: “A trade-off exists between realism and measurement accuracy
of emotions generated by speakers in the laboratory (questionable realism, but verbal content and recording conditions
controllable) and field recordings (real emotions, but content and recording conditions less controllable).”
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noisy conditions, speakers tended to compensate for the sidetone masking by increasing the sidetone
level instead of just increasing their vocal effort.
The databases of simulated Lombard speech successfully address the first two drawbacks of the

real adverse data, i.e., speech is uttered in noises of defined spectrum and intensity, and the speech
signal reaches high SNR. However, the third factor, the need to maintain intelligible communication
in noise, is often missing in the recordings. Speakers typically just read text without having feedback
whether their speech is intelligible to others, (Junqua, 1993). In this case, speakers increase their
vocal effort rather due to the masking of their auditory feedback by noise (physiological effect), than
due to the need to reach an efficient communication, (Junqua et al., 1998).
The intelligibility factor was employed in the simulated noisy scenario in (Korn, 1954), where a

speaker and an operator were communicating while wearing headphones fed by noise of the same
level. In (Webster and Klumpp, 1962), pairs of subjects were communicating in actual noise, with the
requirement that the listener repeat each word received. If the repetition was incorrect, the speaker
said the same word again. Such scenarios assured that speakers would maintain intelligibility of their
speech. In the recent work, (Junqua et al., 1998), speakers were communicating with an automatic
dialing system while listening to noise through headphones. Since the dialing system was trained
for neutral speech, in spite of listening to noise, speakers had to produce speech close to ‘neutral’ to
communicate efficiently with the system. The results from this study are very valuable, proving that
speakers consciously modify their speech production when communicating. On the other hand, this
scenario is not a good example of typical communication in noise.
The Lombard speech databases were usually acquired for the purposes of the particular stud-

ies, comprising utterances from just a few speakers, and were not made publicly available12 . Two
exceptions are the SUSAS database13 (Speech under Simulated and Actual Stress), (Hansen and Bou-
Ghazale, 1997), and UT-Scope database (Speech under Cognitive and Physical stress and Emotion),
(Varadarajan and Hansen, 2006). SUSAS provides a comprehensive collection of English utterances
produced in various conditions. The database comprises a variety of talking styles, emotional speech,
speech uttered while performing computer tasks, and speech uttered in simulated noisy conditions.
UT-Scope contains speech produced under cognitive and physical stress, emotional speech (angry,
fear, anxiety, frustration), and Lombard speech. The Lombard speech recordings were collected in 3
simulated background noise scenarios. In each scenario, speakers were exposed to 3 levels of noise
ranging from 65 to 90 dB SPL.
Considering the Czech language, several large databases recorded in real conditions are available. In

the presented thesis, Czech SPEECON14, (Iskra et al., 2002), and CZKCC, (CZKCC, 2004), databases
were employed in the experiments. Czech SPEECON comprises speech recordings from homes, offices,
public places, and cars. CZKCC contains recordings from the car environment. The SPEECON
office sessions provide samples of neutral speech with high SNR. The SPEECON and CZKCC car
recordings were promising to contain LE, because the speech was uttered in increased levels of noise
there. However, the initial analyses of the SPEECON and CZKCC car data have shown a very limited
presence of LE, see Chap. 6. Hence, to obtain data suitable for LE experiments, a new database
of simulated Czech Lombard speech was acquired. The design, recording setup, and contents of the
database are discussed in the following chapter.

12Note that the fact that research groups do not usually release their corpora makes it difficult to duplicate results of
past studies on LE.
13SUSAS database is available through the Linguistic Data Consortium, (LDC, 2008).
14SPEECON database is distributed through the European Language Resources Association, (ELRA, 2008).
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Chapter 4

Experimental Framework

This chapter describes tools used in the presented work for feature analyses and speech recognition.
Methods for analyzing pitch, formants, vocal intensity, spectral slope, duration, and also evaluation
measures and the recognition setup are discussed.
For the purposes of pitch and formant tracking, a variety of publicly available tools is available.

In particular, WaveSurfer, (Sjolander and Beskow, 2000), and Praat, (Boersma and Weenink, 2006)
were employed in the analyses. There are several pitch tracking algorithms implemented in Praat. To
decide which tool and algorithm to use, the Praat and WaveSurfer algorithms, as well as a novel pitch
detection algorithm (PDA) developed by the author were compared on the reference pitch-labeled
database.

4.1 Pitch

As already noted in Sec. 3.2.2, pitch can be viewed from two different sides. It can represent either
the fundamental frequency of glottal pulses (F0) – ‘spectral pitch’, or the sound pitch as perceived
by the human auditory system – ‘virtual pitch’. In complex sounds, virtual pitch may differ from
spectral pitch since the spectral component perceived as the strongest one does not need to be the F0

component, (Terhardt, 1974). A vast number of spectral and virtual pitch PDAs have been designed
during the last decades. Pitch correlates with prosodic features such as lexical stress, tone quality,
and sentence intonation, (Seneff, 1986), and represents a strong cue to the talking style assessment,
see Sec. 3.2.2. PDAs play an important role in pitch synchronous speech analysis and synthesis,
such as in pitch-synchronous feature extraction, triggering the glottal pulses in vocoders, or driving
the pitch-synchronous overlap-and-add (OLA) synthesis. The fact that virtual pitch PDAs were also
successfully employed in the speech synthesis systems, (Duifhuis et al., 1982), shows that there is a
strong correlation between spectral and virtual pitch.
The algorithms for spectral pitch tracking typically employ the following approaches:

• Time domain waveform: Speech signal filtering to reduce contribution of higher formants on the
waveform, extraction of features from the waveform (amplitudes and distances of peaks, valleys,
zero-crossings), combining the features to estimate F0, e.g., (Gold and Rabiner, 1969),

• Autocorrelation (AC), cross-correlation (CC): The F0 candidate is determined from the distance
between maxima in the AC, (Boersma, 1993), or CC, (Acero and Droppo, 1998), of the segmented
speech signal. Autocorrelation weighted by the inverse of the average magnitude difference
function (AMDF), (Shimamura and Kobayashi, 2001), or autocorrelation of the LPC residual,
(Secrest and Doddington, 1983), were also found effective for finding F0.

30



4.1 Pitch

• Cepstral analysis: Low cepstral coefficients of voiced speech represent vocal tract/glottal wave-
form shapes while the higher components relate to pitch. Pitch period is determined by searching
a strong peak in the cepstrum starting from the coefficient related to the highest expected pitch,
(Schafer and Rabiner, 1970), (Ahmadi and Spanias, 1999).

• Amplitude spectrum (DFT, wavelets): The F0 candidate is chosen from the maxima in the
amplitude spectrum, (Janer, 1995),

• Joint time and frequency domain: Combination of time and frequency domain techniques, e.g.,
(Liu and Lin, 2001), (Janer, 1995).

From the domain of spectral tracking, Praat autocorrelation (Praat ac) and cross-correlation
(Praat cc) algorithms, and WaveSurfer cross-correlation algorithm were chosen to participate in the
performance test. In the AC/CC based methods, speech signal is first windowed. In Praat ac,
(Boersma, 1993), the unbiased estimation of the original segment AC is obtained by dividing the
AC of the windowed signal by the AC of the weighting window. This eliminates the tilt present in the
AC of the windowed signal and simplifies the subsequent thresholding and peak picking. In Praat cc,
CC between two speech segments is calculated. The candidate pitch period is determined from the
window shift yielding maximum in CC function. In WaveSurfer, Talkin’s RAPT CC algorithm is im-
plemented, (Talkin, 1995). Here, after performing CC and finding pitch candidates from peak picking,
dynamic programming is performed to decide the resulting pitch estimate sequence.
The algorithms for virtual pitch tracking are typically based on the virtual pitch theory or on

using harmonic sieve, or a combination of both methods. The virtual pitch theory, (Terhardt et al.,
1982), assumes that each spectral component of the voiced sound generates a series of sub-harmonics.
These sub-harmonics are combined in the central pitch processor of the auditory system, following the
phenomena of frequency masking and spectral dominance, resulting in the perceived pitch.
In the harmonic sieve approach, (Duifhuis et al., 1982), the central pitch processor attempts to

match a harmonic pattern to the analyzed speech spectrum. The harmonic pattern comprises the
candidate pitch and its weighted higher harmonics. The matching is realized by passing the speech
signal spectrum through the harmonic sieve (i.e., summing narrow regions in the speech spectrum
corresponding to the harmonics of the candidate pitch).
From the domain of virtual pitch tracking, sub-harmonic summation method (SHS) and spatial

pitch network (SPINET) are implemented in Praat. In the SHS algorithm (Praat shs), (Hermes, 1988),
a spectral compression is performed by using a logarithmic frequency scale. On the linear frequency
scale, harmonic peaks of F0 appear at F0, 2F0, 3F0, . . ., while on the logarithmic frequency scale they
occur at log (F0) , log (F0) + log (2) , log (F0) + log (3) , . . . Hence, the distances between harmonics of
the compressed spectrum are independent on F0. To find the pitch estimate, spectral energies of the
harmonics are summed for each F0 candidate. The F0 yielding the maximum sum is chosen as the
resulting pitch:

Pitch = arg max
F0

N∑
k=1

∣∣∣X [log (F0) + log (k)
]∣∣∣. (4.1)

This approach follows the concept that each spectral component activates not only the element of the
central pitch processor that is most sensitive to this component, but also the elements most sensitive
to its sub-harmonics.
In SPINET, (Cohen et al., 1995), the speech segment is first passed through the bank of 512

bandpass filters placed in the region 50–5000 Hz, modeling the basilar membrane filtering. The output
of the bank is further filtered by the bandpass representing the transfer of the outer and middle ear.
In the next stage, cooperative interactions across the nearby frequencies and competitive interactions
across a broader frequency band are evaluated using an artificial neural network. Finally, the harmonic
summation is carried out.
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4.1.1 Design of Novel Time-Domain Pitch Tracking Algorithm

A novel algorithm for direct time domain fundamental frequency estimation (DTFE) and
voiced/unvoiced (V/UV) classification is presented in this section. The goal is to design an algorithm
for the real-time pitch detection, providing time and frequency resolution comparable to AC-based
algorithms while significantly reducing the computational costs. The DTFE algorithm comprises spec-
tral shaping, adaptive thresholding, and F0 candidate picking based on applying consistency criteria1.
A scheme of the DTFE algorithm is shown in Fig. 4.1.

Criteria

EvaluationMusical/speech 
signal 

V/UEnvelope detector 

Pitch detector F0

Figure 4.1: DFE chain.

Envelope Detector

The envelope is determined as a short-time moving average of the signal energy realized by an FIR
filter. Since all coefficients of the moving average filter are identical (1/M , whereM is the filter order),
instead of weighting and summing all actual values present in the filter buffer, only the input signal
sample is weighted and inserted to the buffer while the last buffer sample is removed (LILO – last in,
last out). The length of the moving average window (0.025–0.027 sec) is set as a compromise between
envelope smoothing and ability to follow fast energy changes on the boundaries of voiced/unvoiced
parts of the speech signal.

Pitch Detector

Higher harmonic components of the glottal pulse spectrum are emphasized by the vocal tract
resonances and tend to form multiple peaks in the single pitch period of the time domain speech
waveform. This makes it difficult to estimate length of the pitch period directly from the distance
between adjacent peaks in the original waveform. To suppress these additional peaks, the speech
signal is low-pass filtered (spectral shaping). The low-pass filter is designed to introduce spectral tilt
starting at 80 Hz, assuring that, starting from the second harmonics of F0, all spectral components
will be suppressed even for low F0 values2. To minimize transient distortion induced by fast amplitude
changes of the filtered signal, low order IIR filter (3rd order Butterworth) is used for spectral shaping.
An example of spectral shaping by the low-pass filter is shown in Fig. 4.2. The thin dashed line
represents spectrum of the original signal, the bold dashed line depicts transfer function of the low-
pass filter, and the solid line plots the spectrum of the filtered signal. Corresponding time domain
signals are shown in Fig. 4.3. After the spectral shaping, all local extremes are detected. Due to the
low order of the low-pass filter, some ‘false’ peaks and zero-crossings may still remain in the signal. To
identify locations of the significant extremes, adaptive significant peak picking based on neighboring

1The DTFE was originally developed as a monophonic musical pitch detector for the guitar MIDI converter, (Bořil,
2003a), (Bořil, 2003b), and later adapted for the pitch tracking in speech signals, (Bořil and Pollák, 2004).

2For modal voices, the typical occurrence of F0 can be expected approximately in 80–600 Hz. For vocal fry, F0 was
observed to reach frequencies 24–90 Hz, and F0 for falsetto reached 280–630 Hz in males and 500–1130 Hz in females,
(Monsen and Engebretson, 1977), (Childers and Lee, 1991).
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Figure 4.2: Spectral shaping by low-pass IIR.

50 100 150 200 250 300 350 400 450 500
-0.4

-0.2

0

0.2

0.4

Discrete time

A
m

pl
itu

de

Speech signal - male vowel /a/

50 100 150 200 250 300 350 400 450 500
-0.1

-0.05

0

0.05

0.1

Discrete time

A
m

pl
itu

de

Filtered speech signal

Figure 4.3: Speech signal – male vowel /a/ before and after spectral shaping.

peaks thresholding is performed. P1 is termed a significant peak related to the maximum if:

P1 > 0 ∩ ZC(Plast, P1) = 1 ∩ P1 > P2 · th ∩ [P1 > P2 ∪ ZC(P1, P2) = 1] , (4.2)

where ZC(X,Y ) = 1 if there is at least one zero-crossing between peaks X and Y , else 0. Plast denotes
the previous significant peak. In the subsequent iteration, P2 is shifted to P1, a new peak becomes
P2 and the test is repeated. The significant peak related to the minimum is obtained by reversing
the signs of the inequality in Eq. (4.2). Finally, the pitch period estimate is determined from the
distance between adjacent significant peaks related to the maxima or minima respectively. Examples
of adaptive peak picking are schematically shown in Fig. 4.4. Robustness of significant peak picking
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Figure 4.4: Adaptive peak picking.
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Figure 4.5: Example of adaptive peak picking in signal corrupted by additive harmonic noise.

to quasi-stationary additive noise is demonstrated in Fig. 4.5. The complete pitch detector flow
diagram is shown in Fig. 4.6.

Peak detection Low-pass 
filter

Adaptive significant 
peak picking 

Musical/speech
signal F0 candidate 

Figure 4.6: Pitch detector flow diagram.

Evaluation Unit

The pitch detector passes all F0 candidates to the evaluation unit, including estimates from the
unvoiced segments and segments of speech silence. Moreover, in the voiced speech candidates, energy
doubling and halving appears frequently. To eliminate these misleading pitch cues, several consistency
criteria are applied. The first criterion defines an energy threshold Eth. No estimates are accepted for
the signal levels lower than Eth:

Ek < Eth ⇒ Fest �= Fk. (4.3)

The actual energy Ek is obtained from the envelope detector. The second criterion defines a range of
accepted F0 values (typically set to 80–600 Hz):

Fk /∈ (Ffloor;Fceiling) ⇒ Fest �= Fk. (4.4)

As the third criterion, a newly proposed M–order majority criterion is used. The M–order majority
criterion requires that more than half of M consecutive estimates lie in the same frequency band of
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the defined width. The criterion represents a non-linear filtering of the discrete sequence of estimates.
Similarly as in the case of median filtering, (Tukey, 1974), the ‘noisy’ samples deviating from the
general trend are eliminated. However, unlike the case of median filtering, continuity and rate of
trend variation are also controlled here by the order of the criterion and width of the band. The order
of the criterion determines a rate of smoothing the resulting F0 estimates. The higher the value of
M , the better the immunity to frequency doubling and halving. On the other hand, increasing M
decreases sensitivity of the criterion to the correct estimates in the case of short voiced segments or
fast F0 changes, as increasing number of consecutive estimates are required to lie in the same band.
The latter problem can be addressed by widening the frequency band. In the presented experiments,
the frequency bandwidth was set to one semitone. Let Fm beM successive candidates and Fk ∈ {Fm}.
Let countFk

{Fm} be a number of F that

F ∈ {Fm} ∩ F ∈
(

Fk
24
√

2
;Fk · 24

√
2
)

. (4.5)

The interval in Eq. (4.5) is set equal to the frequency bandwidth of one semitone centered at Fk. The
candidate defining a frequency band covering the maximum of the M estimates is found as:

p = max
k

(countFk{Fm}) , q = arg max
k

(countFk{Fm}) , k = 1, ...,M. (4.6)

If more than half of the M candidates lie in the semitone band with the center frequency Fq, the
resulting estimate Fest is set equal to Fq:

p >

⌊
M

2

⌋
⇒ Fest = Fq, (4.7)

where braces 	
 represent the floor function (round down). If more than one candidate Fk satisfies
(4.6) and (4.7), the estimate with the lowest index value is selected (i.e., the first satisfying estimate).
An example of the majority criterion being applied to F0 candidates is shown in Fig. 4.7. In Fig.
4.8, immunity of the majority criterion to the frequency doubling is demonstrated. The dashed line
represents the output of the majority criterion unit.
The aforementioned criteria also serve as a V/UV detector. The speech segment which provides

F0 passing all the criteria is labeled as voiced.
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Figure 4.7: 5th order majority criterion – example of Fest picking.

Computation Demands

As shown in the previous sections, the novel DTFE algorithm is very computationally efficient.
In the envelope detector, the input signal sample is weighted by a constant and fed to the buffer. In
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Figure 4.8: 5th order majority criterion – immunity to frequency doubling.

the pitch detector, a 3rd order IIR filter is used for spectral shaping. Here, seven multiplications of
variables by a constant, three summations and three subtractions are conducted per signal sample.
During peak detection in the pitch detector, the sample value is compared to the previous one. The
adaptive peak picking and evaluation is performed only a few times per F0 period and also employs
just multiplications by a constant and comparing amplitudes.
Alternatively, in the case of autocorrelation based methods, hundreds of variable-by-variable multi-

plications per frame are required, even for low sampling frequencies. Larger computation demands can
be found in cross-correlation algorithms, where, unlike autocorrelation based methods, the ‘effective
overlap’ of the correlated segments does not reduce with the window shift.

4.1.2 Evaluation on ECESS Database

The DTFE algorithm and the pitch tracking algorithms available in Praat and WaveSurfer were
evaluated on the ECESS3 PMA/PDA reference database designed for the 1st ECESS PDA/PMA
Evaluation Campaign, (Kotnik et al., 2006). The database is a subset of the Spanish SPEECON
database, (Iskra et al., 2002):

• Speech signals: 1 hour per channel (4 channels), Fs = 16 kHz, 60 speakers (30 males and 30
females), 1 minute per speaker,

• Content: 17 utterances per speaker – 1 connected digit sequence, 1 money amount, 10 phoneti-
cally rich sentences, 5 isolated words,

• Environments: car, office, public places (living rooms, exhibition areas),

• Recording channels – office and public places: close talk (C0), hands free (C1), directional
microphone (placed 1 meter from a speaker) (C2), omni-directional microphone (placed 2–3
meters from a speaker) (C3),

• Recording channels – car: close talk (C0), hands free (C1), microphone in the closest front corner
of the car cabin (C2), distant front corner microphone (C3).

In the database, the most negative peaks in the speech waveform and V/UV/non-speech segments
were manually labeled for the close talk channel. The reference F0 values were determined from the
distances of the adjacent negative peaks. The F0 values were sampled in 1 ms steps and stored in

3European Center of Excellence on Speech Synthesis, (ECESS, 2007).
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reference files. Time labels for the distant channels were derived from the close talk channel labels
using cross-correlation time alignment.
The following evaluation criteria were used in the 1st ECESS PDA/PMA Evaluation Campaign:

• Voiced (VE) and unvoiced (UE) error: The percentage of voiced (unvoiced) speech segments
misclassified as unvoiced (voiced).

• Gross error high (GEH) and gross error low (GEL): The percentage of voiced speech segments
where Fest > 1.2 · Fref or Fest < 0.8 · Fref , respectively. Fest is the estimated pitch and Fref

denotes the reference pitch.

• Absolute difference between the mean values (AbsMeanDiff): Absolute difference between the
mean values of the reference and estimated pitch over the whole signal (in Hz).

• Absolute difference between the standard deviations (AbsStdDiff): Absolute difference between
the standard deviations of the reference and estimated pitch over the whole signal (in Hz).

Since the mean pitch and its variance are extracted from the whole 1 hour long signal, the aforemen-
tioned absolute difference measures are rather coarse, not providing any information about the pitch
deviations on the frame level. For this reason, in this thesis, the set of criteria was extended for mean
pitch difference (mean difference) and standard deviation of the pitch difference (standard difference).
Let mean difference (in semitone cents) be defined:

Δ% =
1200
N

·
N∑

n=1

log2
Fest (n)
Fref (n)

, (4.8)

whereN is the number of compared frames. For example,Δ% = 100% represents a semitone difference.
Let the standard difference (in semitone cents) be defined:

σ% =

√√√√ 1
N

N∑
n=1

[
1200 log2

Fest (n)
Fref (n)

− Δ%

]2

. (4.9)

The database channels sensed by four microphones placed at different distances from the speaker allow
for evaluation of the PDA performance in various levels of the noisy background. Mean values and
standard deviations of channel SNRs are shown in Table 4.1, with channel SNR histograms shown in
Fig. 4.9. SNR was estimated using the algorithm discussed in Sec. 4.3.

Parameter Channel 0 Channel 1 Channel 2 Channel 3 

SNR  (dB) 27.2 11.1 11.1 4.5 

SNR (dB) 7.9 9.4 7.5 8.3 

Table 4.1: ECESS PMA/PDA reference database – means and standard deviations of channel SNRs.

WaveSurfer cross-correlation algorithm (WaveSurfer), Praat autocorrelation (Praat ac), cross-
correlation (Praat cc), sub-harmonic summation (Praat shs), and spatial network (SPINET) algo-
rithms, and the novel DTFE (DTFE no fws) algorithm were evaluated on the reference database, see
Table 4.2 and Fig. 4.10, 4.11. From the ‘VE+UE’ table, it can be seen that both virtual pitch track-
ers implemented in Praat, Praat shs and SPINET, failed to determine voiced and unvoiced speech
segments even in the channel with the highest SNR – C0. In the case of SPINET, VE contributed
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Figure 4.9: ECESS PMA/PDA reference database – channel SNR histograms.

dominantly to the overall error (VE = 88.30%, UE = 0.08%) (i.e., the algorithm was almost insen-
sitive to speech). In the case of Praat shs, the disproportion between VE and UE was considerably
lower (VE = 17.45%, UE = 28.07%), however, the performance was still very poor. Hence, results
from SHS and SPINET are not discussed further.
Across the remaining algorithms, the ‘VE+UE’ error was comparable on C0, with WaveSurfer

showing the best performance and ‘DTFE no fws’ performing slightly worse than Praat cc. Consid-
ering the rest of the evaluation parameters, all spectral pitch trackers reached comparable values on
the C0 channel. Comparing channels C0–C4, the ‘VE+UE’ error grows rapidly for all algorithms with
increasing microphone distance from speakers, as the signal waveform starts to be severely distorted
by the additive noise and convolutional noise. The error increase is most significant in the case of
‘DTFE no fws’, autocorrelation and cross-correlation algorithms display better resistance to noise.
To improve the noise immunity of ‘DTFE no fws’, the algorithm was extended for noise suppression

(NS) based on spectral subtraction4, yielding a setup denoted ‘DTFE’ in the tables and figures. NS
was conducted in the input stage of the pitch detector. To avoid the occurrence of musical noise typical
for NS employing half-wave rectification, full-wave rectification algorithm from the open source tool
CTUCopy, (Fousek, 2007), was used. As shown in Table 4.2, the ‘DTFE’ algorithm reaches comparable
accuracy of voiced signal segmentation as WaveSurfer, Praat ac, and Praat cc on the channel C1, and
outperforms Praat ac and Praat cc on the channels C2–C3. ‘DTFE’ provides significantly better
accuracy of pitch tracking on the channel C0 compared to WaveSurfer, Praat ac, and Praat cc, and
on the channel C1 compared to Praat ac, and Praat cc, see Δ% and σ% parameters.
Compared to the other algorithms, WaveSurfer displayed the best results in the majority of pa-

rameters across the analyzed channels. Possibility to further improve its performance by adding the
same NS as used in ‘DTFE’ was explored, see ‘WaveSurfer fws’ in Table 4.2. It can be seen that
adding the NS helped to eliminate considerably the ‘VE+UE’ error on the channels C1–C3.

4In the single channel spectral subtraction algorithms, voice activity detector (VAD) is usually used to determine
the segments of speech silence. From these segments, characteristics of additive noise are estimated. Assuming that the
additive noise is quasi-stationary, actual estimate of the noise amplitude spectrum is subtracted from the subsequent
speech part of signal. After the subtraction, amplitude spectrum is not guaranteed to be positive. To remove the negative
components, half-wave rectification zeroing the negative portions, (Boll, 1979), or full-wave rectification taking absolute
values, (Faneuff and Brown, 2003), can be used. Half-wave rectification introduces ‘musical’ noise artifacts.
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VE+UE 
(%)

DTFE
no fws DTFE WaveSurfer WaveSurfer

fws Praat_ac Praat_cc Praat_shs Praat
SPINET 

C0 14.17 12.99 10.28 11.59 12.88 12.05 45.52 88.38 

C1 45.80 32.39 31.76 20.88 31.11 31.60 52.80 95.24 

C2 55.43 38.03 31.72 25.17 37.93 39.58 59.51 97.68 

C3 73.94 52.52 49.55 33.86 54.01 59.60 67.06 98.81 

GEH+GEL 
(%)

DTFE
no fws DTFE WaveSurfer WaveSurfer

fws Praat_ac Praat_cc Praat_shs Praat
SPINET 

C0 2.41 2.80 2.58 3.03 2.33 3.36 3.17 8.50 

C1 4.91 5.16 3.37 4.20 13.17 12.43 5.69 4.05 

C2 13.35 13.40 3.44 3.54 6.66 7.46 7.49 2.01 

C3 15.42 17.28 5.06 5.57 11.99 14.62 12.49 2.28 

%
DTFE
no fws DTFE WaveSurfer WaveSurfer

fws Praat_ac Praat_cc Praat_shs Praat
SPINET 

C0 -13.83 2.64 -20.03 -19.87 -9.22 -19.18 -36.29 -1107.67 

C1 -84.31 -35.89 17.36 29.87 250.79 190.91 -54.04 -711.44 

C2 -128.94 78.37 -23.37 13.83 28.05 -3.62 0.15 -647.27 

C3 -217.52 4.51 -54.41 22.76 106.72 65.58 -104.54 -426.36 

%
DTFE
no fws DTFE WaveSurfer WaveSurfer

fws Praat_ac Praat_cc Praat_shs Praat
SPINET 

C0 188.50 194.66 192.98 208.94 222.45 249.81 240.63 729.65 

C1 339.38 315.97 369.39 388.23 837.33 791.29 364.37 745.28 

C2 547.06 559.28 296.79 310.95 538.61 510.63 513.87 864.42 

C3 673.73 612.72 381.99 368.05 769.58 760.63 556.95 700.59 

Table 4.2: Performance of PDAs on ECESS PMA/PDA reference database.

4.1.3 Conclusions

In the evaluation tests on the ECESS PDA/PMA reference database, the newly proposed DTFE al-
gorithm displayed comparable performance to WaveSurfer cross-correlation and Praat autocorrelation
and cross-correlation algorithms on the close talk channel, while considerably saving computational
costs. When extended for the noise subtraction front end, DTFE reached a performance comparable
to Praat autocorrelation and cross-correlation algorithms on all channels. Praat SHS and SPINET
virtual pitch trackers failed to distinguish between voiced and unvoiced segments of the speech signal.
The best results across channels were reached by WaveSurfer, while adding noise subtraction front
end even increased accuracy. For this reason, the WaveSurfer cross-correlation algorithm (RAPT)
was chosen as the tool for the pitch analyses carried out in the remainder of the thesis.
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Figure 4.10: Performance of PDAs on ECESS PMA/PDA reference database: V E + UE, GEH + GEL.
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4.2 Formants

Formant frequencies play a dominant role in the production of distinct speech sounds. Also, as
already mentioned in Sec. 3.2.3, locations and bandwidths of first formants are considerably affected
by LE and can provide a cue to talking style assessment. A variety of formant tracking algorithms
have been proposed, typically operating in the frequency domain:

• Peak-picking: Finding the location of spectral peaks in the short-time amplitude spectrum,
(Flanagan, 1956). The smoothed spectrum can be obtained from cepstrum, (Schafer and Ra-
biner, 1970) or from the LPC analysis (inverse filtering), (Markel, 1972). In the latter case, the
formant candidates are picked from the complex roots of the denominator in the linear predictor,

• Analysis by synthesis: A best spectral match yielding minimum mean square error is synthesized
by systematically varying format frequencies and bandwidths in the frequency domain, (Bell
et al., 1961), or in the time domain, (Pinson, 1963). In the latter case, a portion of the acoustic
waveform is approximated by the systematic variation of amplitudes, phases, damping and
oscillation frequencies of a sum of complex exponential functions,

• First order moments: Formant frequencies are calculated as the first order moments within
separated portions of the spectrum, (Suzuki et al., 1963).

Formants are slowly varying functions of time, (Xia and Espy-Wilson, 2000). This observation
has been employed in setting continuity constraints in order to eliminate wrong formant estimates
coming from the short-time segments. The following algorithms imposing formant continuity were
found successful:

• Non-linear smoothing: Reliable formant estimates from the neighbor regions are used to approx-
imate the deviating estimate, (Schafer and Rabiner, 1970),

• An extension of reliable formant estimates from strong vocalic areas (anchor frames), (McCan-
dless, 1974),

• Global statistical criteria: HMM is used to find the best overall fit of formant trajectory to the
speech signal, (Kopec, 1986). States of the multi-formant model comprise vectors defining pos-
sible formant configurations. Continuity constraints are introduced by the transition probability
matrix of the HMM. Formant tracking is conducted by the forward-backward algorithm.

• Dynamic programming: Formant candidates are represented by complex roots of the linear
predictor. For each frame, local costs of all possible mappings of the candidates to formant
frequencies are computed. The costs are determined based on the empirical knowledge of typical
intervals of formant occurrences, average locations of formant occurrences, and formant band-
widths (narrow bandwidths are preferred). A modified Viterbi algorithm is used to find the path
through the possible mappings yielding minimal costs, while continuity constrains are imposed,
(Talkin, 1987), (Xia and Espy-Wilson, 2000).

Various methods were developed for estimating formant bandwidths from the short term spectrum
of speech signal, (Dunn, 1961). In the case of LPC-based formant tracking, the bandwidths can be
estimated directly from the roots of the all-pole filter. Let pd be a pole in the z-plane and T be the
length of the sampling period:

pd = epT = e(σp+jωp)T = eσpT ejωpT . (4.10)
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The first term on the right side of (4.10) represents a magnitude of pd, Rd = eσpT . From the analogy
with poles in the Laplace plane, (Smith, 2006), (Sovka and Pollák, 2001), the following relation between
Rd and the bandwidth B can be found:

B =
ln Rd

−πT
. (4.11)

In a recent study, (Deng et al., 2006), the performance of the formant tracker implemented in
WaveSurfer, (Talkin, 1987), was compared to the state-of-the-art formant tracker employing a sophis-
ticated model of speech production, (Deng et al., 2004), on the formant-labeled reference database.
Both algorithms showed similar performance for vowels, semivowels, and nasals. Due to its availability
and good performance on sonorant speech, WaveSurfer was chosen as a tool for formant tracking ex-
periments presented in the remainder of the thesis. The algorithm employs linear prediction analysis5

and dynamic programming, applied in the manner as discussed earlier in this section.

4.2.1 Error Ellipses

It is common to display mean vowel locations in the F1–F2 plane, see Fig. 3.3. To depict the spread
of observations contributing to the estimated mean vowel location, error ellipses can be used, (Čmejla
and Sovka, 2002). Error ellipses represent an analogy of intervals bounded by the standard deviation
σ in 1–D standard distributions. While in 1–D standard distribution the interval (μ − σ;μ + σ) covers
68.2% of samples centered around the distribution mean μ, in the 2–D plane, the error ellipse covers
39.4% of samples. Orientation and length of the error ellipse axes can be found as follows. Let Cxy

be a covariance matrix:

Cxy =

[
σ2

x σxy

σyx σ2
y

]
, (4.12)

where

σ2
x =

1
N

N∑
k=1

(
xk − X̄

)2
, σxy = σyx =

1
N

N∑
k=1

(
xk − X̄

) (
yk − Ȳ

)
, (4.13)

X̄ , Ȳ are estimated means of the distributions generating samples xk and yk, respectively, and N
is the number of samples. The square roots of the eigenvalues6 of Cxy are equal to the lengths of
the error ellipse axes, and the corresponding eigenvectors determine the error ellipse axis directions,
(Jones, 1999).
Let e be an eigenvector and let λ be an eigenvalue. To find the eigenvalues and eigenvectors, the

following equation must be solved:
e · Cxy = λ · e. (4.14)

Using the identity matrix I, the equation can be rewritten:

e · Cxy = e · (λ · I) , (4.15)

e · (Cxy − λ · I) = 0. (4.16)

For non-trivial e, the eigenvalues are found by solving:∣∣∣∣∣ σ2
x − λ σxy

σyx σ2
y − λ

∣∣∣∣∣ = 0. (4.17)

5The default parameter setting of the formant tracker was used in the analyses: 12th order of LPC, window length
50 ms, window step 10 ms.

6An eigenvector of a given linear transformation is a vector that is, as a result of applying the transformation, only
scaled by a constant (eigenvalue), while its direction remains preserved, Aldrich (2006).
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Expanding the determinant yields a 2nd degree polynomial of λ, called the characteristic polynomial
of the matrix. Roots of the characteristic polynomial are the eigenvalues λ1, λ2. The corresponding
eigenvectors e1 and e2 can be determined by finding non-trivial solutions of:[

σ2
x − λn σxy

σyx σ2
y − λn

]
·
[

en1

en2

]
=

[
0

0

]
. (4.18)

The eigenvectors specify the direction of the ellipse axes. If the lengths of the axes are set to
√

λ1 and√
λ2, the ellipse is called 1–σ or standard ellipse, covering 39.4% of the observed samples. To reach
different coverages, the axes lengths are multiplied by an appropriate factor (e.g. (factor/coverage):
2/86.5% (2–σ ellipse), 2.447/95.0 %, 3/98.9 % (3–σ ellipse), (Mehaffey, 2007)).

4.3 Vocal Intensity

Considerable differences in vocal intensity can be observed when comparing neutral and Lombard
speech, see Sec. 3.2.1. In all speech databases used in this thesis, the gain of the microphone pream-
plifier was adjusted throughout the recording sessions to exploit the dynamic range of the analog-to-
digital converter on one side, and to avoid signal clipping on the other side. Therefore, it is impossible
to estimate vocal intensity directly from the amplitude of the recorded signal. However, in the case
that the ambient noise occurring during the database recording could be considered stationary, vocal
intensity changes are proportional directly to the changes of utterance SNRs.

4.3.1 SNR Estimation

SNR was estimated using an arithmetical segmental approach, (Pollák, 2002), and voice activity
detector (VAD) based on differential cepstral analysis, (Vondrášek and Pollák, 2005). For each short-
time frame, the power σ2

i is calculated by summing squared frame samples and dividing them by the
frame length. VAD is used to estimate the location of frames containing speech. If the i-th segment
contains speech, V ADi = 1, otherwise V ADi = 0. In the non-speech segments, the noise power
σ̂2

n,i is estimated from σ2
i and the previous estimates of noise using exponential approximation. In

the segments containing speech, the noise power estimate is kept equal to the estimate from the last
non-speech segment:

σ̂2
n,i = p · σ̂2

n,i−1 + (1 − p) · σ2
i , V ADi = 0,

σ̂2
n,i = σ̂2

n,i−1, V ADi = 1.
(4.19)

Assuming that the speech and noise components are uncorrelated, the power of speech component σ̂2
s,i

is estimated by subtracting the noise power from the power of the mixture of speech and noise σ2
i :

σ̂2
s,i = σ2

i − σ̂2
n,i, V ADi = 1. (4.20)

The arithmetical segmental SNR is then estimated for segments j containing speech:

SNR = 10 log
N∑

j=1

σ̂2
s,j

σ̂2
n,j

(dB), (4.21)

where N is the number of frames containing speech. For SNR extraction, the SNR Tool, (Vondrášek,
2007), implementing the segmental approach and differential cepstral VAD was used.
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4.4 Spectral Slope

The spectral slope of the short-time speech spectra varies significantly with talking styles. As
already discussed in Sec. 3.2.4, the slope variations are caused predominantly by changes in the
shape of glottal pulses. For the estimation of the glottal waveforms, inverse filtering based on linear
prediction is typically used7. In the first step, vocal tract parameters are estimated in the periods
of glottal closure, since then the speech waveform can be considered a freely decaying oscillation
affected only by the vocal tract and radiation by lips, (Cummings and Clements, 1990). Subsequently,
the glottal waveform is estimated by filtering the speech signal by the inverse of vocal tract transfer
function.
In (Childers and Lee, 1991), a two-pass method for glottal inverse filtering was proposed, see Fig.

4.12. When comparing error function of the linear prediction (LP) and the electroglottographic signal8

(EGG), it was found that peaks in the error function occur nearly simultaneously with the negative
peaks of the differentiated EGG. In the first pass of the method, a fixed-frame LP analysis is performed.
In the voiced speech segments, the LP error function comprises peaks occurring in the intervals of the
pitch period. The peaks are located and used as indicators of glottal closure. In the second pass, a
pseudo-closed interval starting right after the instant of the peak and lasting approximately 35% of
the pitch period is used for a pitch-synchronous LP analysis to get a more accurate estimate of the
vocal tract transfer function. Formant structure is then estimated from the LP roots by applying a set
of empirical rules. The refined vocal tract transfer function is used for the second-pass glottal inverse
filtering. Eventually, the waveform is integrated to remove the effect of the lip radiation.
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Figure 4.12: Two-pass method for glottal inverse filtering, after (Childers and Lee, 1991).

To estimate the spectral slope of the glottal pulses, it is not necessary to extract the glottal pulse
waveform. As mentioned in the beginning of this section, variations of the spectral slope in the short-
time speech spectra are caused almost exclusively by the changes in the glottal waveform. Considering
the model of speech production discussed in Sec. 3.1, the spectral slope of the glottal waveform and the
spectral slope of the speech spectrum differ by a constant +6 dB/oct introduced by the lip radiation.
For the spectral slope analyses conducted in this thesis, the short time spectrum (logarithmic

frequency and amplitude axes) was approximated by a straight line, following (Stanton et al., 1988)
and (Summers et al., 1988). The linear function modeling the spectral slope was obtained from
linear regression, Stephens (1998). In the two-parameter regression analysis, the relation between the

7Direct extraction of the glottal waveform is also possible. In (Monsen and Engebretson, 1977), speakers spoke into the
reflectionless metal tube, which acted as a pseudoinfinite termination of the vocal tract. The reflectionless termination
significantly reduced vocal tract resonances, hence, the signal sensed at the end of the tube corresponded to the vocal
tract excitation.

8Electroglottographic signal is obtained by measuring the electrical impedance across the throat.
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variables x and y is modeled:
yi = α + βxi + εi, (4.22)

where εi is a noise term with zero mean. Parameters of the line are estimated by means of least
squares:

β̂ =

N
N∑

i=1
xiyi−

N∑
j=1

xj

N∑
k=1

yk

N
N∑

l=1

x2
l −

N∑
m=1

xm

N∑
n=1

xn

, (4.23)

α̂ =

N∑
i=1

yi − β̂
N∑

j=1
xj

N
, (4.24)

where N is the number of samples. Because the regression was performed in the log–log domain,
xi = log(fi), yi = log(Hi).

4.5 Duration

Phoneme and word durations in neutral and Lombard speech may differ, see Sec. 3.2.5. In the
analyses conducted in this thesis, the duration differences were evaluated as

Δ =
TLE − Tneutral

Tneutral
· 100 (%) , (4.25)

where TS represents the average phoneme or word duration in the scenario S.

4.6 Feature Analyses Metrics

This section presents metrics used for evaluating results of feature analyses.

4.6.1 Weighted Means and Deviations

In some of the analyses, parameter estimates were extracted from segments of varying lengths
(e.g., spectral slopes or formant locations and bandwidths). It seems natural that the parameter
values extracted from longer time segments should contribute more to the parameter mean and devi-
ation estimates than those coming from shorter segments. Hence, in the analyses employing varying
segments, weighted means and deviations were calculated:

Xw =

N∑
i=1

wixi

N∑
j=1

wj

, (4.26)

σ̂w =

√√√√√√√√
N∑

i=1
wi

(
xi − Xw

)2
N∑

j=1
wj

, (4.27)

where wi is the weight (typically a time duration) of the i-th sample xi and N is the number of
samples.
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4.6.2 Student’s t-Test

To evaluate whether two sets of observations come from the same distribution, i.e., whether the
sample means are equal from the statistical point of view (although may be numerically different),
the independent Student’s t-test was used. Since the means to be compared were usually calculated
from different number of samples, the independent test for unequal sample sizes, Stephens (1998), was
carried out. The t value was determined:

t =
X1 − X2

σ̂X1−X2

, (4.28)

where X1 and X2 are the compared mean estimates, and σ̂2
X1−X2

is the unbiased estimator of variance

σ̂X1−X2
=

√
(N1 − 1) σ̂2

1 + (N2 − 1) σ̂2
2

N1 + N2 − 2

(
1

N1
+

1
N2

)
, (4.29)

N1,2 are the numbers of samples in the measurement sets, N1 − 1 and N2 − 1 are degrees of freedom
for the sets, and N1 + N2 − 1 is the total number of degrees of freedom. The null hypothesis that
the two means do not differ was tested at the significance level α = 0.05. If the t value exceeded the
level corresponding to α, the null hypothesis was rejected and the means were considered statistically
different.

4.6.3 Confidence Intervals

To allow for easy comparison of more than two estimates of a given parameter, 95% confidence
intervals were determined for each estimation. The 95% confidence interval was constructed, Stephens
(1998):

P

(
X̄ − 1.96

σ̂√
N

� μ � X̄ + 1.96
σ̂√
N

)
≈ 0.95, (4.30)

where X̄ is the sample mean, σ̂ is the sample standard deviation, N is the number of samples, and μ is
the unknown real population mean. The expression (4.30) says that the real mean μ can be expected
to lie in the given confidence interval with confidence level of 95%.
In the case of presenting results together with confidence intervals, two estimated means were

considered statistically different if each of them lied outside the confidence interval of the other mean.

4.7 Recognition Setup

The structure and algorithms employed in HMM-based recognition systems were discussed in detail
in Sec. 2. This section briefly summarizes the setup of the digit and LVCSR recognizers employed in
the experiments.

4.7.1 Digit Recognizer

The digit recognizer was implemented in HTK (Hidden Markov Model Toolkit), Young et al.
(2000). The acoustic models had the following architecture:

• 43 context-independent left to right monophone models and two silence models (short pause and
long pause), (Novotný, 2002),

• Each monophone model and the long pause model comprised 3 emitting GMM states, the short
pause model contained one emitting GMM state,
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• Each GMM was represented by a 39–D multiple-mixture Gaussian distribution function. The
dimensions modeled 13 static, 13 dynamic, and 13 acceleration coefficients.

• Each GMM dimension employed 32 Gaussian mixtures.
In the initial experiments, MFCCs were used for the feature extraction, see Sec. 2.5. First,

an energy coefficient and cepstral coefficients C1–C13 formed the static feature vector. In the later
experiments, C0–C13 (C0 representing the frame energy) were used. Both configurations displayed
comparable performance. The cepstral coefficients were extracted from the bank of 26 triangular
filters. Window length of 25 ms and 10 ms overlap were used for the signal segmentation in the
majority of experiments. Pre-emphasis α = 0.97, see Eq. (2.33), was applied to the segments before
calculating the short-time spectrum and extracting the cepstral coefficients.
The monophone acoustic models were trained in four steps. First, global means and variances of

the training speech data were calculated for each feature from the 39-D feature vector and used as
the initial parameters of the monophone and silence models, i.e., each of the monophone and silence
models was initialized by the same global values. This approach is called flat start. In this stage, each
GMM dimension comprised only a single Gaussian component. Second, Baum–Welch expectation-
maximization algorithm, Young et al. (2000), was applied to re-estimate the model parameters, given
the training speech files and corresponding phonetic transcriptions. The phonetic transcriptions can
be obtained from manual annotations of the speech recordings, if available, or from orthographic
transcriptions of the speech recordings by picking one of the pronunciation variants provided by the
lexicon. In this work, the latter approach was used, picking the first pronunciation variant of each
word. The Baum–Welch re-estimation was repeated several times.
In the third stage, the actual monophone models were used to realign the training data and create

new transcriptions. Given the orthographic transcription for each speech file, maximum likelihood
pronunciation variants were searched for the transcription words using the Viterbi algorithm. If the
pronunciation variants did not yield a likelihood exceeding a given threshold (pruning threshold), the
speech file was excluded from the training set. Otherwise, the maximum likelihood pronunciation
variants replaced the former phonetic transcription of the speech file. After the realignment, model
re-estimation was conducted several times.
Finally, the single Gaussian components were split into Gaussian mixtures. Two alternatives of

mixture-splitting, one-step and progressive mixture splitting were employed in the training process9. In
the one-step approach, the former Gaussian component was split into the desired number of mixtures
in one step, followed by multiple model re-estimations. In progressive mixture splitting, the Gaussian
was split into two Gaussian mixtures, followed be several re-estimations. Subsequently, the mixture
doubling and model re-estimation was repeated until the desired number of mixtures (power of two)
was reached. The performance of one-step and progressive mixture splitting is compared in Sec. 9.4.1.
In the experiments, the training data comprised either gender-dependent or gender-independent

utterances, yielding gender-dependent or gender-independent acoustic models, respectively. For the
decoding, the Viterbi algorithm was used. In the digit recognition experiments, the language model
comprised 10 Czech digits in 16 pronunciation variants with uniform probabilities of transitions be-
tween the words.

4.7.2 LVCSR Recognizer

The LVCSR system10, (Nouza et al., 2005), employed a multiple-pronunciation vocabulary con-
taining over 300.000 words and a bigram language model trained on the 4 GB newspaper corpus.
The recognizer’s front end employed MFCC features and the segmentation 25/10 ms. The acoustic

9Performance of the mixture splitting approaches was compared in (Bořil and Fousek, 2007).
10The LVCSR system was kindly provided for the experiments by Prof. Jan Nouza, Technical University of Liberec.
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4.7 Recognition Setup

model comprised 48 monophone, pause, and noise models. Structure of the models was similar to the
digit recognizer. Sets of both gender-independent and gender-dependent models were available for the
experiments.
From the beginning of the training, the model states comprised the desired number of mixtures

(up to 100), which were no more split. For the training, the models were initialized by Viterbi
training, Young et al. (2000). Besides the speech signals and orthographic transcriptions, the training
data comprised phonetic transcriptions and corresponding time labels of the phone occurrences. To
obtain parameter estimates for each of the model states, the segments associated to the given model
were divided into successive uniform portions assigned to the successive model states. The state
means and variances were estimated by averaging the corresponding portions. Subsequently, Viterbi
algorithm was used for the alignment and re-estimation of the model parameters given the new segment
boundaries. The alignment and model update was repeated until the alignment likelihood stopped
rising. Once the models were initialized, 15–20 Baum–Welch re-estimations were carried out.

4.7.3 Recognition Evaluation

To assess performance of ASR systems in the presented experiments, the word error rate (WER)
was used. WER evaluates the difference between the string of words returned by the recognizer and the
correct transcription. First, an optimal mapping between the hypothesized and correct word sequence
involving minimum word substitutions (S), insertions (I) and deletions (D) is searched, Jurafsky and
Martin (2000). WER is then calculated:

WER =
(

D + S + I

N

)
· 100 (%) , (4.31)

where N is the number of words in the correct transcription. To examine the statistical significance
of WER differences across experiments, confidence intervals were determined. Let {ui} be a sequence
of words to be recognized. Let Xi be a random variable:

Xi =

{
0, correct recognition of ui,

1, incorrect recognition of ui.
(4.32)

Let N be a number of words and p be the unknown real error rate. If the recognition errors are

independent events, it can be assumed that the sum S =
N∑

i=1
Xi follows a binomial distribution

B(N, p), (Gillick and Cox, 1989). The maximum likelihood estimate of p is

p̂ =
S

N
=

N∑
i=1

Xi

N
. (4.33)

The unknown variance of p is

σ2 (p) =
p (1 − p)

N
. (4.34)

The 95% confidence interval can be estimated:

P

(
p̂ − 1.96

√
p̂ (1 − p̂)

N
� p � p̂ + 1.96

√
p̂ (1 − p̂)

N

)
≈ 0.95. (4.35)

Following (Mokbel and Chollet, 1995), two results are considered significantly different if each one of
them is outside the confidence interval of the other result.
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Chapter 5

Design of Czech Lombard Speech
Database (CLSD‘05)

Speech databases acquired in real conditions provide a valuable resource for the design and testing
of ASR systems. On the other hand, in the case of louder backgrounds (crowded places, moving car,
airplane cockpits) it may be problematic to reliably analyze speech production variations induced by
noise and their impact on ASR performance separately from the impact of the signal contamination by
noise. Also, assuring similar recording conditions across speakers and appropriate speaker’s reactions
to the actual noise may be an issue in the real conditions.
In this chapter, the design of Czech Lombard Speech Database (CLSD‘05)1 comprising speech

uttered in neutral and simulated noisy conditions is presented. The main goal of the database is to
provide:

• Neutral and LE speech recordings with high SNR,

• Defined spectral properties and levels of the noisy backgrounds,

• Communication between speaker and operator in noise, motivating speakers to react appropri-
ately to the actual noise,

• Parallel neutral and LE utterances from the same speakers for analyses of feature variations on
the speaker/utterance level,

• Extensive number of utterances containing digits, commands, and complex sentences to allow
for statistically significant small and LVCSR recognition experiments.

In databases of simulated LE, speakers are usually provided noisy background through headphones
while their speech is sensed by close talk microphone, yielding high SNR of the recordings, e.g.,
(Junqua and Anglade, 1990), (Chi and Oh, 1996), (Hansen and Bou-Ghazale, 1997). To introduce the
communication factor motivating speakers to produce intelligible speech in noise, this ‘standard’ setup
was extended in the presented work for an operator listening to the utterances while being exposed to
the same noise. The utterance could not be understood or was misheard by the operator, the speaker
was asked to repeat it2.

1The CLSD‘05 design and acquisition were published in (Bořil and Pollák, 2005b).
2A similar approach can be found in (Korn, 1954) and (Webster and Klumpp, 1962). In the latter study, ambient noise

was produced from the speaker array instead of headphones. It is noted that both studies focused exclusively on finding
the Lombard function (i.e., the dependency between noise intensity and corresponding vocal effort in speakers) and did
not conduct an analysis of other speech features. At the time of the submission of this thesis, a speech acquisition
employing a pair speaker–listener exposed to the same noise background was adopted for the purposes of LE speech
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5.1 Recording Setup

For the purpose of evaluation of speech feature variations on the speaker level, each speaker was
recorded both in neutral and simulated noisy conditions. Speakers produced the same utterances in
both scenarios (parallel utterances) to allow for context dependent feature analyses.
To obtain statistically significant results from the analyses and recognition experiments, an exten-

sive number of small vocabulary items (digits, orders) as well as large vocabulary items (phonetically
rich, often complex, sentences) were included in the corpus.

5.1 Recording Setup

During the recording, a speaker was asked to read utterances from the LCD panel. Speech was
recorded via close talk and hands free (middle talk) microphones. In the simulated noisy conditions,
speakers wore headphones. Closed headphones were used to eliminate crosstalk of the noise from
headphones to the close talk microphone. Speech obtained by the close talk microphone was fed back
to the speaker (speech feedback) to suppress the sound attenuation caused by wearing headphones.
In the beginning of the noisy recording (Lombard scenario), the speaker was asked to adjust the
speech feedback to a comfortable level (i.e., to the level where they would hear themselves as if
they were not wearing the headphones3). During the recording, noise samples were mixed with the
speech feedback and reproduced to the speaker by the headphones. Simultaneously, an operator was
qualifying intelligibility of the speaker’s utterances while being exposed to the same noise as the
speaker. The utterances mixed with noise were delivered to the operator through headphones. The
monitored speech in the operator’s headphones was attenuated to simulate fading of speech intensity
due to the distance between the speaker and the operator. If the speech in noise was not understood
well, the operator asked for it to be repeated. The recording setup is outlined in Fig. 5.1.
The recording set consisted of 2 closed headphones AKG K44, close talk microphone Sennheiser

ME-104, and hands-free microphone Nokia NB2. These microphones were similar to those used for
the acquisition of Czech SPEECON, (Iskra et al., 2002).

Close talk 

Noise + speech 
feedback

Middle talk 

H&T
RECORDER 

OK – next / 
/ BAD - again 

Noise + speech 
monitorSPEAKER SMOOTH

OPERATOR 

Figure 5.1: Recording setup.

5.2 SPL Adjustment

In the beginning of each Lombard recording, it was necessary to adjust the level of the reproduced
background noise. For this purpose, a transfer function between the effective voltage of the sound
card open circuit VRMS OL and SPL in the headphones was measured on a dummy head, see Fig.

analysis in (Patel and Schell, 2008). No study employing this concept for the analysis of the impact of LE on ASR is
known to the author of this thesis.

3Similar scheme can be found in (Bond et al., 1989). In (Steeneken and Verhave, 2004), a speech feedback eliminating
the frequency-dependent attenuation caused by wearing headphones was designed. It is noted that in this case, the
speech feedback was a component of active noise reduction system and was not used for acquisition of LE speech.
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Chapter 5: Design of Czech Lombard Speech Database (CLSD‘05)

5.2. The required noise level could be adjusted by setting the corresponding VRMS OL. A noise level
of 90 dB SPL and a virtual distance of 1–3 meters were used for the Lombard speech recordings. In
some cases, the settings had to be modified according to the particular speaker’s capabilities. The
noise reproduction was interrupted between the consecutive items to be read. The recording session
usually did not exceed 20–30 minutes per scenario, with refreshment pauses included.
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Figure 5.2: VRMS OL–SPL dependency.

5.3 Noise Samples

Noises recorded in the car cabin and artificial band-noises interfering with typical locations of
speech fundamental frequency and first formants were employed in the Lombard recordings. A total
25 quasi-stationary car noises selected from the CAR2E database, (Pollák et al., 1999), and 4 band
noises (62–125, 75–300, 220–1120, 840–2500 Hz) were used for the noisy backgrounds. The car noise
samples were about 14 sec long each, the band-noises were 5 sec long. The 29 noises were assigned
to the session prompts periodically, one noise sample per prompt. For the cases where the utterance
would have exceeded the noise sample length, the noise sample was looped. All noise samples were
RMS normalized.

5.4 Recording Studio

For the acquisition of the CLSD‘05 database, the H&T Recorder was developed4. The H&T
Recorder supports two-channel recording and separate noise/speech monitoring for the speaker and
the operator.
In the main application window, see Fig. 5.3, a list of session prompts is displayed. Besides

consecutive passing through the prompt list, the operator can jump to any prompt of choice or use the
‘first/previous/next/last unrecorded’ selector (the bottom row of buttons in Fig. 5.3). For each item
of the prompt list, a separate noise sample can be assigned from the noise list. Levels and waveforms

4The H&T Recorder was implemented in .NET by Tomáš Bořil, Czech Technical University in Prague.
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of the recorded signals from both microphone channels are displayed in the application window so any
unintended signal overdriving or utterance cutting can be easily revealed.

Figure 5.3: H&T Recorder – application window.

In the ‘Options’ menu, session sample frequency, number of channels (1/2), level of speech and noise
signals sent to speaker’s headphones, and speaker–operator distance can be chosen. Every utterance
is saved to the hard disc immediately after being recorded. For each recorded utterance, a label file
is created. The format of the label file originates from the SAM label file used in SPEECON, (Iskra
et al., 2002), comprising information about the actual speaker, recording scenario, orthographic and
phonetic transcription, etc. For the purposes of CLSD‘05, the SAM label file was extended for items
describing the actual simulated noisy conditions, see Table 5.1.

SAM label Format Description Notice 

NTY %s Noise type Filenames including noise description code 

NLV %f Noise level Level of noise in headphones (dB) 

DIS %f Distance Speaker – operator distance (meters) 
speech attenuation in operator’s monitor 

Table 5.1: SAM label file extension in CLSD‘05.

5.5 Corpus

CLSD‘05 comprises utterances from 26 speakers (12 female, 14 male) participating both in neutral
and noisy scenarios. Recording sessions typically contain 205 utterances (in average 780 words) per
speaker and scenario, which represents about 10–12 minutes of continuous speech. The utterance files
are stored in a raw file sampled by 16 kHz, in a 16-bit sample format.
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In order to represent the whole phoneme material occurring in the Czech language and enable
LVCSR experiments, 30 phonetically rich sentences (often complex) appear in each session. To allow
for statistically significant small vocabulary recognition experiments, 470 repeated and isolated digits
were included in each session. In the case of SPEECON, 40 digits are available per session. A typical
content of the CLSD‘05 session is shown in Table 5.2.

Corpus contents Corpus/item id. Number
Phonetically  rich sentences S01 – 30 30 
Phonetically rich words W01 – 05 5 
Isolated digits CI1  – I4, 30 – 69 44 
Isolated digit sequences (8 digits) CB1 – B2, 00 – 29 32 
Connected digit sequences (5 digits) CC1 – 4, C70 – 99 34 
Natural numbers CN1 – N3 3 
Money amount CM1 1 
Time phrases; T1 – analogue, 
T2 – digital CT1 – T2 2 

Dates: D1 – analogue, D2 – relative and 
general date, D3 – digital CD1 – D3 3 

Proper name CP1 1 
City or street names CO1  –  O2 2 
Questions CQ1  –  Q2 2 
Special keyboard characters CK1  –  K2 2 
Core  word synonyms Y01 – 95 
Basic IVR commands 101 – 85 
Directory navigation 201 – 40 
Editing 301 – 22 
Output control 401 – 57 
Messaging & Internet browsing 501 – 70 
Organizer functions 601 – 33 
Routing 701 – 39 
Automotive 801 – 12 
Audio & Video 901 – 95 

89

Table 5.2: Typical CLSD‘05 session content.

5.6 Attenuation by Headphones

Altering the level of speech feedback (sidetone) has a similar effect on the speaker’s vocal effort as
altering the level of background noise, (Lane et al., 1961). Hence, the individual adjustments of the
speech feedback level in the beginning of each Lombard session might have affected the way speakers
reacted to noise. Since the level of the monitored speech in the operator’s headphones was derived
from the level of the speaker’s speech feedback, both speaker and operator were influenced by the
initial feedback adjustment. To eliminate the drawback of using the subjectively adjusted feedback, a
new method of precise speech feedback adjustment is proposed for the purposes of further recordings5.
Sound waves propagate to human senses through air vibration and head vibrations (skull bone

conduction). If speakers judge dynamics of their own speech, proprioception also contributes to the
sound perception, (Lane et al., 1970). It can be expected that wearing closed headphones causes
attenuation of the sound passing through the ears while the bone conduction remains intact (although
the mass of the head is slightly increased by the headphones)6. In several studies, the effect of sound
attenuation was reduced by maintaining a gap (about one inch) between the speaker’s ears and the

5The speech feedback design was published in (Bořil et al., 2006a).
6In (Steeneken and Verhave, 2004), a speech feedback was included in the active noise reduction system in order to

assure that speakers will hear themselves (without the speech feedback, the system would suppress not only the noisy
background but also the speaker’s speech). Due to the sound attenuation caused by wearing closed headphones, there
is a difference between characteristics of the speech waveform approaching the headphones and characteristics of the

54



5.6 Attenuation by Headphones

headphones, (Korn, 1954), or by using open-air headphones, (Junqua et al., 1998), (Varadarajan and
Hansen, 2006). However, in these setups, the sound crosstalk between the headphones and the close
talk microphone can be expected to be considerably higher than in the case of closed headphones.
Considering that the noise level used for LE speech recording in the present database was set to 90 dB
SPL, the noise crosstalk due to using open-air setup might have significantly contaminated the speech
recordings. To prevent this, closed headphones were used for the data acquisition in this thesis. In
the remainder of this section, characteristics of the sound attenuation by the AKG K44 headphones
are analyzed and a speech feedback transfer function compensating for the attenuation is proposed.
Characteristic of the attenuation by headphones was measured on a dummy head in an anechoic

room using Pulse v.8 (Brüel and Kjaer, 2004). The dummy head employed models of auditory canals
and complied with the recommendation ITU P.58, (ITU, 1996)7.
Monaural directional frequency responses were measured on the dummy without and with head-

phones. Subsequently, the attenuation characteristic was determined as a subtraction of these re-
sponses (see Fig. 5.4). The measurement was carried out for angles 0–180◦. In the case of 0◦ the
head’s nose, and for 90◦ the head’s ear were directed to the source of the measuring noise, respectively.
The measurement was not performed for angles greater than 180◦ as in the anechoic room the sound
would propagate to the measured ear only by the dummy head vibrations.
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Figure 5.4: Attenuation by headphones – directional characteristics.

Results of the measurement show that the frequency response of the attenuation depends signif-
icantly on the direction of the sound source. Directionality of the attenuation is shown in detail for
selected frequencies in Fig. 5.5. Since sound waves tend to reflect from barriers, the reflected speech
sound will propagate to the ears from various angles and intensities, depending on the room size, sound
absorption coefficients of the walls, and speaker’s position and orientation in the room. As shown in

waveform sensed inside of the headphones’ cavity by the microphone of the noise reduction system. To address this, the
authors of the study designed a speech feedback compensating for the attenuation by the headphones’ ear muffs.

7A perceptual sound attenuation by wearing another type of headphones in a diffuse sound field has been studied in
(Arlinger, 1986).
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Fig. 5.4 and Fig. 5.5, the attenuation is less significant and also less directional for low frequencies.
Actually, some harmonic components are even slightly amplified by the presence of headphones.
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Figure 5.5: Directional characteristics for selected frequencies.

Subsequently, the attenuation characteristic was measured in the CLSD‘05 recording room. The
dummy head was placed in a position where the speakers were seated while being recorded. A loud-
speaker was put in front of the dummy head’s mouth to provide a sound excitation of the room. Third
octave band noises were used for the room excitation in the interval of 80–8000 Hz. Monaural transfer
functions were measured on the dummy head without and with headphones. The attenuation charac-
teristic was determined as their difference. The attenuation characteristic for the CLSD‘05 recording
room is depicted in Fig. 5.6. Selected anechoic room characteristics are also shown for a comparison
– 0◦, 90◦, 180◦.
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Figure 5.6: Anechoic and CLSD‘05 recording rooms – frequency responses of attenuation.
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5.7 Signal Level Reconstruction

Surprisingly, the attenuation by headphones does not increase monotonously with increasing fre-
quency8, but rather starts to decrease for frequencies above 4 kHz. From the equal loudness curves,
(Fletcher and Munson, 1933), ‘Equal-Loudness Contour’, it can be seen that the area of maximum
sensitivity of human hearing lies in the interval of 3–4 kHz, which is related to the resonance of the
auditory canal. Based on the measurement results, it can be assumed that the headphones affect the
configuration of the ear resonator, resulting in an upward shift of the resonant frequency. This shift
causes a significant attenuation peak in the former resonant area and a significant drop in the area of
the new resonance, resulting in a decrease of attenuation for frequencies above the former resonance.
Once the attenuation characteristic for the given room, speaker position, and headphones is found,

a compensation function can be determined by inverting the attenuation characteristic. In the case
of CLSD‘05, the speech feedback compensating the attenuation by headphones would have a transfer
function of similar shape as the attenuation curve shown in Fig. 5.6. Since individual sizes and
properties of the auditory system differ across speakers, the compensation function derived from the
measurements on the dummy head is an approximation of the ‘optimal’ speaker-dependent attenuation
compensation. However, using the general compensation function is a promising way to improve
how speakers perceive themselves when wearing closed headphones. Evaluating effectiveness of the
proposed compensation feedback in the perceptual tests is a matter of further work not considered in
this study.

5.7 Signal Level Reconstruction

During the CLSD‘05 recording, it was necessary to modify the gain of the microphone pream-
plifier from time to time to avoid signal clipping when speakers changed their vocal intensity. As
a consequence, it is impossible to determine the vocal intensity directly from the amplitude of the
recorded speech signal. In (Pisoni et al., 1985), a similar problem was addressed by recording the
speech signal using two channels. In the first channel, the gain was adjusted during the recording to
cover the entire dynamic range of the analog-to-digital converter, while in the second channel the gain
was kept constant throughout the whole recording to preserve the relative amplitudes between tokens.
In CLSD‘05, the ambient noise occurring during recording can be considered stationary and, hence,
the changes in vocal intensity are proportional to SNRs of the recordings.
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Figure 5.7: Relation of signal level and SPL.

For the purposes of further recordings, an improved one-channel method preserving information
about the absolute signal amplitudes is proposed. In the first step, the transfer function Vef/SPL of
the close talk microphone is measured for the known microphone preamplifier gain. Secondly, during
the speech recording, the calibrated microphone is placed at a selected distance from the speaker’s lips.
The actual preamplifier gain is stored for each utterance. Knowledge of the actual gain is sufficient
for the reconstruction of SPL of the acoustic signal, see Fig. 5.7. Moreover, based on the formula

8Intuitively, it could be expected that the higher is the sound frequency, the higher would be the attenuation of the
sound passing through a barrier.
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derived in (Titze and Sundberg, 1992), the power radiated from mouth can be calculated given the
microphone distance from lips and sound SPL measured by the microphone.
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Chapter 6

Baseline Experiments on Selected
Czech Corpora

In this chapter, three databases of Czech speech recordings are analyzed1. Two extensive databases,
Czech SPEECON, (Iskra et al., 2002), and CZKCC, (CZKCC, 2004), and the newly established
CLSD‘05 database were selected for the experiments. CLSD‘05 is assumed to capture neutral and
Lombard speech due to the definition of its recording setup. Czech SPEECON and CZKCC comprise
recordings from quiet and real adverse conditions, therefore they are promising candidates to provide
neutral and actual Lombard speech.

6.1 Databases

6.1.1 Czech SPEECON

Czech SPEECON database provides the following content:

• Speakers: 590 adults, 50 children, approximately 30 minutes of speech per speaker,

• Speech signals: 4 channels, Fs = 16 kHz, linear PCM coding,

• Content: Phonetically rich items, application-oriented utterances, digit sequences,

• Environments: car, office, public places (living rooms, exhibition areas),

• Recording channels – office and public places: close talk, hands free, directional microphone
(placed 1 meter from a speaker), omni-directional microphone (placed 2–3 meters from a
speaker),

• Recording channels – car: close talk, hands free, microphone in the closest front corner of the
car cabin, distant front corner microphone.

Office and car recordings were selected for the baseline experiments. Office scenario utterances were
recorded in a calm environment and can be assumed to capture neutral speech. Car scenario recordings
comprise utterances produced in noisy conditions. Different speakers participated in the neutral and
noisy conditions.

1Results of the analyses were published in (Bořil and Pollák, 2005a).
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6.1.2 CZKCC

CZKCC comprises recordings from the car cabin:

• Speakers: 1000 adults,

• Speech signals: 2 channels, Fs = 48 kHz, linear PCM coding,

• Content: Phonetically balanced sentences, orders, digit sequences,

• Environments: Standing car/engine off, standing car/engine on, moving car/engine on,

• Recording channels – setup I: Close talk, distant front microphone (above the middle rear view
mirror),

• Recording channels – setup II: Two distant front microphones (above the middle rear view
mirror).

Standing car/engine off and moving car/engine on recordings were selected to represent neutral and
noisy speech, respectively. Recordings obtained using the setup I were employed in the experiments.
The same speakers participated in the neutral and noisy conditions.

6.1.3 CLSD‘05

Structure of CLSD‘05 is described in detail in Chap. 5. The database parameters are as follows:

• Speakers: 26 adult speakers,

• Speech signals: 2 channels, Fs = 16 kHz, linear PCM coding,

• Content: Phonetically rich items, application-oriented utterances, digit sequences,

• Environments: Office – neutral, simulated noisy conditions,

• Recording channels: Close talk, hands free.

The same speakers participated in the neutral and noisy conditions.

6.2 Feature Analyses

Data from the close talk channel were used in the experiments as they provide signals with the
highest SNR. In the case of CZKCC, data was down-sampled from 48 kHz to 16 kHz using the SoX tool,
(Norskog, 2007). The number of speaker sessions employed in the experiments are shown in Table 6.7,
‘Spkrs’. Microphone channel SNRs, fundamental frequency distributions, first four formant positions
and bandwidths, and phoneme and word durations were evaluated. For the analyses, framework
described in Chap. 4 was used. In the SNR and F0 analyses, all session utterances were processed. In
the formant analyses, only digit utterances were employed.

6.3 SNR

SNR distributions for the first two microphone channels in neutral and noisy scenarios are shown
in Fig. 6.1. In the case of CLSD‘05, N denotes neutral speech and LE stands for Lombard speech.
The distribution of means and standard deviations are shown in Table 6.1. In the case of Czech
SPEECON and CZKCC, the level of background noise present in the speech signal varied considerably
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Figure 6.1: SNR channel distributions: Czech SPEECON, CZKCC, and CLSD‘05.

when comparing office and car, or standing car/engine off and moving car/engine on scenarios. In
the case of CLSD‘05, the ambient noise as sensed by the microphone during the recording of neutral
and simulated Lombard speech could be assumed stationary due to the use of closed headphones.
Here, the SNR histograms can be assumed to correlate with distributions of vocal intensity in neutral
and Lombard utterances. During the CLSD‘05 acquisition, the level of background noise in the room
ranged approximately from 50 to 60 dB SPL. In simulated LE conditions, speakers were exposed to
a noise level of 90 dB SPL. As shown in Table 6.1, the average vocal level in speakers increased by
approximately 13 dB when switching from neutral to noisy conditions (i.e., Lombard function has a
slope ranging from 13/ (90 − 50) .= 0.3 dB/dB to 13/ (90 − 60) .= 0.4 dB/dB, approximately). This
corresponds well with the slope values reported in past studies, (Lane et al., 1961), (Webster and
Klumpp, 1962), see Sec. 3.2.1 for details.
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Neutral Noisy 
Parameter 

Channel 0 Channel 1 Channel 0 Channel 1 

SNR  (dB) 29.9 18.3 10.7 3.5 Czech
SPEECON

SNR  (dB) 5.3 4.9 8.6 7.3 

SNR  (dB) 26.3 24.2 12.6 7.6 
CZKCC

SNR  (dB) 10.0 11.5 5.8 4.7 

SNR  (dB) 27.9 10.9 40.9 28.8 
CLSD‘05

SNR  (dB) 7.2 5.2 6.8 7.1 

Table 6.1: Means and deviations of SNR distributions: Czech Speecon, CZKCC and CLSD‘05. In CLSD‘05,
‘noisy’ conditions refer to clean speech acquired in simulated noisy conditions.

6.4 Fundamental Frequency

The F0 tracking was performed separately for male and female speakers to evaluate differences in
speech production across genders and recording conditions. F0 distributions obtained for speech from
neutral and noisy scenarios are shown in Fig. 6.2. F andM denote female and male data respectively.
Distribution means and deviations are shown in Table 6.2. As could have been expected, female F0
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Figure 6.2: F0 distributions: Czech Speecon, CZKCC and CLSD‘05.

distributions are located at higher frequencies compared to male distributions. In all three databases,
upward shifts of mean F0 and increases of F0 standard deviation can be observed when switching from
neutral to noisy conditions, which confirms previous observations summarized in Sec. 3.2.2. In the
case of CLSD‘05, both the F0 mean and standard deviation shifts are most considerable. Here, the
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Neutral Noisy 
Parameter 

Females Males Females Males 

0F   (Hz) 197.7 121.1 220.1 140.3 Czech
SPEECON

F0  (Hz) 33.6 27.5 46.5 51.8 

0F   (Hz) 208.2 129.9 220.2 147.1 
CZKCC

F0  (Hz) 40.4 26.2 42.3 33.8 

0F   (Hz) 204.8 117.8 307.2 215.7 
CLSD‘05

F0  (Hz) 32.2 26.1 66.7 50.1 

Table 6.2: F0 means and standard deviations: Czech Speecon, CZKCC and CLSD‘05.

mean male LE F0 reaches a higher frequency than the mean female neutral F0. The female LE F0

distribution interferes with the typical location of F1 appearance. Considering ASR tasks, the high F0

values may cause a mismatch between feature vectors of the processed LE speech and acoustic models
trained on neutral speech, resulting in a deterioration of recognition performance. In both genders,
standard deviations of the LE F0 distribution double compared to the neutral distribution.

6.5 Formants

Formant analysis was performed on the utterances containing digits. First, a monophone HTK
recognizer, (Young et al., 2000), see Sec. 4.7.1, was trained on 70 male and female SPEECON office
sessions. The recognizer was used to perform forced alignment (i.e., to find phoneme boundaries in
the speech signal given the known transcription of the phonetic content). Second, formant tracking
was performed. Information about the first four formant frequencies and bandwidths was assigned to
the corresponding phones. Since the formant values came from segments of different lengths, weighted
means and deviances were calculated, see Sec. 4.6.1.
Mean locations of the first two formants in digit vowels are shown in Fig. 6.3. N refers to the

neutral conditions and LE represents the noisy conditions. To outline distribution of the F1, F2

samples, 1–σ ellipses2 covering 39.4% of the data are also depicted in the figure. Note that surfaces
of the ellipses are relatively large. This is presumably caused by the fact that the formant values were
extracted from the whole phone segments, including transitions to the adjacent phones. To obtain
more ‘focused’ estimations of vowel locations in the F1, F2 plane, instead of averaging all values from
the segment, a sample from the middle of the segment can be picked as the representative estimate.
Another approach would be to pick a median value from the segment values. However, since the
presented analyses focus on evaluations of phenomena affecting ASR, and monophone models also
deal with the transitions on the segment boundaries, author of the thesis preferred to take values
averaged across the whole segment as the phoneme representatives.
As can be seen in Fig. 6.3, formant shifts in Czech SPEECON and CZKCC are not significant

since the error ellipses almost completely overlap. The smallest shifts can be observed in CZKCC,
where the same speakers produced speech in quiet and in noise. In the case of CLSD‘05, considerable
shifts of vowel formants were displayed. For all vowels, and upward shift in frequency can be seen for
both F1 and F2 here. No consistent shifts of F3 and F4 were noticed for any of the databases.
Changes in formant bandwidths did not display any consistent trend in Czech SPEECON and

CZKCC. In contrast to this, in CLSD‘05, the mean bandwidths of all first four formants were sys-
tematically reduced for Lombard speech. Means and deviations of F1 bandwidth in the digit vowels
are shown in Table 6.3. The statistical significance of F1,2 and B1,2 shifts between neutral and noisy

2See Sec. 4.2.1
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Czech SPEECON 
Vowel B1M (Hz) 1M (Hz) B1M (Hz) 1M (Hz) B1F (Hz) 1F (Hz) B1F (Hz) 1F (Hz) 

/a/ 270 93 234 111 271* 84 259* 119 

/e/ 157 84 199 129 221 82 202 132 

/i/ 116 46 182 109 156 65 186 123 

/o/ 252* 107 262* 111 306 91 273 130 

/u/ 149 78 195 109 181 65 202 123 

CZKCC
Vowel B1M (Hz) 1M (Hz) B1M (Hz) 1M (Hz) B1F (Hz) 1F (Hz) B1F (Hz) 1F (Hz) 

/a/ 207* 74 210* 84 275 97 299 78 

/e/ 125* 70 130* 78 156 68 186 79 

/i/ 124* 49 127* 44 105 44 136 53 

/o/ 275 87 222 67 263* 85 269* 73 

/u/ 187 100 170 89 174* 96 187* 101 

CLSD‘05
Vowel B1M (Hz) 1M (Hz) B1M (Hz) 1M (Hz) B1F (Hz) 1F (Hz) B1F (Hz) 1F (Hz) 

/a/ 269 88 152 59 232 85 171 68 

/e/ 168 94 99 44 169 73 130 49 
/i/ 125 53 108 52 132* 52 133* 58 

/o/ 239 88 157 81 246 91 158 62 

/u/ 134* 67 142* 81 209 95 148 66 

Table 6.3: Formant bandwidths – digit vowels. Italic letters represent noisy data. In CLSD‘05, ‘noisy data’
refers to clean speech acquired in simulated noisy conditions. Pairs of values with asterisk did not reach

statistically significant difference at 95% confidence level.
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Vowel 
SPEECON 

/a/ /e/ /i/ /o/ /u/ 
#N/#LE 215/303 632/861 680/910 152/191 306/391 

F1 N N + N + 

F2 + N + N + 

B1 + + + N + 

M

B2 + + + + + 

#N/#LE 168/229 441/540 478/628 108/133 198/277 

F1 N N + N + 

F2 + + + N + 

B1 N + + + + 

F

B2 + + + + + 

Vowel 
CZKCC 

/a/ /e/ /i/ /o/ /u/ 

#N/#LE 408/395 811/923 388/441 123/134 381/402 

F1 + + + N N 

F2 N + N N N 

B1 N N N + + 

M

B2 + + + + + 

#N/#LE 455/437 895/823 418/427 148/155 396/357 

F1 N + + N N 

F2 + + N N N 

B1 + + + N N 

F

B2 + + + + + 

Vowel 
CLSD‘05 

/a/ /e/ /i/ /o/ /u/ 

#N/#LE 331/1645 861/3965 549/1796 134/524 272/1046

F1 + + + + + 

F2 + + + N + 

B1 + + + + N 

M

B2 + + + + + 

#N/#LE 1297/990 3144/2478 1433/1240 428/352 654/578 

F1 + + + + + 

F2 + + + + + 

B1 + + N + + 

F

B2 + + + + + 

Table 6.4: Significance of feature shifts between neutral and noisy conditions. ‘+’ – neutral/LE parameter
pairs reaching statistically significant difference at 95% confidence level, ‘N’ – other pairs. In CLSD‘05,

‘noisy’ conditions refer to clean speech acquired in simulated noisy conditions.
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Figure 6.3: Formants F1, F2 – digit vowels.

data3 is shown in Table 6.4. #N denotes the number of neutral realizations and #LE the number
of noisy realizations of the phoneme parameter. The parameter pairs which displayed a statistically
significant difference at a confidence level of 95 % are labeled ‘+’, the rest is labeled ‘N’. The lowest
number of statistically significant shifts in features was displayed by CZKCC, while in CLSD‘05, the
majority of parameters changed significantly.

6.6 Durations

Average phoneme and word durations were evaluated for utterances containing digits, see Table
6.5. The durations were extracted from the phoneme boundaries obtained from the forced alignment,
see Sec. 6.5. In Czech SPEECON, phoneme duration differences, see Sec. 4.5, did not exceed 38%.
In the case of CZKCC, the greatest duration changes were observed in the word ‘štiri’ (phoneme /r/

3In CLSD‘05, ‘noisy’ data refer to clean speech acquired in simulated noisy conditions.
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Czech SPEECON 
Word Phoneme # Office TOffice (s) TOffice (s) # Car TCar (s) TCar (s)  (%) 
Štiri /r/ 135 0.040 0.022 233 0.052 0.041 29.87 

Pjet /p/ 134 0.050 0.026 174 0.069 0.134 37.92 

Pjet /e/ 134 0.059 0.038 174 0.070 0.067 18.33* 

Devjet /v/ 129 0.049 0.016 174 0.067 0.145 35.52* 

CZKCC
Word Phoneme # OFF TOFF (s) TOFF (s) # ON TON (s) TON (s)  (%) 
Nula /a/ 349 0.147 0.079 326 0.259 0.289 48.50 

Jedna /a/ 269 0.173 0.076 251 0.241 0.238 39.36 
Dva /a/ 245 0.228 0.075 255 0.314 0.311 38.04 
Štiri /r/ 16 0.045 0.027 68 0.080 0.014 78.72 
Sedm /e/ 78 0.099 0.038 66 0.172 0.142 72.58 

CLSD‘05
Word Phoneme # N TN (s) Tn (s) # LE TLE (s) Tle (s)  (%) 

Jedna /e/ 583 0.031 0.014 939 0.082 0.086 161.35 

Dvje /e/ 586 0.087 0.055 976 0.196 0.120 126.98 

tiri /r/ 35 0.041 0.020 241 0.089 0.079 115.92 

Pjet /e/ 555 0.056 0.033 909 0.154 0.089 173.71 

Sedm /e/ 358 0.080 0.038 583 0.179 0.136 122.46 

Osm /o/ 310 0.086 0.027 305 0.203 0.159 135.25 

Devjet /e/ 609 0.043 0.022 932 0.120 0.088 177.20 

Table 6.5: Phoneme durations. ‘*’ – pairs that did not reach statistically significant difference.

– 79%) and in the word ‘sedm’ (phoneme /e/ – 73%). The most significant and consistent phoneme
duration differences were observed in the CLSD‘05 database. The highest differences can be found in
the words ‘devjet’ (2nd /e/ – 177%), ‘pjet’ (/e/ – 174%), and ‘jedna’ (/e/ – 161%).
No significant changes in word durations were observed in Czech SPEECON. In CZKCC and

CLSD‘05, certain changes in word durations can be found, but do not reach the ratios of the phoneme
changes, see Table 6.6. This results from the fact that when produced in noise, vowels tend to be
increased in duration while the duration of consonants tends to be reduced (see Sec. 3.2.5).
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CZKCC
Word # OFF TOFF (s) OFF (s) # ON TON (s) TON (s)  (%) 
Nula 349 0.475 0.117 326 0.560 0.345 17.82 

Jedna 269 0.559 0.136 251 0.607 0.263 8.58 

Dva 245 0.426 0.106 255 0.483 0.325 13.57 

CLSD‘05
Word # N TN (s) Tn (s) # LE TLE (s) Tle (s)  (%) 
Nula 497 0.397 0.109 802 0.476 0.157 19.87 

Jedna 583 0.441 0.128 939 0.527 0.165 19.56 

Dvje 586 0.365 0.114 976 0.423 0.138 15.87 

Table 6.6: Word durations.

6.7 Digit Recognition Task

The recognizer mentioned in Sec. 4.7.1 was also employed in the digit recognition task. The test set
comprised isolated and connected digits. The resulting performances are shown in Table 6.7. The row

Czech SPEECON CZKCC CLSD‘05 
Set 

Office F Office M Car F Car M OFF F OFF M ON F ON M N F N M LE F LE M 
# Spkrs 22 31 28 42 30 30 18 21 12 14 12 14 
# Digits 880 1219 1101 1657 1480 1323 1439 1450 4930 1423 5360 6303 
WER 
(%) 

5.5 
(4.0–7.0) 

4.3 
(3.1–5.4) 

4.6 
(3.4–5.9) 

10.5 
(9.0–12.0)

3.0 
(2.1–3.8) 

2.3 
(1.5–3.1) 

13.5 
(11.7–15.2)

10.4 
(8.8–12.0)

7.3 
(6.6–8.0) 

3.8 
(2.8–4.8) 

42.8 
(41.5–44.1) 

16.3 
(15.4–17.2)

Table 6.7: Recognition performances: Czech SPEECON, CZKCC, and CLSD‘05. Mean values followed by
95% confidence intervals in parentheses.

Set denotes type of scenario (Offc – office, OFF – standing car/engine off, ON – moving car/engine
on, N – neutral conditions, LE – simulated Lombard conditions), and WER is the word error rate, see
Sec. 4.7.3.
In Czech SPEECON, the error rate rose by 6% for males under LE, with no significant change

in WER observed for females. In CZKCC, the recognition performance was reduced by 8% for male
and by 11% for female speakers. The most considerable deterioration of recognition performance was
displayed on Czech CLSD‘05, whereWER increased by 12% for male and by 36% for female speakers.

6.8 Conclusions

Czech SPEECON, CZKCC, and CLSD‘05 were used in feature analyses and digit recognition tasks.
For all three databases, feature variations can be found when comparing utterances from quiet and
noisy recording scenario. However, in the case of Czech SPEECON and CZKCC, shifts in feature
distributions due to the speech production in noise are often negligible and inconsistent. It seems
that the appearance of LE in the databases is only marginal. This may be a consequence of how the
recording setup employed in the acquisition of the databases was defined. Speakers just read prompts
from the list without the need to preserve speech intelligibility and react appropriately to the actual
noise. This corresponds well with the observations referring to the ‘lack of communication factor’ in
the databases as reported by the past works, see Sec. 3.6. Considering the minor changes in feature
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distributions, the decreases in recognition performance on Czech SPEECON and CZKCC utterances
in noisy conditions can be attributed more to the speech signal corruption by noise than to LE.
In CLSD‘05, considerable shifts were found in the majority of the features analyzed. Since the

recordings from both neutral and simulated noisy conditions contain speech signals with high SNR, it
can be assumed that the feature tracking accuracy was less affected by the presence of noise compared
to the other two databases. For the same reason, the significant drop in the recognition performance
on the simulated LE utterances can be attributed exclusively to the feature shifts. The significantly
stronger performance drop on the female utterances compared to the male utterances agrees with the
observations reported by the earlier works, (Junqua et al., 1998). Based on the results of feature
analyses conducted in this chapter, it seems that some of the male features tend to shift towards the
neutral female locations (F0, F1, F2) while the female features shift to locations unseen in the neutral
training data. Particularly, shifts of female F0 distribution into the location of typical F1 occurrence
may strongly contribute to the performance corruption.
Results of the set of experiments carried out in this chapter demonstrate a strong presence of

Lombard effect in the database. Hence, CLSD‘05 was used in the experiments on Lombard speech
conducted in the remainder of this thesis.
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Chapter 7

Acoustic Model Adaptation

One of the possibilities to improve performance of an ASR system is to train its acoustic models on
data coming from the actual environmental/talking style conditions, (Bou-Ghazale and Hansen, 1998),
see also Sec. 3.5. This approach works well if a sufficient amount of training samples is available.
However, if the conditions tend to change, it may be difficult to gather enough data for the model
retraining on the fly. In such a case, acoustic model adaptation may be effective. Here, a relatively
small amount of samples is used to adapt acoustic model parameters in order to match better the actual
properties of the speech signal. In this chapter, Maximum Likelihood Linear Regression (MLLR) and
Maximum A Posteriori approach (MAP) are used to adapt model means1.
In MLLR, (Gales and Woodland, 1996), a set of transformations is applied to mean vectors of

GMMs to map the former means μ to the condition-dependent means μ′:

μ′ = Aμ + b, (7.1)

whereA is the transformation matrix and b represents a bias vector. A and b are obtained by applying
the expectation-maximization algorithm (EM)2. GMM variances may be adapted in a similar way,
(Gales et al., 1996).
If only a small amount of adaptation data is available, a global adaptation transformation is con-

ducted. Here, a single transformation is used to adapt all GMMs. If more adaptation data becomes
available, the number of transformations can be increased, yielding a set of transformations, each of
them addressing a single group of GMMs. In this case, a dynamic method can be used to construct
further transformations and to cluster groups of models as the amount of data increases, Young et al.
(2000). The grouping of GMMs makes it possible to adapt distributions of acoustic models (e.g., some
of the monophones or silences) that were not seen in the adaptation data. A regression class tree
is built by clustering together components that are close in the acoustic space. The tree is designed
based on the former (condition-independent) set of models, using a centroid splitting algorithm.
In the MAP adaptation approach, (Gauvain and Lee, 1994), the prior knowledge about the model

parameter distribution is taken into account3. In adaptation of GMMs based on MAP, the condition-
independent model parameters are used as informative priors, Young et al. (2000). The update formula

1The framework was provided by Petr Červa, Technical University of Liberec, who also conducted the model adap-
tation. Author of the thesis proposed the experiments, provided the data, and processed the results. The experiments
were published in (Bořil et al., 2006c).

2EM technique comprises two steps. In the expectation step, expectation of the likelihood is evaluated by initializing
the latent variables of the model as if they were observed. In the maximization step, maximum likelihood estimates of
the model parameters are found by maximizing the expected likelihood found in the expectation step. The two steps are
usually repeated a couple of times. The parameters found in the maximization step are used to initialize the subsequent
expectation step, (Wikipedia, 2007) – ‘Expectation-Maximization Algorithm’.

3Let μMAP be the parameter vector to be estimated. The adaptation can be performed using the maximum a
posteriori estimate: μMAP = arg max

μ
p (o|μ) p (μ), where p (o|μ) is the density function for the adaptation data
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is defined:

μ′ =
N

N + τ
μ̄ +

τ

N + τ
μ, (7.2)

where N is the occupation likelihood of the adaptation data, τ is the weighting of the a priori knowl-
edge, μ is the condition-independent mean, and μ̄ is the weighted mean of the adaptation data (the
adaptation samples are weighted by their observation likelihoods given the condition-independent
model).

7.1 Experiments

The model adaptation conducted in this chapter comprised two steps. First, mean vectors of GMMs
in the speaker-independent (SI) models were transformed by MLLR. MLLR employed clustering of
the models using a binary regression tree which allowed for adapting also models not represented
sufficiently in the adaptation data set. Subsequently, the transformed values were used as the priors
for the MAP-based adaptation. During MAP, transformations were performed only for the nodes
where a sufficient amount of adaptation data was available.
When comparing genders in the baseline experiments, the recognition deterioration by LE was

found considerably stronger for female speakers, see Sec. 6.7. For this reason, the presented experi-
ments focused on improving the recognition performance on female utterances. Speaker-independent
(SI)/gender-dependent (female) models of the LVCSR system, see Sec. 4.7.2, were adapted as follows:

• Speaker independent adaptation to Lombard speech: Neutral trained SI models are transformed
to Lombard SI models – distinct utterances from the same or distinct speakers are used for the
adaptation and for the open test, experiments ‘SI adapt to LE (same speakers adapt/test)’ or
’SI adapt to LE (different speakers adapt/test)’, respectively.

• Speaker dependent (SD) adaptation to neutral speech: Neutral SI models were transformed into
SD neutral models – ‘SD adapt to neutral’.

• SD adaptation to Lombard speech: Neutral SI models were transformed into Lombard SD models
– ‘SD adapt to LE’.

All adaptation and recognition tasks were carried out twice, using either digit utterances (digit task)
or phonetically rich sentences (sentences task), respectively, for adaptation and testing. Neutral and
Lombard CLSD‘05 sessions from 10 female speakers were used in the experiments. The data were
partitioned to the adaptation set and to the open test as follows:

• SI adapt to LE (same speakers adapt/test): from all speakers, 2/3 of LE utterances were used for
the SI model adaptation, the remaining 1/3 was used for the open test (880 digits, 970 words),

• SI adapt to LE (different speakers adapt/test): LE utterances from 6 speakers were used for SI
model adaptation, the utterances from the remaining 4 speakers formed the test set (1024 digits,
1081 words),

• SD adapt to neutral: models are adapted to neutral utterances separately for each speaker,
yielding speaker-dependent (SD) neutral models, and tested on LE speech in the SD recognition
task (880 digits, 970 words),

sample o and p (μ) is the prior density of μ. If there is a prior knowledge about what are the model parameters likely
to be – an informative prior, a limited amount of adaptation data may be sufficient for a reasonable MAP estimate. If
there is no information about the prior density of μ – non-informative prior, p (μ) becomes a uniform distribution and
the resulting MAP estimate will be identical to the one obtained from the MLLR approach, (Dines, 2003), Young et al.
(2000).
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• SD adapt to LE: models are adapted to LE utterances separately for each speaker, yielding
speaker-dependent (SD) LE models. From each LE session, 2/3 of utterances were used for the
SD model adaptation, 1/3 for the SD open test (880 digits, 970 words).

The numbers in brackets refer to the number of digits used for the testing in the digit task or the
number of words in the sentences task, respectively. In all experiments, the LVCSR system employed
language model. Results of the experiments are shown in Table 7.1 and Fig. 7.1.

Models Baseline Baseline Adapted 
Digits 

Test set Neutral LE LE 

SI adapt to LE (same speakers train/test) 
15.0 

(12.6–17.4) 
54.7 

(51.4–58.0) 
16.8 

(14.3–19.3) 

SI adapt to LE (disjunct speakers train/test) 
15.0* 

(12.6–17.4) 
55.5 

(52.5–58.5) 
16.9 

(14.6–19.2) 

SD adapt to neutral 
15.0 

(12.6–17.4) 
54.7 

(51.4–58.0) 
43.9 

(40.6–47.2) 

WER 
(%)

SD adapt to LE 
15.0 

(12.6–17.4) 
54.7 

(51.4–58.0) 
8.5 

(6.7–10.3) 

Models Baseline Baseline Adapted 
Sentences 

Test set Neutral LE LE 

SI adapt to LE (same speakers train/test) 
32.3 

(29.4–35.2) 
69.7 

(66.8–72.6) 
43.0 

(39.9–46.1) 

SI adapt to LE (disjunct speakers train/test) 
32.3* 

(29.4–35.5) 
78.5 

(76.1–80.9) 
61.2 

(58.3–64.1) 

SD adapt to neutral 
32.3 

(29.4–35.5) 
69.7 

(66.8–72.6) 
68.7 

(65.8–71.6) 

WER 
(%)

SD adapt to LE 
32.3 

(29.4–35.2) 
69.7 

(66.8–72.6) 
39.2 

(36.1–42.3) 

Table 7.1: Efficiency of model adaptation: Digit and sentences tasks. ‘*’ – neutral open set together with
neutral utterances from speakers participating in model adaptation. Mean values followed by 95% confidence

intervals in parentheses.

It can be seen that all adaptation setups improved the LVCSR performance. Speaker-dependent
adaptation to LE provided the highest WER reduction, followed by speaker independent adaptations
to LE and speaker dependent adaptation to neutral speech. The superior performance of speaker-
dependent adaptation to LE is not so surprising as in this case, adaptation data allows for modeling
both speaker-dependent and condition-dependent characteristics similar to the test data. Speaker-
dependent adaptation to neutral speech was the least effective strategy.
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Figure 7.1: Overall performance of model adaptation.

7.2 Conclusions

All configurations of the acoustic model adaptation considered in this chapter improved recognition
performance:

• The best results were reached by the SD adaptation to LE. In this case, the transformed models
address both speaker-specific and LE-specific characteristics of speech provided in the adaptation
data,

• In general, various speakers tend to react to the same noisy conditions differently, which may
discourage using the speaker-independent adaptation to LE. However, a remarkable improve-
ment was displayed by both experiments of SI adaptation to LE. A comparable recognition
performance was reached when using distinct utterances from the same set of speakers for the
adaptation and testing, and for the adaptation using distinct speakers for the model transforma-
tion and testing. In the first case, the adaptation is not pure SI but rather a group dependent
(GD) task, as the same group of speakers participated in both model adjustments and the recog-
nition task. In the case of the sentences task, the ‘pure’ SI scenario was less effective than for
GD. This is presumably caused by the bigger complexity of the sentences task. Compared to
the digits, here, an extensive number of units (phonemes, words) is considered during the recog-
nition. Their distances in the acoustic space are smaller than in the case of digits, hence, a
relatively small feature drift from the neutral model distributions may result in a considerable
corruption of the recognition performance.

• SD adaptation to neutral speech was the least efficient approach. In the case of the sentences
task, the recognition improvement was not statistically significant. This proves that SI models
deal well with the speaker changes, but are strongly sensitive to the changes due to LE.

In real-world tasks, acoustic model adaptation can be applied to continuously update the ASR
system parameters. In such a setup, incoming utterances would be first decoded and phone-aligned
using the current acoustic models. Once a sufficient amount of data is available for a particular
acoustic class or a class group, the corresponding acoustic models can be transformed towards the
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actual speech parameters. Due to the low accuracy of the baseline neutral models when exposed to
LE speech, the estimated transcriptions of the adaptation data can be expected to contain a lot of
errors, which may slow-down or corrupt the convergence of the adapted models towards the actual
speech characteristics.
In the experiments conducted in this chapter, only adaptation of mean vectors was conducted.

Since LE is known to affect not only means but also variances of cepstral coefficients, see (Takizawa
and Hamada, 1990), it can be assumed that further extension of the adaptation framework for variance
transformation will yield improved modeling of the actual speech.
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Chapter 8

Voice Conversion

Voice conversion is a technique originally developed for transforming speech from the source
speaker towards a target speaker–sounding speech, (Abe et al., 1988), (Childers, 1995), (Baudoin
and Stylianou, 1996), (Kain and Macon, 1998), (Arslan, 1999). Since voice conversion typically ad-
dresses speech production differences between source and target speech both on the excitation and
vocal tract level, it seems to be a promising means also for transforming talking styles. In past studies,
voice conversion techniques employing a combination of speech perturbation models and a code-excited
linear prediction (CELP), (Bou-Ghazale and Hansen, 1996), or HMM modeling, (Bou-Ghazale and
Hansen, 1998), were used to generate simulated stressed speech from neutral speech. In the latter
case, the obtained samples were employed in training a speech recognizer, significantly improving its
performance on actual stressed (angry and loud) speech. In this chapter, a novel voice conversion-
based approach to Lombard speech equalization is presented1. First, feature distributions in source
Lombard utterances and target equalized utterances are analyzed. Second, efficiency of the LE equal-
ization when being integrated into the front-end of the neutral-trained ASR system is evaluated in
the digit and LVCSR task.
Let x1,x2, . . . ,xN be a sequence of feature vectors extracted from the frames of the source speaker’s

speech signal and y1,y2, . . . ,yN be a sequence of the corresponding feature vectors extracted from
the target speaker’s speech signal. When training a voice conversion system, the goal is to find a
conversion function F minimizing the mean square error

εMSE = E
[
‖yn − F (xn)‖2

]
, (8.1)

where E denotes expectation and ‖·‖ is the Euclidean norm defined:
‖z‖ =

√
z1 + z2 + . . . + zM , (8.2)

and M is the number of components of the vector z.
Various approaches to voice conversion have been explored: quantization of source and target fea-

ture vectors and applying codebook transformations, (Abe et al., 1988), warping short-time spectra of
the source speaker towards the target speaker spectra, (Sündermann et al., 2005c), continuous proba-
bilistic spectral transformation based on joint density GMMs, (Kain and Macon, 1998), (Sündermann
et al., 2005b), and transformation of the vocal tract residuals, (Sündermann et al., 2005a).

1The idea of using voice conversion for Lombard speech equalization was proposed by Prof. Harald Höge, Siemens
Corporate Technology, Munich, Germany (Siemens CT), and investigated within the frame of the joint project ‘Normal-
ization of Lombard Effect’ of Siemens CT and CTU in Prague, (Bořil, 2007). David Sündermann, Siemens CT, provided
a voice conversion system and conducted its training and data conversion, (Sündermann et al., 2005b). Author of the
thesis provided parallel utterances for the system training, analyzed an impact of voice conversion on feature distribu-
tions, and evaluated efficiency of the conversion in the recognition tasks. Results of the experiments were presented in
(Bořil et al., 2006c).
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Voice conversion algorithms usually employ text-dependent training which requires availability of
parallel utterances from the source and target speaker. In this chapter, GMM-based text-dependent
voice conversion is used. Here, the source speech signal is decomposed to the vocal tract and excitation
components, see Sec. 4.4, which are then transformed separately. Training of the system comprises
the following steps:

• Utterances with the same linguistic content (parallel utterances) from the source and target
speaker are used for the training,

• The speech signals are split into pitch-synchronous frames. In unvoiced regions, the speech signal
is segmented based on the interpolation of lengths of the neighboring voiced segments,

• The parallel source and target frame sequences are aligned using dynamic time warping (DTW),
see Chap. 2,

• From the aligned sequences, vocal tract-related features are extracted and used for training the
joint density GMM:

p (x,y) =
M∑

m=1

cmN
{[

x

y

]
;μm =

[
μx

m

μy
m

]
,Σm =

[
Σxx

m Σxy
m

Σyx
m Σyy

m

]}
, (8.3)

where cm is the weight of the m-th mixture component (see Sec. 2.2), μx
m and μy

m are mean
vectors of the source and target features, and Σm is the covariance matrix. From the GMM,
the linear transformation function minimizing the mean square error between the converted and
target vocal tract features is derived, (Kain and Macon, 1998):

FV (x) =
M∑

m=1

pm (x)
[
μy

m + Σyx
m (Σxx

m )−1 (x − μx
m)
]
, (8.4)

where pm (x) is the probability that the feature vector x belongs to the m-th Gaussian compo-
nent.

• Average and variance of the target pitch are also determined. During voice conversion, the pitch
of the source excitation component F0x is adjusted to match the target pitch F0y parameters,
(Kain and Macon, 1998):

FE (F0x) = μF0y +
σF0y

σF0x

(F0x − μF0x) . (8.5)

It may be difficult to obtain parallel utterances from the source and target speakers, especially if
the speakers do not speak the same language. This can be addressed by a text-independent voice
conversion approach, (Sündermann et al., 2006a). Here, the phonetically corresponding frames are
found by means of minimizing the target and concatenation frame-mapping costs. The target cost
measures distance between source and target feature vectors. The concatenation cost evaluates the
connection quality of the consecutive units, taking into account the continuity of spectral evolution of
the natural speech.
Parallel Lombard and neutral utterances from the same speakers were used for the text-dependent

training of the speaker-dependent voice conversion. Mean F0 of source and target utterances were
derived from the mean pitch-synchronous frame lengths. Besides F0, the remaining parameters of
the target excitation signal were kept equal to the source excitation signal. Coefficients of the linear
predictive models representing vocal tract properties were transformed to line spectrum frequencies
(LSF), (Kleijn et al., 2003). The source LSF features were converted to the target features, transformed
back to the time domain, and concatenated by means of the pitch-synchronous overlap and add
(PSOLA) technique, (Charpentier and Stella, 1986).
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8.1 Converted Speech Features

To evaluate separately the efficiency of the excitation equalization and the vocal tract equalization,
two variants of voice conversion were considered in the presented experiments. In the first case, both
F0 and formants were transformed towards neutral – ‘converted LE’ (CLE). In the second case, only
F0 was converted towards neutral while formant components were preserved – ‘converted LE – F0

only’ (CLEF0). For each speaker, a speaker-dependent voice conversion system was trained on 20
parallel Lombard/neutral phonetically rich sentences. For the open test set experiments, phonetically
rich Lombard utterances from 11 male and 11 female speakers – ‘sentences’ task, and digit Lombard
utterances from 11 male and 10 female speakers2 – ‘digit’ task, were equalized by conducting the
speaker-dependent conversion.

SNR distributions of the neutral, LE, CLE, and CLEF0 data are depicted in Fig. 8.1. Corre-
sponding distribution means and standard deviations are shown in Table 8.1. SNR distributions
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Figure 8.1: SNR distributions: neutral, LE, CLE, and CLEF0 data; digits + sentences.

Set Neutral LE CLE CLEF0

SNR  (dB) 30.7 46.2 47.7 43.9 
Males

SNR  (dB) 5.0 5.6 5.9 5.3 

SNR  (dB) 29.9 42.7 49.1 42.0 
Females 

SNR  (dB) 6.6 6.5 6.4 6.5 

Table 8.1: SNR distribution means and standard deviations: neutral, LE, CLE, and CLEF0 data; digits +
sentences.

of the converted speech reach high mean values, occurring in the similar or close locations to the LE
distributions since the voice conversion considered in this chapter preserved intensity as seen in the
source speech. Hence, the impact of background noise on the accuracy of feature analyses and on the
performance in recognition tasks can be assumed negligible in the case of the converted speech.
Distributions of F0 and their means and standard deviations are shown in Fig. 8.2 and Table 8.2.

It can be seen that F0 distributions of the converted speech are shifted down the frequency axis and
almost completely overlap the neutral distributions. The standard deviations of converted F0 are also
reduced towards the neutral values, although here, the transformation is less effective. Differences
between means and deviations of the converted and neutral distributions may be partly attributed to
the fact that the speaker-dependent conversion parameters were derived from a relatively small set

2One of the 11 female neutral sessions did not contain a complete set of parallel digit utterances, hence, only 10
complete female sessions were used.
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Figure 8.2: F0 distributions: neutral, LE, CLE, CLEF0.

of data disjunct to the open set. When summarizing results across the entire speaker set, it seems
that the converted F0 distributions display consistent shift compared to the neutral speech. Further
explanation of this effect could be presumably derived from the particular properties of the algorithms
used in the voice conversion system, which are not known to the author of the presented thesis.
Mean locations of the first two vowel formants F1, F2 are shown in Fig. 8.3. In the case of CLEF0,

only the F0 component was transformed while the formant structure was kept intact. This corresponds
well with the analysis results for higher formant values, where F1, F2 reach similar locations for CLEF0

and LE vowels. In the case of the lowest F1 values, typically in the vowels /u/ and /i/, a considerable
difference between converted and LE formant locations can be found at times. This difference is
presumably caused by occasional confusion of F0 and F1 in the automatic formant tracking algorithm.
In most cases, CLE formants displayed shift towards the neutral locations. The only exception was
male sentences where F1 frequencies remained almost unchanged compared to the source LE data and
mean F2 values were frequently shifted to even further distances from the neutral vowels than the
former LE data. In this case, a significant distortion of the speech signal was noticed in the listening
tests. This distortion might be a reason for the failure of the automatic formant tracking algorithm.
Statistical significance3 of the vowel F1, F2 location differences between the matched sets was

analyzed, with results in Table 8.3 and Table 8.4. Features that did not display a significant shift
between the two given sets are labeled N . The best joint performance of the voice conversion system
and the formant tracking algorithm was reached for the male sentence pair LE–CLEF0, where F1, F2

did not display any statistically significant shift after the F0 conversion. Female sentence LE–CLEF0

and male digit LE–CLEF0 pairs also reported on an effective F0 conversion. In other cases, the
conversion was not accurate enough to result in consistent and statistically insignificant differences of
the target and converted formants.

3See Sec. 4.6.2.
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Set Neutral LE CLE CLEF0

0F   (Hz) 119.3 207.2 131.1 131.8 Male
digits

F0  (Hz) 17.8 40.4 35.4 35.9 

0F   (Hz) 201.1 307.5 213.8 214.7 Female 
digits

F0  (Hz) 31.9 67.1 46.1 47.9 

0F   (Hz) 120.9 213.6 126.4 127.8 Male
sentences

F0  (Hz) 23.2 42.7 28.6 32.0 

0F   (Hz) 203.2 305.1 210.9 211.9 Female 
sentences

F0  (Hz) 32.0 67.9 44.3 46.9 

Table 8.2: F0 distribution means and standard deviations: neutral, LE, CLE, CLEF0.
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Figure 8.3: Vowel formants: neutral, LE, CLE, CLEF0.

The F1, F2 bandwidths are shown in Table 8.5. Pairs labeled by asterisk represent values of
statistically insignificant difference. As already discussed in Sec. 6.5, LE causes narrowing of the
formant bandwidths. It can be seen that CLE compensates for this effect by widening the bandwidths,
often to values exceeding the neutral bandwidths. Surprisingly, CLEF0 bandwidths are consistently
wider compared to LE bandwidths. Similarly as in the case of the F0 conversion mismatch, this effect
can be explained only based on the knowledge of the particular properties of the voice conversion
system.
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Vowel 
Parameter 

/a/ /e/ /i/ /o/ /u/ 
F1 N + + N + 

LE –  CLEF0
F2 N N N N N 
F1 + + + + + 

M
N – CLE 

F2 + + + N + 
F1 N + + + N 

LE –  CLEF0
F2 + + + N N 
F1 N + + + + 

F
N – CLE 

F2 N + + N + 

Table 8.3: Significance of formant shifts – digits. ‘+’ – neutral/LE parameter pairs reaching statistically
significant difference at 95% confidence level, ‘N’ – other pairs.

Vowel 
Parameter 

/a/ /e/ /i/ /o/ /u/ 
F1 N N N N N 

LE –  CLEF0
F2 N N N N N 
F1 + + + + + 

M
N – CLE 

F2 + + + + N 
F1 N + + N N 

LE –  CLEF0
F2 N N N N N 
F1 + + + + + 

F
N – CLE 

F2 + + + N N 

Table 8.4: Significance of formant shifts – sentences. ‘+’ – neutral/LE parameter pairs reaching statistically
significant difference at 95% confidence level, ‘N’ – other pairs.

B1 (Hz) B2 (Hz) 
Set

Neutral LE CLE CLEF0 Neutral LE CLE CLEF0

Male digits 297 136 209 156 268 169 284 208 
Female digits 230* 164 223* 200 252 201 320 258 

Male sentences 227 148 262 164 226 174 369 202 
Female sentences 236 176 262 202 262 213 369 258 

Table 8.5: Voice conversion – formant bandwidths. ‘*’ – pairs that did not reach statistically significant
difference.
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8.2 Digit Recognition Task

Efficiency of the voice conversion–based LE normalization was evaluated in the digit and LVCSR
task. In the digit task, the recognizer described in Sec. 4.7.1 employing gender independent models
was used. Results of the experiment are shown in Table 8.6 and Fig. 8.4. In the case of male

Male digits Female digits 
Set 

Neutral LE CLE CLEF0 Neutral LE CLE CLEF0

# Spkrs 11 11 11 11 10 10 10 10 
# Digits 875 2816 2816 2816 2560 2560 2560 2560 
WER 
(%) 

2.3 
(1.3–3.3) 

16.5 
(15.1–17.9) 

17.3 
(15.9–18.7) 

13.7 
(12.4–14.9) 

4.2 
(3.4–5.0) 

43.6
(41.6–45.5) 

25.4 
(23.7–27.1) 

34.9 
(33.1–36.8) 

Table 8.6: Voice conversion efficiency – digit recognition task. Mean values followed by 95% confidence
intervals in parentheses.
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Figure 8.4: Voice conversion efficiency – digit recognition task.

speakers, a statistically significant improvement of the recognition performance was reached when
applying CLEF0. As shown in the previous section, in male speakers, CLEF0 successfully equalized
F0 towards neutral while preserving the formant structure. Shifting F0 to the lower frequencies helps
to eliminate its interference with the location of typical F1 occurrence, which might be otherwise
confusing for the acoustic models of the recognizer. Applying CLE resulted in the performance drop,
presumably due to the inaccuracy of the formant transformation discussed in the previous section.
In the case of female speakers, both CLE and CLEF0 increased the recognition performance.

Here, CLE displayed considerably better results. As already discussed in Sec. 6.5, while male LE F1,
F2 tended to move to the female formant locations, female F1, F2 shifted to locations that were not
covered in the neutral data used for the acoustic model training. Hence, even relatively inaccurate
formant transformation towards neutral values was found helpful here.
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8.3 LVCSR Task

In the LVCSR task, the recognizer described in Sec. 4.7.2, employing gender-dependent (GD)
models, was used4. Two configurations of the recognizer were considered – a setup comprising language
model (LM) and a setup with LM excluded. In the latter case, LM was substituted by the uniform
word transition probabilities. About 3% of the words occurring in the phonetically rich sentences were
not covered in the vocabulary of the recognizer. Results of the experiment are shown in Table 8.7 and
Fig. 8.5. Employing LM – ‘GD/LM’ – improved recognition performance for all data sets. In the

Male sentences Female sentences 
Set 

Neutral LE CLE CLEF0 Neutral LE CLE CLEF0

# Spkrs 11 11 11 11 11 11 11 11 
# Words 973 973 973 973 970 970 970 970 

GD/no LM 
77.9 

(75.3–80.5) 
85.3 

(83.1–87.5) 
91.5 

(89.7–93.3) 
85.5 

(83.3–87.7) 
72.9

(70.1–75.7) 
86.5 

(84.3–88.7) 
90.1 

(88.2–92.0) 
87.9 

(85.8–90.0) WER 
(%)

 GD/LM 
40.4 

(37.3–43.5) 
55.8 

(52.7–58.9) 
69.4 

(66.5–72.3) 
60.0 

(56.9–63.1) 
28.9

(26.0–31.8) 
63.7 

(60.7–66.7) 
66.7 

(63.7–70.0) 
60.4 

(57.3–63.5) 

Table 8.7: Voice conversion efficiency – LVCSR task. Mean values followed by 95% confidence intervals in
parentheses.
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Figure 8.5: Voice conversion efficiency – LVCSR task.

neutral task, considerably lower WER was reached in the case of female utterances. This observation
is consistent with the results of preliminary TUL experiments, where female acoustic models displayed
consistently better performance than male models. Similarly as in the digit task, on the LE speech,

4The recognition task was conducted by Dr. Jindřich Žďánský, Technical University of Liberec. Author of the thesis
proposed the experiment, provided data, and evaluated the results.
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8.4 Conclusions

the degradation of the recognition accuracy was more significant in the female set, compare to Table
8.6. Voice conversion was not effective in the LVCSR task. Applying CLEF corrupted recognition
on all sets. CLEF0 slightly improved the accuracy on the female sentences but was not successful on
the male ones.

8.4 Conclusions

Speaker-dependent voice conversion employing text-dependent training was used to equalize LE
speech towards neutral. Features of the source LE speech, converted speech, and target neutral speech
were analyzed. Results of the analyses were affected by the joint contribution of the actual feature
distributions and the accuracy of the feature tracking algorithms. In the case of LE and converted
speech, features might have reached values unexpected by the ad hoc criteria employed in the tracking
algorithms, resulting in analysis errors. For example, in LE speech, F0 often reached values interfering
with the location of the F1 typical occurrence (see Fig. 8.2), which might have corrupted F1 tracking.
In most cases, means and variances of F0 and first two formants F1,2 in the converted speech

were transformed towards the neutral distributions. The least successful case of the tandem ‘voice
conversion/feature tracking’ was found in male sentences, where a severe distortion of the formant
structure occurred. In this case, when performing listening tests, significant distortion of the acoustic
waveforms, often resulting in unintelligible speech, was observed.
In the digit recognition task, CLEF0 improved recognition accuracy both on the male and female

sets. State-of-the-art ASR systems are considered resistant to the variations of F0. However, in LE
speech, the F0 shifts to the typical locations of F1 may impact the ASR performance. This hypothesis
is proven by the performance gains provided by CLEF0 on LE speech, as here, only F0 was transformed
towards neutral while formants were preserved intact.

CLEF was not effective on the male digit set. It seems that in this case, the effect of LE equaliza-
tion was overruled by the inaccuracies in the formant conversion. In the case of female digits, CLEF
outperformed CLEF0. Here, LE F1,2 occurred in locations never seen by the recognizer during the
acoustic model training and the formant transformation towards neutral, even though relatively inac-
curate, was helpful.
In the LVCSR task, with one exception, the voice conversion–based equalization of LE was not

effective. Compared to small vocabulary tasks, here, the words to be classified often occur very close
in the acoustic space. Even a slight inaccuracy in feature equalization results in a severe deterioration
of recognition performance.
As demonstrated on the digit task presented in this chapter, transformation of Lombard speech

features towards neutral by means of voice conversion may be a promising way to improve performance
of neutral ASR systems in LE. To allow for application of voice conversion–based LE equalization also
in LVCSR tasks, more accurate transformation algorithms have to be defined first.
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Chapter 9

Data-Driven Design of Robust Features

As previously discussed in Sec. 2.5, the goal of feature extraction in ASR is to provide a speech
signal representation of reduced dimensionality, preserving linguistic information and suppressing vari-
ability introduced by speakers, environment, and signal processing chain. Various approaches to robust
feature extraction were mentioned in Sec. 3.5. The majority of current ASR systems employ MFCC
(Davis and Mermelstein, 1980) or, to a lesser degree, PLP (Hermansky, 1990) features. One of the key
processing stages common to both algorithms is the smoothing of the FFT spectrum with a bank of
nonlinearly distributed filters, see Sec. 2.5. Their distribution is derived from auditory models in an
effort to emphasize the speech components essential for human speech perception. Some studies have
reached front-end performance improvements by further modifying auditory based filter banks (FBs)
(e.g., in Human Factor Cepstral Coefficients (HFCC) by changing bandwidths of mel filters, (Skowron-
ski and Harris, 2004)). Others proposed new auditory models (e.g., Seneff auditory model comprising
40 filters matching a cat’s basilar membrane response, (Seneff, 1986), or Ensemble Interval Histogram
(EIH) model employing a bank of level crossing intervals, (Ghitza, 1988)). Also non-auditory, data-
driven concepts of FB design were studied (e.g., Discriminative Feature Extraction method (DFE)
iteratively adapting FB parameters, (Biem and Katagiri, 1997), or a design of a library of phoneme
class-dependent filter banks, (Kinnunen, 2002)). Some of the filter banks introduced in these studies
were tested in simulated noisy conditions, yet no extensive research on robustness to changes in talking
style has been reported. In (Jankowski et al., 1995), efficiency of various FBs for the processing of
simulated loud utterances was evaluated, though not all properties of real loud speech were considered
(e.g., F0 and formant shifts). Suitability of various features including alternative filter bank process-
ing, pre-emphasis, and cepstral mean normalization were studied for recognition of speech comprising
different talking styles including LE, (Bou-Ghazale and Hansen, 2000). In that study, stressed speech
recognition was enhanced by mel FB adjustments suppressing spectral mismatch between neutral
models and stressed speech.
In this chapter, new LE-robust features employing filter banks obtained in the data-driven design

are proposed1 and compared to the selected set of standard and robust features used in recent ASR
systems. Efficiency of the discrete cosine transform (DCT) and linear predictive coding (LPC) in the
modeling of the short time amplitude spectra is compared. Performance of the features is evaluated
from the view point of the resistance to changes of talking style (neutral/Lombard speech), average
utterance pitch, and type and level of noisy background. Since the previous experiments have shown
a significantly stronger corruption of recognition in case of female Lombard speech, see Sec. 8.2, 8.3,
the presented feature design focused on female speakers. It can be presumed that the similar design
scheme can be adopted successfully also for male speech.

1The feature design was published in (Bořil et al., 2006b).
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9.1 Development Setup

9.1 Development Setup

The recognizer described in Sec. 4.7.1 was used for the experiments presented in this chapter.
HMM-based recognizers were trained on neutral female utterances exclusively (train set), yielding
gender dependent models. The test data were split into devel (development) and open neutral and LE
sets. The devel sets were used for the optimization of the front-end performance and the open sets for
the open tests. Content of the data sets was as follows:

• Train: Czech SPEECON, 10 hours of signal, 37 female speakers, office sessions,

• Devel neutral: CLSD‘05, 3480 words, 8 female speakers,

• Devel LE: CLSD‘05, 3480 words, 8 female speakers,

• Open neutral: CLSD‘05, 1450 words, 4 female speakers,

• Open LE: CLSD‘05, 1880 words, 4 female speakers.

All data were down-sampled from 16 kHz to 8 kHz by SoX, (Norskog, 2007), and filtered by G.712
telephone filter using FaNT tool, (Hirsch, 2005). The joint transfer function of the decimation and
telephone filter is shown in Fig. 9.1.
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Figure 9.1: Joint transfer function of anti-aliasing decimation filter and G.712 telephone filter.

9.2 Baseline Features

In the initial experiment, performance of MFCC, PLP, and MR–RASTA when being employed in
the front-end of monophone digit recognizer was evaluated.

9.2.1 MFCC and PLP

Feature extraction stages of MFCC and PLP were discussed in Sec. 2.5. Setup of the MFCC
front-end is described in Sec. 4.7.1. PLP comprised a filter bank of 15 trapezoid filters and 12th order
LPC analysis. Similar signal segmentation and pre-emphasis as in the MFCC front-end were applied.
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Chapter 9: Data-Driven Design of Robust Features

9.2.2 Multi-Resolution RASTA

Multi-resolution RASTA features (MR-RASTA) (Hermansky and Fousek, 2005) were extracted
in 2 stages. First, an auditory spectrum with 15 bands was calculated from the speech similarly as
in the PLP front-end2. Time trajectory of these sub-band energies was filtered with a bank of two-
dimensional filters, yielding a set of about 500 coefficients every 10 ms. In the second step, an artificial
neural network (ANN) projected the coefficients to the posterior probabilities of phones, reducing the
feature vector size. The posteriors were then decorrelated and gaussianized using logarithm and
principal component analysis in order to better fit the subsequent GMM-based HMM model3.

9.2.3 Performance in Digit Recognition Task

Performance of MFCC, PLP, and MR-RASTA on the devel and open sets is summarized in Table
9.1. Neutral sets established a baseline at about 4% WER. On LE data, a considerable decrease in
accuracy was observed for all features. MFCC displayed the worst results, MR-RASTA significantly
outperformed both MFCC and PLP. Open LE set seems to comprise more adverse data than devel
LE set, since performance of all systems is reduced here.

Devel set Open set 
Set 

Neutral LE Neutral LE 
# Digits 3480 3480 1335 1880 

MFCC 3.6 
(3.0–4.2) 

63.3 
(61.7–64.9) 

3.7 
(2.7–4.7) 

68.7 
(66.6–70.8) 

PLP 3.8 
(3.2–4.4) 

54.1 
(52.4–55.8) 

3.4 
(2.4–4.4) 

61.3 
(59.1–63.5) 

WER 
(%)

MR-RASTA 4.5 
(3.8–5.2) 

39.8 
(38.2–41.4) 

4.1 
(3.0–5.2) 

42.1 
(39.9–44.3) 

Table 9.1: Performance of baseline features on female neutral and LE speech. Mean values followed by 95%
confidence intervals in parentheses.

9.3 Designing Filter Banks

In (Arslan and Hansen, 1997), a relative significance of formant frequencies in the discrimination
of accent and speech recognition was studied. The frequency interval 0–4 kHz was divided into 16
uniformly spaced frequency bands. The energy of each band was weighted by a triangular window
and used as a single parameter for the training of HMMs for the accent classification and speech
recognition. When evaluating performance of the single band-trained HMMs, it was observed that
the impact of high frequencies on both speech recognition and accent classification performance was
reduced4. The band 1500–2500 Hz representing interval of F2–F3 occurrence contributed most to
accent classification while the lower frequency band 500–1700 Hz (F1–F2) was found the most impor-
tant for speech recognition. A similar approach was exploited in (Bou-Ghazale and Hansen, 2000)
to study how individual frequency bands are affected by the talking style changes. Here, a neutral,

2All features mentioned in this chapter were extracted using the open source tool CtuCopy developed by Dr. Petr
Fousek, CTU in Prague, (Fousek, 2007).

3Training of the system employing MR–RASTA front-end was carried out by Dr. Petr Fousek, CTU in Prague.
4A similar concept can be found in (Steeneken and Houtgast, 1980), (Steeneken and Houtgast, 1999), where an amount

of information content preservation within frequency bands is analyzed for the purposes of the objective measurement
of speech intelligibility.
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9.3 Designing Filter Banks

speaker-independent HMM recognizer was trained successively for each of the 16 bands and tested on
neutral and angry speech. The highest recognition performance for neutral speech was reached using
filters from the interval 200–1000 Hz, relating to the approximate location of F1 occurrence. For angry
speech, the interval 1250–1750 Hz (F2) yielded the best results. Based on these observations, a new
frequency scale, Expolog, increasing resolution in the interval of F1,2 occurrence was proposed:

Expolog (f) =

⎧⎨
⎩

700 ·
(
10

f
3988 − 1

)
, 0 � f � 2000 Hz,

2595 · log
(
1 + f

700

)
, 2000 < f � 4000 Hz.

(9.1)

Features employing FB of triangular filters distributed equidistantly on the Expolog scale outperformed
MFCC on actual stressed noisy speech and on Lombard speech. The example of Expolog features5

shows that knowledge of spectral distribution of linguistic information in the speech signal may provide
a useful guideline for the design of a robust FB.
In Expolog, importance of a given frequency band was estimated based on the performance of the

recognizer trained on this band, discarding information about the adjacent bands, overall spectral
envelope, and inter-band dependencies (formant distances and bandwidths). However, a majority
of the state-of-the-art features for ASR are extracted from the short-time spectral envelope. Hence,
inspired by the Expolog design, a new approach to finding the linguistic information distribution (ID)
is proposed in the following sections. The approach takes into account the nature of feature extraction
by considering the impact of overall spectral envelope on ID. Based on the ID curves obtained from
the development (devel) set, LE-robust FBs are designed.

9.3.1 Importance of Frequency Bands

The newly proposed method estimates a score-based ID across frequency bands by keeping all
filters in FB but the examined one. Cepstral coefficients are extracted from the output energies of the
remaining filters. In general, omitting one band can either increase the score compared to the baseline,
meaning that the excluded band is dominated by irrelevant information, or decrease the score proving
the excluded band’s importance for the recognition.
The initial FB was chosen to consist of 20 linearly spaced rectangular filters without overlap (each

of bandwidth 200 Hz), covering the frequency interval 0–4 kHz. No filter overlap was allowed so
that omitting a FB filter assured that no component from the corresponding frequency band would
contribute to the actual spectral envelope. The filters had rectangular shapes to provide uniform
weighting of the frequency components being averaged in the filter outputs6. Besides the altered FB,
the feature extraction comprised the same stages as standard MFCC.
ID curves obtained for neutral and Lombard devel sets are shown in Fig. 9.2. Baseline scores (no

filter omitted from FB), are represented by dashed lines. For LE speech, the baseline score reached
WER 29.0%, significantly outperforming features presented in the previous section. Omitting the
first FB band brings a slight degradation for neutral speech, but greatly enhances LE recognition
(see also the first row in Table 9.2). In the case of LE speech, a significant peak in the ID curve
can be observed in the region 600–1400 Hz (bands 4–7), interfering with the area of F1,2 occurrence.
For neutral speech, a corresponding peak lies in 400–1000 Hz (bands 3–5), the area of typical F1

occurrence. This approximately agrees with the conclusions drawn for angry and neutral speech in
(Bou-Ghazale and Hansen, 2000). Fig. 9.2 also suggests that Lombard speech recognition may be
improved by avoiding low-frequency components at the expense of neutral speech recognition accuracy.

5Performance of Expolog features will be evaluated in Sec. 9.4.
6In (Psutka et al., 2001), an influence of FB filter shapes on the front-end performance was studied, comparing

rectangular, narrow trapezoid, wide trapezoid, and triangle filters. It was observed that filter shape had a negligible
effect on the performance of the ASR system.
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Figure 9.2: ID curves: impact of one missing band in 20–band FB on recognition performance.

A similar experiment was carried out on 43–bands FB covering 0–4 kHz but the ID obtained was
noisy, not displaying any consistent trend of bands’ importance. In this case, the omitted bands were
presumably too narrow to noticeably affect the information content.

9.3.2 Avoiding Low Frequency Components

The previous section reported on an improvement trade-off between neutral and Lombard speech
when avoiding low-frequency components. As a number of features efficient for neutral speech are
available, the following design steps focused exclusively on LE recognition improvement.
As suggested by the previous section, the first band was excluded from the 20–bands FB. Sub-

sequently, a dependency between the 19–bands FB’s low cut-off frequency and recognition score was
explored. The FB was first widened to cover the whole interval 0–4 kHz. In the subsequent steps, the
FB’s low cut-off frequency was gradually increased, while the high cut-off was kept constant. Band-
widths of all FB’s filters were reduced in the same ratio to preserve uniform band distribution. The
resulting WER/cut-off dependency is shown in Fig. 9.3. The minimum WER on Lombard speech was
found at 625 Hz. WERs for the initial 20-bands FB and 19-bands FB starting at 625 Hz are shown in
Table 9.2. Shifting the low cut-off frequency to 625 Hz increased the accuracy on LE speech by 13.4%.
The performance decrease on neutral speech was almost linear with the increasing cut-off frequency
(1.8% for 625 Hz).

9.3.3 Filter Bank Resolution

An ID curve for the FB starting at the optimized cut-off frequency of 625 Hz was analyzed. To
obtain a smoothed ID estimate, the number of FB bands was lowered to 12, see Fig. 9.4. The solid
line ‘comb’ in the upper part of the figure represents cut-off frequencies of the FB filters. It can be seen
that a major part of the linguistic information is concentrated in the low FB bands, which corresponds
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Figure 9.3: Searching for optimal low cut-off frequency in 19-band FB.

Devel set 
Set 

Neutral LE 

LFCC, full band 
4.8 

(4.1–5.5) 
29.0 

(27.5–30.5) WER 
(%)

LFCC,  625 Hz 
6.6 

(5.8–7.4) 
15.6 

(14.4–16.8) 

Table 9.2: Performance of cepstra derived from a bank of linearly spaced rectangular filters (LFCC): (1) 20
filters, 0–4000 Hz, (2) 19 filters, 625–4000 Hz. Mean values followed by 95% confidence intervals in

parentheses.

well with the dominant importance of the first two formants for the speech recognition observed in
(Bou-Ghazale and Hansen, 2000).
Subsequently, following the concept used in Expolog, FB resolution was increased in the area of

the ID curve maximum. The first band in the former 12–bands FB was split into two bands and the
former two subsequent bands were substituted with three bands, yielding a 14–bands FB, see dashed
line in Fig. 9.4. As a result, surprisingly, the score dropped from 17.2% to 26.9% WER for LE.
Based on this experiment, it can be concluded that increasing FB resolution in the bands that are
most important for speech recognition does not automatically improve the system performance.

9.3.4 Optimizing Frequency Band End-Points

The experiment in changing the FB resolution at low frequencies demonstrated that it is not
possible to design an LE-robust FB by just modifying the distribution of bands in the FB according
to the ID curve. At the same time, it has been shown that redistributing the filter bands may
significantly impact the front-end performance. This observation motivated the development of a FB
repartitioning algorithm which will be presented in this section.
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Figure 9.4: Increasing FB resolution in region dominant for speech recognition.

There are many degrees of freedom in the process of optimizing the bandwidths of the FB filters.
Even switching order of the filter manipulation steps during the FB design may lead to various semi-
optimal FB configurations. E.g., it is likely that modifying parameters of all FB filters at each design
iteration will yield different ‘optimal’ FB than when gradually optimizing parameters of each single
filter, keeping the remaining filters intact. Although not promising to yield an optimal FB setup, the
latter approach was chosen for the following experiment for further improving the FB performance in
the LE-robust feature extraction front-end.
In the proposed repartitioning algorithm, the idea is to search for an optimal bandwidth of each

filter while leaving the rest of FB intact as much as possible. In the initial step, an end-point of the
first filter was iteratively varied around its original location and a new position yielding minimal WER
was searched. For each end-point position, the remaining higher FB bands were resized, each of the
filters by the same ratio. Once the optimum for the band was reached (displayed by the minimum in
the WER curve), the end-point was fixed. In the subsequent steps, successive bands were processed
the same way, keeping the precedent optimized end-points intact.
In order to reduce the computational costs when examining efficiency of the repartitioning algo-

rithm, the number of FB bands was limited to 6. The initial 6–bands FB is depicted in Fig. 9.5
by dotted line, dashed line refers to the initial FB performance. Solid lines represent WERs reached
by varying the corresponding frequency band end-points. In the cases when the dotted line passed
through the minimum of the WER curve, the initial end-point already occurred in the optimal position
and was not further altered.
Decreasing the number of FB bands considerably affected baseline performance, see Table 9.3,

nevertheless, the repartitioned FB improved on the baseline 6-bands FB by 2.3% for LE speech, see
Table 9.4.

9.3.5 Evaluation

Showing its efficiency on the 6-bands FB, the repartitioning algorithm was subsequently applied
also to the 19-bands FB, reducingWER on LE devel set from 15.6% to 14.8%. The overall performance
of MFCC, PLP, MR-RASTA, and MFCC-based features employing filter banks obtained from the
data-driven design was evaluated on the open set, see Fig. 9.4. For the baseline features, the results
on the open set are consistent with the initial devel set experiment, see Sec. 9.2.3. MR-RASTA features
outperformed both MFCC and PLP on Lombard speech while slightly reduced accuracy on neutral
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Figure 9.5: Search of optimal band partitioning for 6-band FB. For each band sequentially, end-point yielding
best performance is found, preserving distribution of preceding bands.

Devel set 
Set 

Neutral LE 

LFCC, 19 bands 
6.6 

(5.8–7.4) 
15.6 

(14.4–16.8) 

LFCC, 12 bands 
8.0 

(7.1–8.9) 
17.2 

(15.9–18.5) 

WER 
(%) 

LFCC, 6 bands 
9.6 

(8.6–10.6) 
17.9 

(16.6–19.2) 

Table 9.3: Performance of cepstra derived from a bank of linearly spaced rectangular filters (LFCC). Mean
values followed by 95% confidence intervals in parentheses.

speech (the decrease was not statistically significant). From the newly proposed features, ‘LFCC, 20
bands’ provided comparable performance to baseline features on neutral speech, while significantly
reducing WER of MFCC and PLP on LE speech. On LE speech, the best features were ‘LFCC,
19 bands’ and ‘RFCC, 19 bands’. In the case of 19-bands bank, application of the repartitioning
algorithm resulted in a slightly reduced accuracy (statistically insignificant) compared to the baseline
‘LFCC, 19 bands’. Since the open set was intended to be used also in the further experiments, the
open test results were not used for picking the best LE-performing FB (which would be ‘LFCC, 19
bands’). Rather, the results obtained on the devel set were taken as a guideline, suggesting the use of
‘RFCC, 19 bands’ for the Lombard speech recognition.
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Open set 
Set 

Neutral LE 

MFCC 
3.7 

(2.7–4.7) 
68.7 

(66.6–70.8) 

PLP 
3.4 

(2.4–4.4) 
61.3 

(59.1–63.5) 

MR-RASTA 
4.1 

(3.0–5.2) 
42.1 

(39.9–44.3) 

LFCC, 20 bands, full band  
3.3 

(2.3–4.3) 
49.4 

(47.1–51.7) 

LFCC, 19 bands,  625 Hz 
6.6 

(5.3–7.9) 
24.6 

(22.7–26.5) 

RFCC, 19 bands,  625 Hz 
6.4 

(5.1–7.7) 
25.5 

(23.5–27.5) 

LFCC, 12 bands,  625 Hz 
7.4 

(6.0–8.8) 
25.6 

(23.6–27.6) 

LFCC, 6 bands,  625 Hz 
9.5 

(7.9–11.1) 
31.7 

(29.6–33.8) 

WER 
(%)

RFCC, 6 bands,  625 Hz 
8.5 

(7.0–10.0) 
29.4 

(27.3–31.5) 

Table 9.4: Evaluation of all systems on open test set: MFCC, PLP, MR-RASTA, cepstra derived from linearly
spaced rectangular filters (LFCC) and repartitioned filters (RFCC). Mean values followed by 95% confidence

intervals in parentheses.

9.4 Derived Front-Ends

Presence of noise deteriorates the quality of the estimation of speech features in the ASR front-
end. In particular, linear predictive coding (LPC) is known to provide excellent resolution properties
in spectral modeling, but the presence of noise may considerably alter the spectral estimate, (Kay,
1979). Moreover, LPC seems to be less effective in modeling consonants than DCT, which sometimes
results in a reduced ASR performance of LPC-based features compared to the DCT ones, (Davis and
Mermelstein, 1980). On the other hand, in (Bou-Ghazale and Hansen, 2000), features extracted from
LPC power spectrum provided superior accuracy on clean and noisy stressed speech. According to the
authors, the outstanding performance of LPC features resulted from the spectral smoothing, which
was able to suppress fine spectral variations caused by the excitation changes when switching between
stressed speech styles.
In the following sections, the performance of cepstral features employing various FBs and DCT

or LPC-based extraction stages is compared in the CLSD‘05 neutral and Lombard digit recognition
tasks7. The former set of baseline features established in Sec. 9.2 was reduced for MR–RASTA
features8 and extended for Expolog features, see Sec. 9.3, as well as for the following modifications of
standard and newly proposed features:

• MFCC–LPC, PLP–DCT: Altered cepstral extraction, DCT in MFCC is replaced by LPC, LPC
in PLP is replaced by DCT, respectively,

• 20Bands–LPC: Derived from PLP, former FB is replaced by 20 rectangular filters spread over
0–4 kHz without overlap,

7The front-ends comprising modified FB were published in (Bořil et al., 2006c).
8Each of the multiple experiments would have required the assistance of the author of the MR–RASTA front-end

implementation.
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• Big1–LPC: Derived from 20Bands–LPC by merging the first three bands together. This FB
modification was motivated by the expectation that decreasing FB resolution in the area that
seems to be ‘disturbing’ for the female LE speech recognition (0—600 Hz), see Sec. 9.3.2,
may suppress its negative impact on the LE task, while preserving certain amount of relevant
information for the neutral speech recognition,

• RFCC–DCT: Similar to ‘RFCC, 19 bands’, i.e., FB in MFCC is replaced by the repartitioned
19-bands rectangular FB,

• RFCC–LPC: Derived from PLP, former FB is replaced by the repartitioned 19-bands rectangular
FB.

9.4.1 Training Models: One-Step and Progressive Mixture Splitting

Two approaches to the acoustic model training were compared – one-step mixture splitting and
progressive mixture splitting, see Sec. 4.7.1. In one-step splitting, after the 9th retraining period, each
single Gaussian modeling one element of the feature vector was split to 32 Gaussian mixtures. The
acoustic model was then retrained in 60 periods.
In progressive mixture splitting, the number of mixtures was doubled repeatedly after several

iterations, first after the 9th period, then after every 5 retraining periods until the amount of 32
mixtures was reached. After that, the number of mixtures was kept constant up to a total of 70
retraining periods.
The same train and neutral devel sets as in Sec. 9.1 were used for the digit recognizer training

and evaluation, respectively. For selected features, model convergence in dependency on the num-
ber of retraining periods is shown in Fig. 9.6. It can be seen that, with an exception of MFCC,
progressive splitting provides faster model convergence and better resulting accuracy compared to
one-step splitting. In the case of MFCC, the model convergence and accuracy reaches similar values
for both approaches after approximately 30 retraining periods. In the majority of the front-ends,
the acoustic models were sufficiently trained after passing through 50 retraining iterations. In the
experiments presented in the following sections, models from the 56th retraining period were used for
speech recognition.

9.4.2 Performance on Neutral, LE, and Converted Speech

In this section, recognizers incorporating features from Sec. 9.4 are compared in the neutral and
clean LE digit recognition task. In the LE task, the efficiency of the voice conversion-based feature
normalization, CLE and CLEF0, see Sec. 8.1, is also evaluated. Only eight-digit sequence utterances
had been chosen to be processed by the voice conversion system, hence, a reduced number of items
from the open set established in Sec. 9.1 was used for the actual tests9.
Performance of the systems is shown in Table 9.5. The columns denoted CLE and CLEF0 repre-

sent setups including voice conversion. The results are also depicted in Fig. 9.7. The following can
be observed:

• MFCC reached the poorest results on the LE set compared to the other front-ends. Performance
on the neutral set is comparable to Expolog,

• MFCC–LPC: Replacing DCT by LPC in MFCC dramatically improved the front-end’s perfor-
mance on LE speech. On the neutral set, a slight, yet not statistically significant increase of
accuracy was reached. MFCC-LPC displayed a performance comparable to PLP on both sets,

9In addition, one of the neutral sessions contained reduced number of digit sequence utterances, resulting in a lower
number of items in the neutral open set compared to the LE and converted sets.

93



Chapter 9: Data-Driven Design of Robust Features

0

1

2

3

4

5

6

7

8

9

10

20 30 40 50 60 70

MFCC 1/2
MFCC 1step

Training period

Performance
Female digits - MFCC

W
ER

 (%
)

0

1

2

3

4

5

6

7

8

9

10

20 30 40 50 60 70

PLP 1/2
PLP 1step

Training period

Performance
Female digits - PLP

W
ER

 (%
)

0

1

2

3

4

5

6

7

8

9

10

20 30 40 50 60 70

Expolog 1/2
Expolog 1step

Training period

Performance
Female digits - Expolog

W
ER

 (%
)

0

1

2

3

4

5

6

7

8

9

10

20 30 40 50 60 70

RFCC-LPC 1/2
RFCC-LPC 1step

Training period

Performance
Female digits - RFCC-LPC

W
ER

 (%
)

0

1

2

3

4

5

6

7

8

9

10

20 30 40 50 60 70

RFCC-DCT 1/2
RFCC-DCT 1step

Training period

Performance
Female digits - RFCC-DCT

W
ER

 (%
)

0

1

2

3

4

5

6

7

8

9

10

20 30 40 50 60 70

Big1-LPC 1/2
Big1-LPC 1step

Training period

Performance
Female digits - Big1-LPC

W
ER

 (%
)

Figure 9.6: Comparing efficiency of monophone models training approaches – one-step (1step) and progressive
mixture splitting (1/2). Tests performed on neutral digits development set.

• PLP–DCT: Replacing LPC by DCT in PLP resulted in a slight performance drop on LE speech,

• Expolog features considerably outperformed MFCC, PLP, as well as their LPC/DCT variations.
On the neutral set, the performance was similar to MFCC,

• 20Bands–LPC displayed comparable accuracy to PLP on neutral speech, while outperforming
MFCC, PLP, and their variations on LE speech,

• Big1–LPC outperformed all aforementioned front-ends on the LE set, at the expense of efficiency
on the neutral set. As expected, reducing the FB resolution in the interval 0–600 Hz helped to
suppress an impact of frequency components corrupting LE speech recognition. On the other
hand, part of the information important for the neutral speech recognition was lost this way,
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Set Neutral LE CLE CLEF0

# Digits 768 1024 1024 1024 

MFCC 
3.7 

(2.3–5.0) 
71.3 

(68.5–74.1) 
30.9 

(28.0–33.7) 
58.6 

(55.6–61.6) 

MFCC-LPC 
2.9 

(1.7–4.0) 
46.7 

(43.6–49.7) 
26.2 

(23.5–28.9) 
48.8 

(45.8–51.9) 

PLP 
2.9 

(1.7–4.0) 
47.4 

(44.3–50.4) 
25.2 

(22.5–27.9) 
49.0 

(46.0–52.1) 

PLP-DCT 
2.5 

(1.4–3.6) 
51.2 

(48.1–54.2) 
23.4 

(20.8–26.0) 
52.5 

(49.5–55.6) 

Expolog 
3.9 

(2.5–5.3) 
35.8 

(32.8–38.7) 
26.7 

(24.0–29.4) 
37.8 

(34.8–40.8) 

20Bands-LPC 
3.0 

(1.8–4.2) 
42.1 

(39.1–45.1) 
19.9 

(17.5–22.4) 
42.7 

(39.7–45.7) 

Big1-LPC 
4.7 

(3.2–6.2) 
27.2 

(24.4–29.9) 
20.4 

(17.9–22.9) 
25.3 

(22.6–28.0) 

RFCC-DCT 
5.1 

(3.5–6.6) 
26.1 

(23.4–28.8) 
22.6 

(20.0–25.1) 
22.6 

(20.0–25.1) 

WER 
(%)

RFCC-LPC 
4.6 

(3.1–6.0) 
23.0 

(20.4–25.5) 
23.1 

(20.6–25.7) 
23.7 

(21.1–26.3) 

Table 9.5: Comparing front-ends: Efficiency of voice conversion-based LE normalization. Mean values
followed by 95% confidence intervals in parentheses.
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Figure 9.7: Comparing front-ends: Efficiency of voice conversion-based LE normalization.

• RFCC–DCT/LPC: MFCC and PLP-based features employing repartitioned 19-bands FBs dis-
played superior performance on the LE set. RFCC–LPC reached the best LE performance
compared to other front-ends while its accuracy on neutral speech was similar to Big1–LPC.
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It can be seen that in all cases the LPC-based cepstral coefficients provided better robustness to LE
compared to the DCT-based coefficients. In the case of neutral speech, either replacing DCT by
LPC (MFCC–LPC, RFCC–LPC) or LPC by DCT (PLP–DCT) slightly improved performance of the
system, but the changes were not statistically significant.
PLP features displayed less sensitivity to the DCT/LPC alternation compared to MFCC. The

same was true for the PLP-derived front-end RFCC.
Big1–LPC was designed to preserve a certain portion of the information relevant for neutral speech

recognition, which was discarded in RFCC by omitting the frequency band 0–600 Hz. However,
Big1–LPC and RFCC–LPC features displayed similar performance on the neutral set. Based on the
experiments in Sec. 9.3.2, it can be assumed that increasing the FB resolution at the low frequencies
would improve Big1–LPC performance on neutral speech at the expense of LE speech recognition.
20Bands–LPC seems to be a promising replacement for MFCC and LPC features, providing similar

performance on neutral speech and significantly better performance on Lombard speech.
Applying voice conversion to both formants and F0 improved the system performance for the ma-

jority of front-ends, confirming observations made in Sec. 8.2. The best performance was reached
when combining CLE and 20Bands–LPC or Big1–LPC. In the case of features focusing on the ro-
bustness to LE (Expolog, Big1–LPC, RFCC), the relative improvement of LE recognition was less
significant than in the standard features. Voice conversion applied just to F0, CLEF0, did not display
any consistent and significant improvements across the front-ends. This is presumably due to the fact
that both the F0 and formant components of the amplitude spectra shift significantly under LE, see
Sec. 6.4 and Sec. 6.5. Normalization of F0 may help to reduce the F0 interference with the location of
F1 typical occurrence, however, it does not address mismatch of the Lombard formant structure and
neutral-trained acoustic model.

9.4.3 Performance as a Function of Fundamental Frequency

The CLSD‘05 database comprises utterances recorded in the constant level of the simulated back-
ground noise. However, partly due to the imperfection of the recording setup where the volume of
the speech feedback sent to the headphones was adjusted subjectively according to the demands of
speakers, partly due to the fact that individuals tend to react to the similar noise differently, it can
be assumed that CLSD‘05 captures LE of various levels10.
Past studies reported that average vocal intensity in humans displayed a linear dependency on the

level of the noise background (although different slopes were found for the ‘just reading text’ and the
‘intelligible communication over noise’ setups), (Webster and Klumpp, 1962), (Lane et al., 1961) (see
Sec. 3.2.1 for details), and that average F0 in semitones linearly increased with vocal intensity, see Sec.
3.2.2. When dealing with an utterance set containing a mixture of neutral and LE speech, it can be
expected, making a crude approximation, that the higher is the average F0 of the particular utterance,
the higher is the probability that the utterance comprises Lombard speech rather than neutral speech.
In this section, the dependency of the recognition performance on the average utterance’s F0 is

evaluated for a selected subset of the previously compared front-ends, assuming that with increasing
F0 the characteristic may reflect, to a certain extent, the systems’ resistance to the increasing level of
LE.
The female neutral and LE digit sets used in the previous section were merged, yielding a set

of utterances with F0 covering an interval of approximately 100–500 Hz, see Fig. 9.8. To obtain a
reasonable amount of data for each point of the measured WER (F0) characteristic, utterances with
F0 falling within a sliding window of the bandwidth 100 Hz were assigned to the test set Fc, where Fc

denotes the central frequency of the window. The window was shifted with a step of 5 Hz, starting

10So far, the term level of LE has not an exact, generally accepted definition. In this thesis, the level of LE is used in
the relation to the ratio of shift of a certain speech feature or of a set of features from their neutral positions due to LE.
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Figure 9.8: F0 distributions of female open sets – merged neutral and LE utterances.

from Fc = 150 Hz. At each step, a recognition was performed for the actual Fc set to sample the
WER(Fc) curve. Results of the experiment are shown in Fig. 9.9. For Fc starting at 250 Hz (F0
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Figure 9.9: WER(Fc) dependency. BL – baseline WER on the whole merged neutral + LE set.

= 200–300 Hz), RFCC–LPC outperforms the other features. This observation is consistent with the
RFCC–LPC superior robustness to LE reached in the baseline test, see Fig. 9.7. When decreasing Fc

below 250 Hz, PLP, 20Bands–LPC, and MFCC display the best performance.
The same recognizer as in the digit task was employed in the LVCSR experiment, only its vocab-

ulary was extend to 1095 words11. Phonetically rich sentences uttered by the digit open set speakers,
see Sec. 9.1, formed the LVCSR open set. Distribution of the merged female neutral and LE sentences
is shown in Fig. 9.8. Since the framework comprised no language model (word transition probabilities
were set uniform), the baseline performance of the system was quite poor in this case. However,
the performance of the front-ends being exposed to the sentences with increasing average F0 display
similar trends as in digits, see Fig. 9.9. For Fc approximately 250 Hz and higher, i.e., for the set of
utterances of average F0 from 200 to 300 Hz12, both on digits and sentences RFCC–LPC starts to
outperform the other features, while 20Bands–LPC followed by PLP and MFCC reach the best results
for Fc bellow 250 Hz. This observation is consistent with the results of the baseline test, see Sec. 9.4.2.
The present experiment indicates that RFCC–LPC can be expected to provide a superior performance

11The TUL LVCSR recorgnizer described in Sec. 4.7.2 was not available for this experiment.
12Average F0 of CLSD‘05 female utterances lies around 200 Hz for neutral and around 300 Hz for LE speech, see Table
6.2, 8.2.
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both in digit and LVCSR tasks when exposed to LE of various levels. Moreover, the results suggest
building a system that would employ different front-ends for neutral and Lombard speech recognition.
This approach will be further explored in Chap. 11.

9.4.4 Performance in Noisy Conditions

In this section, feature robustness to various types and levels of additive noise is tested. One noise
sample from the Car2E database (Pollák et al., 1999) and five noises from the Aurora 2 database
(Hirsch and Pearce, 2000) were mixed with the clean open set digit utterances from Sec. 9.4.2 at SNR
from −5 to 20 dB with a step of 5 dB.
Car2E noises were recorded in the cabin of a moving car and labeled according to their ‘station-

arity’. The noise sample picked for the actual experiment took place in the set of noises used for the
CLSD‘05 Lombard scenario recordings and belongs to the category of the most stationary signals.
From the Aurora 2 database, the following noises were used: crowd of people (babble), restaurant,
street, airport, and train station.
Performance of the front-ends from Sec. 9.4 was tested in the noisy digits task. Moreover, efficiency

of noise subtraction (NS) based on the full-wave rectified spectral subtraction and Burg’s cepstral VAD,
(Fousek, 2007)13, as implemented in CTUCopy open source tool, was evaluated. The SNR–WER
dependencies for three best performing and two worst performing front-ends in car and babble noises
are shown in Fig. 9.10. Since the SNR–WER curves were often interlaced, the features outperforming
the others in most SNRs or displaying consistent superior performance in lower SNRs were chosen as
the best features. In the figure, ‘INF’ denotes a condition, where no noise was added to the clean speech
signal14. The left part of the figure shows performances without NS and the right part performances
with NS included. Three best performing features for neutral and Lombard speech without using NS
are listed for each of the scenarios in Table 9.6.
NS employed in the presented experiments relies on the ability of VAD to detect non-speech parts of

the signal. In general, increasing level of noise in the signal reduces VAD’s accuracy. As a consequence
of the VAD’s errors, noise estimates subtracted from the signal may contain also portions of speech
spectra, causing NS to degrade the speech signal. From a certain level of noise, the ASR performance
reduction introduced by failing NS may be stronger than the performance reduction caused by the
presence of noise in the former signal. Hence, noise levels up to that where NS improved the recognition
performance were searched (see the fourth column of Table 9.6 denoted ‘NSeff’).

Set Neutral LE NSeff (dB) 
Airport MFCC, 20Bands–LPC, PLP Big1–LPC, RFCC–LPC, Expolog None 
Babble MFCC, MFCC–LPC, PLP–DCT RFCC–LPC, Expolog (Big1–LPC), RFCC–DCT 10 
Car2E Expolog, 20Bands–LPC, Big1–LPC RFCC–LPC, Big1–LPC, Expolog -5 

Restaurant MFCC, 20Bands–LPC, MFCC–LPC RFCC–LPC, Big1–LPC, RFCC–DCT -5 
Street 20Bands–LPC, MFCC, Expolog RFCC–LPC, Big1–LPC, 20Bands–LPC 0 

Train station 20Bands–LPC, MFCC, Expolog RFCC–LPC, Big1–LPC, 20Bands–LPC -5 

Table 9.6: Features performing best on neutral noisy or LE noisy speech.

Apparently, the choice of optimal features depends heavily on the type of background noise. Pre-
sented experiments show that both DCT or LPC-based cepstral coefficients may be an effective choice
for the recognition of neutral speech, depending on the actual noise characteristics. For LE speech,

13VAD based spectral subtraction is briefly discussed in Sec. 4.1.2, see the second footnote.
14Mean SNR of the CLSD‘05 clean neutral speech recordings is approximately 28 dB, see Sec. 6.3.
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Figure 9.10: Three best and two worst-performing features in Car2e and babble noise.

LPC-based features displayed superior performance in all types of noise background. Here, the best
performance was reached by RFCC–LPC for almost all cases.
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9.5 Conclusions

In this chapter, new features for robust Lombard speech recognition were proposed, employing FBs
obtained in the data-driven design. The goal of the FB design was to emphasize spectral components
carrying the dominant portion of linguistic information in Lombard speech and to suppress components
that disturb the recognition.
The proposed features were compared in digit tasks to MFCC and PLP, to their modifications

MFCC–LPC and PLP–DCT, and to the state-of-the-art Expolog and MR–RASTA features. The
novel RFCC–LPC displayed consistently superior performance on clean Lombard speech, noisy Lom-
bard speech, and speech with F0 exceeding the mean F0 of female neutral speech as observed in
CLSD‘05. 20Bands–LPC considerably outperformed MFCC and PLP on Lombard speech while pre-
serving comparable performance on neutral speech. Since 20Bands–LPC employs a filter bank of
20 rectangular filters distributed equidistantly on the linear frequency axis, this result suggests that
feature extraction filter banks derived from auditory models do not necessarily represent the optimal
choice for ASR.
Effectiveness of voice conversion-based speech normalization when combined with the standard and

newly proposed features was also evaluated in the digit task. Voice conversion substantially improved
performance of MFCC and PLP and their variations. In the case of the newly proposed features, with
the exception of 20Bands–LPC, voice conversion was less effective (Big1–LPC, RFCC-DCT) or not
effective at all (RFCC–LPC). Note that voice conversion, presumably due to its limited accuracy, was
not successful in improving performance of the LVCSR system, see Sec. 8.3.
In the case of neutral speech, cepstral coefficients derived either from LPC or DCT displayed good

performance, depending on the type of front-end. On Lombard speech, LPC-based cepstra systemati-
cally outperformed DCT cepstra in all front-end setups. This result is consistent with the observation
made previously by (Bou-Ghazale and Hansen, 2000), where LPC-based spectral smoothing suppressed
fine spectral variations caused by LE-induced excitation changes.
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Frequency Warping

The location of vocal tract resonances, formants, is inversely proportional to the vocal tract length
(VTL), (Lee and Rose, 1996). During speech production, the resonance frequencies and bandwidths
are modified by articulators to produce distinct speech sounds. VTL differs across individuals, genders,
and age groups, ranging approximately from 18 cm for males to 13 cm for females, (Lee and Rose,
1996), and down to 7 cm for new-born babies, (Vorperian et al., 2005). VTL differences introduce
considerable inter-speaker variability of formant structure which may cause a significant degradation
of ASR performance when switching from speaker-dependent to speaker-independent acoustic models.
In the past decade, vocal tract length normalization (VTLN) has become a popular means to address
this source of variability. In VTLN, short-time spectra of speech are normalized by applying speaker-
dependent frequency warping. The warping is usually conducted using a scalar factor α, where the
warped frequency scale FW is derived from the original scale F as FW = F/α.
As previously shown in Sec. 6.5, LE introduces considerable shifts of formants from the locations

seen in neutral speech. The extent and consistency of the formant structure shifts (systematic shifts of
F1 and F2 to higher frequencies) suggest that VTLN techniques might be efficient in normalizing LE
formants towards neutral. In this chapter, VTLN-based Lombard speech normalization is incorporated
in the feature extraction front-end and tested in the ASR task. Two novel methods of the formant
structure normalization derived from the maximum likelihood approach and parametric approach to
VTLN are proposed in the following sections.
In the standard maximum likelihood approach (ML–VTLN), warping factor α maximizing the

likelihood of the normalized acoustic observation Oα is searched given a transcription W and hidden
Markov model Θ, (Lee and Rose, 1996), (Pye and Woodland, 1997), (Garau et al., 2005):

α̂ = arg max
α

[
Pr (Oα|W ,Θ)

]
. (10.1)

In the parametric approach, the warping factor is derived from the estimated formant positions,
(Eide and Gish, 1996). VTLN is usually applied both during training, yielding speaker-independent,
frequency-normalized acoustic models, and during recognition, normalizing spectra of the test utter-
ances towards the normalized models.

10.1 ML–Based VTLN: Background

In the standard ML–VTLN, (Lee and Rose, 1996), (Pye and Woodland, 1997), the optimal speaker-
dependent α is estimated in the iterative procedure where the speech signal is warped consecutively
by a set of candidate α’s. When applying VTLN during the HMM training (VTLN training), multiple
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forced alignment is conducted on the training utterances using α’s from the candidate set1. For each
utterance, the α maximizing likelihood of the forced alignment is picked as an estimate of the optimal
utterance warping. Optimal α for the actual speaker is estimated to maximize overall alignment
likelihood over all speaker’s training utterances. Once the procedure is finished for all speakers, the
training set is warped by the speaker-dependent α’s and used for re-training the acoustic models.
In the recognition stage, unwarped test utterances are first decoded using the normalized HMMs,

yielding estimates of the test transcriptions. Using these transcription estimates, utterance-dependent
α’s are then estimated similarly as in the training stage. Finally, the utterances are warped using the
utterance-dependent α’s and decoded (VTLN recognition).
Frequency warping can be realized either in the time domain by resampling the signal waveform,

(Pye and Woodland, 1997), (Sündermann et al., 2005c), or, more commonly, in the frequency domain
by stretching or shrinking the filter bank cut-offs in the feature extraction front-end, (Lee and Rose,
1996), (Pye and Woodland, 1997).

10.2 ML–Based VTLN: A Novel Approach

In the following experiments, the filter bank-based warping was used. Efficiency of two setups of
VTLN training was evaluated. In the first setup, standard VTLN training as described above was
carried out, including speaker-dependent warping of the training utterances. In the second setup, α’s
estimated on the utterance level were directly used for warping the corresponding utterances instead
of using global, speaker-dependent α’s. It is assumed that the first setup will provide a more reliable
estimate of the speaker’s ‘mean’ VTL as being derived from multiple samples, while the second setup
may better capture temporal deviations of the speaker’s VTL due to the changes in the configuration
of articulators. The VTLN training procedure comprised the following steps:

• Training HMMs in 36 iterations, progressive mixture splitting, no VTLN,

• Multiple forced alignment for α ∈ {0.8, 0.85, 0.9, . . ., 1.2}, picking α’s maximizing likelihood of
the forced alignment,

• Utterances warped by utterance-dependent or speaker-dependent α’s, feature extraction,

• Retraining HMMs with warped utterances, 3 iterations.

• Repeating step 3,

• Retraining HMMs in 7 iterations → normalized HMMs.
Two versions of VTLN recognition were proposed and tested in the presented experiments –

utterance-dependent warping approach and speaker-dependent warping approach. Since LE severely
corrupts accuracy of speech recognition, see Sec. 8.2, 8.3, the transcriptions estimated by decoding the
unwarped utterances considerably differ from the real transcriptions and might be rather confusing
than helpful in finding the optimal warping factors. For this reason, the standard VTLN recognition
procedure was modified as follows:

• Test utterance i was consecutively warped by α ∈ {0.8, 0.85, 0.9, . . ., 1.2} and for each
warping decoded using the normalized HMMs, yielding a set of ML transcription estimates{
Ŵi,α1 , Ŵi,α2 , . . . , Ŵi,αN

}
and a set of transcription likelihoods

{Pi,α1 , Pi,α2 , . . . , Pi,αN
} =

{
P
(
Ŵi,α1

)
, P
(
Ŵi,α2

)
, . . . , P

(
Ŵi,αN

)}
, (10.2)

1In the tasks focusing on adult speakers, the candidates for α can be typically found in the interval of 0.8–1.2, (Faria
and Gelbart, 2005).
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where α1 = 0.8, α2 = 0.85, . . . , αN = 1.2,

• For each utterance, α providing the highest likelihood transcription was picked as the optimal
warping estimate:

α̂i = arg max
α

{Pi,α} , (10.3)

• Subsequently, in the utterance-dependent warping approach, Ŵi,α̂i
was picked as the resulting

transcription estimate,

• In the speaker-dependent warping approach, the optimal speaker-dependent α was estimated as
the median value of the speaker’s optimal utterance warping estimates:

α̂sp = med
i∈ISP

{α̂i} , (10.4)

where ISP is the set of indexes of all utterances from the given speaker. For each utterance,
Ŵi,α̂sp was then picked as the final speaker-dependent transcription estimate.

Similarly as in the case of VTLN training, the introduction of speaker-dependent warping here is mo-
tivated by an effort to obtain more reliable estimate of the speaker’s VTL compared to the utterance-
dependent approach. The speaker-dependent warping approach assumes that the speaker identity is
known for the actual test utterance and that warping estimates from multiple speaker’s utterances
are available prior to the actual utterance decoding. Both assumptions were fulfilled in the case of
the presented experiments as the assignment speaker–utterance was known and all test data were
available at the same time. Considering a real-world application, the first assumption would require
inclusion of a speaker identification algorithm into the ASR system. The second assumption could be
met by storing α̂i’s from the previously uttered sentences, these values would be then used for finding
the actual α̂sp in Eq. (10.4).
All experiments were carried out on both female and male speech. In the case of female ex-

periments, 37 female office sessions from Czech SPEECON were used for neutral/gender-dependent
HMM training, and 2560 digits/10 speakers per scenario (neutral, LE) were used for tests. In male
experiments, 30 Czech SPEECON sessions were used for gender-dependent training and 1423 neutral
digits and 6303 LE digits from 14 speakers were used for tests. Similarly as in Sec. 9.1, all data were
down-sampled from 16 kHz to 8 kHz and filtered by G.712 telephone filter.

10.2.1 VTLN Recognition

It can be expected that formant structure normalization provided by VTLN training will result in
the reduction of cepstral features variation and, hence, in more selective acoustic models compared
to those trained without VTLN (unnormalized models). On the other hand, unnormalized models
capture greater speech variability and in theVTLN recognition stage, it may be easier to find a warping
providing a good match of the actual acoustic observations with the ‘broader’ model characteristics. To
evaluate, which kind of acoustic models deals better with neutral and LE speech, a system employing
VTLN recognition with unnormalized models and a system employing both VTLN training and VTLN
recognition were tested. This section focuses on the first case.
In the speech data sampled by 8 kHz, the area relevant for ASR is restricted to 0–4 kHz. To

allow for both spectral shrinking and stretching in the range of 0.8–1.2 without exceeding the upper
limit of 4 kHz, the initial filter bank (FB) for unwarped feature extraction was chosen to be spread
over 0–3200 Hz. The FB consisted of 20 equidistant rectangular filters without overlap, replacing the
standard bark-distributed trapezoidal FB in PLP. This feature extraction setup was chosen due to its
superior properties displayed in the previous experiments, see Sec. 9.4.2. Unnormalized HMMs were
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trained in 46 iterations using progressive mixture splitting. During the recognition, efficiency of both
utterance-dependent and speaker-dependent VTLN was evaluated.
Distributions of utterance dependent α estimates (α̂i) for female and male sets are shown in Fig.

10.1, 10.2. Values of α > 1 correspond to the FB shrinking (endpoints are shifted down to F/α) which
results, from the viewpoint of cepstral coefficients extracted from the FB outputs, in the stretching
of speech amplitude spectrum, and values of α < 1 correspond to the FB stretching which causes
spectral shrinking. It can be seen that for both female and male speakers, the maxima of the α
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Figure 10.1: Distribution of utterance-dependent α – females, neutral and LE open sets, gender-dependent
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Figure 10.2: Distribution of utterance-dependent α – males, neutral and LE open sets, gender-dependent
models.

distributions appear at α = 1 for neutral speech and at α = 0.9 for LE speech. This suggests that
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the spectrum of LE speech needs to be shrunk to better match the neutral acoustic models. This
result corresponds with the intuition that formants shifted up the frequency axis due to LE, see Sec.
6.5, should be shifted back down in order to fit the neutral models. Surprisingly, the means of the α
distributions for neutral female and male speech reach obviously values α < 1, although it might be
expected that neutral test speech data would match best the neutral models when being unwarped
(α = 1). This phenomenon will be further studied in the following sections.
Performance of the utterance-dependent and speaker dependent VTLN recognition is shown in

Table 10.1. The ‘baseline’ row refers to the recognition where no warping was conducted (α = 1). It
can be seen that VTLN recognition setup provides significant improvement over the baseline system
for both female2 and male Lombard speech. On neutral speech, the improvements are also consistent
but do not reach statistical significance. Utterance-dependent VTLN and speaker-dependent VTLN
display similar performance. Hence, utterance-dependent VTLN seems to be a preferable choice for
VTLN recognition due to its lower complexity.

Females Males 
Set 

Neutral LE Neutral LE 
# Digits 2560 2560 1423 6303 

Baseline 
4.3 

(3.5–5.0) 
33.6 

(31.8–35.5) 
2.2 

(1.4–2.9) 
22.9 

(21.8–23.9) 

Utterance-dependent VTLN 
3.7 

(2.9–4.4) 
26.9 

(25.2–28.6) 
2.0 

(1.2–2.7) 
20.9 

(19.9–21.9) 

WER 
(%)

Speaker-dependent VTLN 
3.8 

(3.1–4.5) 
27.3 

(25.6–29.1) 
1.7 

(1.0–2.4) 
20.5 

(19.5–21.5) 

Table 10.1: Performance of speaker-dependent and utterance-dependent VTLN recognition, HMM46. Mean
values followed by 95% confidence intervals in parentheses.

10.2.2 Joint VTLN Training and VTLN Recognition

In this section, a system conducting both VTLN training and VTLN recognition is tested. Effi-
ciency of two versions of VTLN training employing speaker-dependent and utterance-dependent warp-
ing as defined in the beginning of Sec. 10.2 is compared. In the recognition stage, speaker-dependent
VTLN and utterance-dependent VTLN recognition is carried out.
Distributions of the utterance-dependent α’s for the training set as observed during the first and

second VTLN retraining stage (corresponding to the model sets HMM36 and HMM39) are shown
in Fig. 10.3, 10.4. In the iteration HMM36, the maximum of the α distribution is reached for
α = 1, while the distribution mean is obviously located at α < 1, similarly as in the VTLN recognition
experiment in the previous section, see Fig. 10.1, 10.2. In the second VTLN retraining iteration
(HMM39), the maximum of the α distribution shifts to α < 1 for both male and female neutral
training utterances. Since the same data sets were used for the model training and VTLN retraining,
the requirement of VTLN to systematically warp the data is very surprising. This phenomenon is
further studied in the following section.
Results of the joint VTLN training and VTLN recognition are shown in Table 10.2. The ‘baseline’

row refers to the task where unwarped test data (α = 1) were decoded using the normalized HMM.
Compared to the VTLN recognition experiment employing unnormalized models, see Table 10.1, the

2Note that the baseline performance on the female LE speech reached here is considerably higher than the performance
of ‘LFCC, 20 bands, full band’ on the open set in Table 9.4, Sec. 9.4. This results from the fact that in Sec. 9.4, the
open set was more adverse to ASR than the development set, see Table 9.3.2. In the actual VTLN experiments, the
open set comprises merged subsets of both development and open set from Sec. 9.4.
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Figure 10.3: Distribution of utterance-dependent α – female neutral train set, retraining iter. 36, 39.
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Figure 10.4: Distribution of utterance-dependent α – male neutral train set, retraining iter. 36, 39.

performance of the actual baseline system is considerably worse. This could have been expected since
the probability density functions of the unnormalized models were extracted from the unnormalized
speech and, hence, better capture its feature distributions compared to the VTLN models trained on
the data of reduced variance.
The joint VTLN training and VTLN recognition approach considerably outperforms the baseline

setup. For female neutral and Lombard speech and male neutral speech the joint approach provides
similar performance to the VTLN recognition using unnormalized models while for the male Lombard
speech it brings further, statistically significant improvement of accuracy.
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Females Males 
Set 

Neutral LE Neutral LE 
# Digits 2560 2560 1423 6303 

Baseline 
5.6 

(4.7–6.5) 
43.8 

(41.9–45.8) 
2.7 

(1.9–3.6) 
26.7 

(25.6–27.8) 

Utterance-dependent VTLN 
3.6 

(2.9–4.3) 
28.2 

(26.4–29.9) 
1.8 

(1.1–2.4) 
16.6 

(15.7–17.6) 

WER 
(%)

Speaker-dependent VTLN 
4.0 

(3.2–4.7) 
27.7 

(26.0–29.5) 
1.8 

(1.1–2.4) 
17.4 

(16.5–18.3) 

Table 10.2: Performance of joint VTLN training and VTLN recognition, same type of VTLN was applied
during training and recognition, HMM46. Mean values followed by 95% confidence intervals in parentheses.

10.2.3 VTLN Warping Trends

In Sec. 10.2.1, the neutral open test set was warped during VTLN recognition to better match
the neutral trained acoustic models. Since the train and test sets were disjunct, the requirement for
warping might have been caused by the difference of feature distributions in the sets. However, in Sec.
10.2.2, the warping of the neutral train set was surprising considering that the same set was used for
the model training. The warp rate even increased in the second VTLN retraining iteration. A similar
phenomenon was observed in (Lee and Rose, 1996), where an effect of VTLN retraining was studied
up to 4 iterations.
To analyze a further evolution of the warping trend, the number of VTLN retraining periods

was extended in this section. The HMM training from scratch started with 36 iterations without
VTLN. Subsequently, VTLN retraining was applied and repeated consecutively after every 3 standard
retraining iterations until a total of 120 iterations was reached. In the previous sections, similar trends
in the α distributions were observed for female and male speakers when using corresponding gender
dependent models, hence, the analysis presented in this section was carried out on the female data
only. Evolution of the smoothed α distribution during the training is shown in Fig. 10.5. For all
HMM sets, the α values represent the degree of warping of the original unwarped data (e.g., α = 1
refers to the FB spread over 0–3200 Hz). It can be seen that in iterations 39–75, the maximum of the
α distribution is reached for α = 0.9. For higher iterations, the maximum shifts down to α = 0.85.

Figure 10.5: Evolution of utterance-dependent α distribution – HMM training, female train set, Fs = 8 kHz.

HMMs obtained from each VTLN retraining iteration were tested in the digit recognition task
employing utterance-dependent and speaker-dependent VTLN recognition. Corresponding utterance-
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dependent α distributions for the neutral and LE open test set are shown in Fig. 10.6. In the case of

Figure 10.6: Evolution of utterance-dependent α distribution – VTLN recognition, female neutral (left figure)
and LE (right figure) open test set, Fs = 8 kHz.

the HMMs obtained in the initial VTLN retraining iterations, the maxima of α distributions appear
at α = 1 for neutral set and at α = 0.9 for LE set. With increasing number of retraining periods, the
maxima of both neutral and LE α distributions shift to lower values. The trajectory is steeper for the
LE set.
Up to 57 retraining iterations, the α distribution for the neutral VTLN recognition more or less

copy the VTLN training distribution, which could be expected considering that both the train and
test sets capture the same talking style. For higher HMM sets – up to HMM84, the test set requires
more warping (α = 0.85) than the train set (α = 0.9). Starting from HMM84, both train and test
set settle at α = 0.85 and do not display any further shift of the distribution maxima. In the case of
the LE test set, the α distribution maximum shifts soon from the initial α = 0.9 to α = 0.85 where it
stays until HMM120. Up to HMM57, spectra of the LE data require more shrinking than the neutral
test data. Starting from HMM57, the maxima of α distributions for both neutral and LE test sets
occur at the similar position (α = 0.85), although, intuitively, a degree of the LE data warping should
be higher.
Since the data employed in the presented experiment were down-sampled from 16 kHz to 8 kHz and

passed through the G.712 telephone filter, the frequency components above 3700 Hz are significantly
suppressed, see Fig. 9.1. The warping α = 0.85 corresponds to the FB widening from 0–3200 Hz to
0–3765 Hz. Further FB expansion introduces highly attenuated data to the highest FB bands, causing
mismatch with models trained on the non-attenuated part of spectra. Frequency components below
300 Hz are also suppressed due to applying the telephone filter, however, this attenuation is present
both in the training and test data and, hence, does not contribute to the models/data mismatch.
Some of the low frequency components are still relevant for speech recognition, see example in Fig.
9.2, where omitting the lowest band (0–200 Hz) resulted in an increase of WER on neutral speech.
To analyze the warping trend when no telephone filter is applied, the experiment was repeated

using full-band data sampled at 16 kHz. Since the broader frequency band allows for more extensive
warping, the interval of α candidates for warping the initial FB of 0–3200 Hz was extended to 0.4–1.2,
where α = 0.4 corresponds to the full-band of 0–8 kHz. Number of retraining periods was increased to
174. Besides this, the training and recognition procedure were preserved identical with the previous
setup. The 16 kHz α distributions for VTLN training and VTLN recognition are shown in Fig. 10.7,
10.8. Similar to the previous experiment, the data are consecutively shrunk with increasing number
of retraining periods, however, the maxima of the α distributions shift down faster and do not stop
at α = 0.85. It can be seen that the maxima for the neutral test data occur at lower α’s than for
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Figure 10.7: Evolution of utterance-dependent α distribution – HMM training, female train set, Fs = 16 kHz.

Figure 10.8: Evolution of utterance-dependent α distribution – VTLN recognition, female neutral (left figure)
and LE (right figure) open test set, Fs = 16 kHz.

the neutral train data and that the maxima for the LE test data occur at lower α’s than those of the
neutral test data.
Also in (Lee and Rose, 1996), a requirement to warp data used for the model training was observed.

The authors assume that if these formerly discarded portions of spectra carry useful information for
recognition, the ML estimate of α is likely to be biased towards frequency shrinking which would
employ originally discarded frequency components into the process of feature extraction. The exper-
iments carried out in this section confirm this assumption. In the case of telephone speech, the FB
expansion stopped when the highest FB band approached attenuated frequency components disturb-
ing recognition. When switching to the full-band 16 kHz data, FB continuously expanded throughout
all retraining iterations. The rate of expansion gradually decreased with the number of iterations. It
seems that the trend of VTLN warping is driven by two factors:

• Capturing useful information lying in higher frequencies,

• Decreasing frequency resolution due to FB expansion,
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The first factor assumes that a particular information useful for speech recognition has already been
seen in the highest FB band for some portion of data and, hence, is partly captured in the models3.
When performing VTLN retraining, the data which already contributed by this ‘edge’ information
to the model training are likely to stay unwarped. Shrinking the remaining data will help to move
the particular information to the FB area also in their case. For this reason, the mean of the α
distribution during training is always at α � 1. The second factor represents an information loss due
to the decrease of frequency resolution. This factor was slowing down the FB expansion with the
increasing number of retraining iterations in the 16 kHz experiment.
Performance of utterance and speaker-dependent VTLN recognition for models obtained from

VTLN retraining is shown in Fig. 10.9, 10.10. It can be seen that utterance-dependent and speaker-
dependent warping provide comparable results. For Lombard speech, the models from the first or
second VTLN retraining iteration displayed the best performance. For neutral speech, HMM48 and
HMM51 performed best at 8 kHz and HMM48 and HMM51 together with HMM66 and HMM69
displayed the best results at 16 kHz data. With further increasing the number of VTLN retraining
iterations, the recognition performance tends to decrease, which can be attributed to the model over-
fitting to the training data. Similar observation was reported by (Lee and Rose, 1996), where the
effect of VTLN retraining was evaluated up to 4 iterations.
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Figure 10.9: Performance of joint VTLN training and recognition, female open set, Fs = 8 kHz.

3E.g., let FB high cut-off be placed somewhere at the location of the F4 typical occurrence. For speakers with longer
VTL, F4 will occur at lower frequencies captured by FB while for speakers with shorter VTL, F4 will be out of FB range
and thus discarded.

110



10.3 Formant-Driven Frequency Warping: Background

22

24

26

28

30

32

34

36

38

40

42

30 50 70 90 110 130 150 170
2

3

4

5

6

7

8

LE_utt
LE_spkr
N_utt
N_spkr

HMM set

LE
 - 

W
E

R
 (%

)

N
eu

tra
l -

 W
E

R
 (%

)

VTLN recognition, best  per utterance/speaker, 16 kHz

Figure 10.10: Performance of joint VTLN training and recognition, female open set, Fs = 16 kHz.

10.3 Formant-Driven Frequency Warping: Background

In (Eide and Gish, 1996), a parametric approach to VTLN has been proposed. Optimal warping
factor for a given speaker was estimated as the ratio of the median of the speaker’s F3 estimates
and the median of F3 estimates taken from all training speakers. The formant values were extracted
from the voiced frames of speech. The parametric VTLN approach was successful in improving ASR
performance on neutral speech while being less computationally complex compared to ML–VTLN. In
this section, a modified scheme of formant-driven warping is proposed.

10.4 Formant-Driven Frequency Warping: A Novel Approach

10.4.1 Warping Functions

Similar to ML–VTLN, (Eide and Gish, 1996) conducted warping of the original frequency axis
F by a constant: FW = F/α. Such a frequency mapping is represented by a straight line passing
through the coordinate origin of the F–FW plane. Since formant frequencies are inversely proportional
to VTL, the mapping seems to be suitable for covering the VTL variations. However, when studying
differences between neutral and Lombard speech, it can be seen that formant shifts introduced by LE
do not simply follow the warping by a constant. In CLSD‘05, F1,2 of the LE vowels shift considerably
to higher frequencies while no consistent change in F3,4 locations can be observed4, see Sec. 6.5.
Here, the warping by a constant could either accurately address the shifts of low formants, at a
cost of introducing unwanted shifts to high formants, or it could preserve locations of high formants,
disregarding the shifts of low formants. To eliminate the tradeoff between the accuracy of low and
high formant mapping, new warping function is proposed in this section:

FW = α + βF. (10.5)

4This suggests that the articulator configuration changes due to LE do not only introduce changes in speaker’s actual
VTL, but also affect individually each of the formants.
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Such a frequency mapping, still being represented by a straight line, can capture both considerable
frequency shifts at low frequencies and reduced shifts at high frequencies. Parameters of the transfor-
mation are estimated by regressing mean F1−4 values in the LE frequency–neutral frequency plain.
A 16 kHz version of the data sets from Sec. 10.2.1 was used in the presented experiment. First,

distributions of F1−4 were estimated from all speech segments, see Fig. 10.11, and Table 10.3, 10.4.
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Figure 10.11: Formant distributions, neutral and LE speech, female and male utterances. Neutral speech –
continuous line, Lombard speech – dashed line.

Formant F1 F2 F3 F4

F   (Hz) 507.0 1836.1 2904.1 4064.7 Female 
digits N   (Hz) 162.7 373.3 272.9 278.8 

F   (Hz) 598.7 1925.6 2964.9 4129.0 Female 
digits LE   (Hz) 169.0 336.1 241.5 261.0 

Table 10.3: Female digits – means and deviations of formant distributions.

In female digits, all LE formants moved to higher frequencies, F1,2 displaying a bigger shift than F3,4.

Formant F1 F2 F3 F4

F   (Hz) 463.7 1649.8 2742.1 3785.1 Male
digits N   (Hz) 160.6 330.3 272.3 298.5 

F   (Hz) 524.7 1670.8 2701.0 3749.5 Male
digits LE   (Hz) 153.9 296.7 234.8 343.9 

Table 10.4: Male digits – means and deviations of formant distributions.

In male digits, less significant changes can be observed – F1,2 shifted up the frequency axis while F3,4

moved slightly down. In general, typical locations of formant occurrences vary for different phonemes
(see Fig. 6.3). These differences might cause an occurrence of multiple peaks in the distribution
of a particular formant across phonemes. In spite of this, formant distributions collected from digit
phonemes in CLSD‘05 are close to their Gaussians, see Fig. 10.12, 10.13. The highest deviation from
its Gaussian can be observed for F2.
In the next step, a transfer function mapping LE formants to neutral formants was determined.

Linear regression, see Eq. (4.22)–(4.24) in Sec. 4.4, was applied to the 2–D points Pi (xi, yi) =
Pi

(
F̄LE,i, F̄N,i

)
, where i is the formant index, F̄LE,i denotes the estimated mean of the i-th LE
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Figure 10.12: Formant distributions and their Gaussians, neutral speech, females.
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Figure 10.13: Formant distributions and their Gaussians, neutral speech, males.

formant distribution, and F̄N,i stands for the estimated mean of the i-th neutral formant distribution.
To evaluate the degree of linear relationship between x and y variables, the square of the correlation
coefficient5 was evaluated, Stephens (1998):

R2 =

⎛
⎜⎜⎜⎝

N∑
i=1

(
xi − X̄

) (
yi − Ȳ

)
(N − 1) σ̂xσ̂y

⎞
⎟⎟⎟⎠

2

, (10.6)

where X̄, Ȳ denote the LE and neutral formant sample mean, and σ̂x, σ̂y are standard deviation
estimates, see Eq. (4.13) in Sec. 4.2.1. The resulting warping functions for female and male speech
are shown in Fig. 10.14, 10.15. For illustration, mean formant positions for each of the digit phonemes
were also estimated by means of formant tracking and forced alignment. In the figures, each phoneme
is represented by four dots standing for the four formants. The formant plots are distinguished by
color and shape.

5The correlation coefficient R indicates a degree of linear dependence between two variables. The closer is R to 1 or
-1, the stronger is the correlation between the variables. When R equals 1 or -1, the variables are linearly dependent
and display increasing or decreasing relationship, respectively, Stephens (1998). The squared correlation coefficient R2

reaches values between 0–1. The closer to 1, the more linear is the dependency between the values.
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Figure 10.14: Frequency warping function, females.
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Figure 10.15: Frequency warping function, males.

10.4.2 Recognition Employing Formant-Driven Warping

Efficiency of the formant-driven frequency warping was evaluated in the ASR task. The warping
functions obtained in the previous section were used for normalizing test data towards neutral, un-
normalized gender-dependent acoustic models. To allow for performance comparison with the VTLN
recognition experiment, (see Sec. 10.2.1, where data normalization was applied also only in the
recognition stage), the data were down-sampled to 8 kHz. Similarly as in VTLN recogniton, feature
extraction for the unnormalized model training employed PLP features with 20-bands rectangular FB
spread over 0–3200 Hz (baseline FB). The recognizer was trained in 36 iterations using progressive
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mixture splitting. Filter banks for the test data extraction were derived from the baseline FB by
applying gender-dependent warping functions to its endpoints, see Table 10.5.

Filter bank Fstart (Hz) Fstop (Hz) # Bands 
Baseline 0 3200 20 

Warped F 76 3262 20 
Warped M 49 3181 20 

Table 10.5: Baseline and gender-dependent, warped filter banks.

Recognition performance reached for the unwarped data, ‘baseline bank’, and warped data, ‘warped
bank’, is shown in Table 10.6. It can be seen that for both female and male Lombard speech, frequency
warping significantly reduces WER over the baseline. Surprisingly, when applying warping also to
the neutral utterances, the performance is not significantly corrupted – statistically insignificant WER
changes are displayed for both females and males. Compared to the VTLN recognition experiment,
see Table 10.1 in Sec. 10.2.1, a more significant performance improvement can be observed in the
case of the formant-driven warping6. However, it must be emphasized that while the warping in
VTLN recognition was performed on the utterance level, in the case of the formant-drive approach,
the warping functions were estimated using the whole open set. For the purpose of the real-world
application, the warping function could be determined from the train data and later updated for
estimates from the incoming test utterances.

Females Males 
Set 

Neutral LE Neutral LE 
# Digits 2560 2560 1423 6303 

Baseline bank 
4.2 

(3.4–5.0) 
35.1 

(33.3–37.0) 
2.2 

(1.4–2.9) 
23.2 

(22.1–24.2) WER 
(%) 

Warped bank 
4.4 

(3.6–5.2) 
23.4 

(21.8–25.0) 
1.8 

(1.1–2.4) 
15.7 

(14.8–16.6) 

Table 10.6: Recognition employing formant-driven warping, HMM36. Mean values followed by 95% confidence
intervals in parentheses.

10.5 Conclusions

Two methods normalizing LE formant structure towards neutral were proposed in this chapter –
modified maximum likelihood VTLN (ML–VTLN) and formant-driven frequency warping.
In the standard ML–VTLN recognition, utterance transcriptions are obtained by decoding the

unwarped data and, subsequently, used for estimation of warping factors. To address the high tran-
scription error rate introduced by LE, a new method of ML–VTLN considering multiple transcription
hypotheses was proposed. Next, effectiveness of utterance and speaker-dependent warping in VTLN
training was compared. Both methods displayed similar performance, suggesting a use of utterance-
dependent warping due to its lower complexity. A considerable improvement of the Lombard speech
recognition was reached both by a system employing ML–VTLN training/recognition and by a system
employing just ML–VTLN recognition. Both systems displayed comparable performance in most of

6Note that baseline WERs for the two experiments slightly differ due to different HMM sets used, VTLN recognition
employed HMM46 while formant-driven warping recognition employed HMM36.
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the scenarios considered. In the case of male Lombard speech, the first system performed slightly bet-
ter. Finally, development of the warping trend with increasing number of VTLN retraining iterations
was studied. Accuracy of the VTLN-normalized acoustic models improved up to approximately 10
VTLN retraining iterations, with further iterations the models started to overfit the training data.
Formant-driven warping proposed in this chapter employs a linear mapping function derived from

the distribution means of the first four Lombard and neutral formants. The new mapping function
allows for more accurate modeling of the low and high formant shifts compared to the warping by a
constant used in the literature. In the pilot study presented here, parameters of the warping function
were estimated from the formant distributions across the whole test set. Applying the formant-driven
warping in the recognition stage provided substantial improvement of the recognition accuracy over
the baseline, outperforming also the ML-VTLN system.
Similarly as in the case of ML–VTLN, real-world applications would require the formant-driven

algorithm to be able to react at the level of the actual incoming utterances. Here, the warping function
could be updated for the estimates from the actual utterance. Evaluation of such an approach is a
matter of further study. Formant-driven warping is computationally less demanding than ML–VTLN,
which requires multiple utterance decoding for the set of warping candidates7. On the other hand,
the formant-driven approach relies on a formant tracking, which is easily deteriorated by the presence
of background noise.
None of the frequency warping approaches considered in this chapter compensates for the narrowing

of formant bandwidths due to LE, see Sec. 6.5. In fact, shrinking the LE formant structure towards
neutral further decreases the LE formant bandwidths. It may be assumed that a transformation
addressing both changes in formant locations and bandwidths will increase effectiveness of the LE
normalization.

7Recently, possibilities of reducing the complexity of ML–VTLN have been studied. In (Faria and Gelbart, 2005),
based on the observed correlation between F0 and formant shifts, the optimal warping factor was estimated directly from
F0.
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Two-Stage Recognition System (TSR)

A substantial improvement in recognition performance can be reached by accommodating an ASR
system to the actual conditions affecting the processed speech signal. Unfortunately, as a consequence,
such condition-specific adjustments usually result in a reduction of the system’s resistance to condition
changes. Several studies have attempted to address this performance/robustness trade-off by building
a recognizer of a set of condition-specific (CS) subsystems. In (Xu et al., 1996), multiple HMM channels
were employed to model separately speech and noise signal components. A similar HMM structure
was used in (Womack and Hansen, 1999), see Sec. 3.5, where each of the HMM channels comprised
stress-specific acoustic models. During utterance decoding, the multi-channel HMM allowed for stress
assessment and switching between the stress-specific models on the HMM-state level.
Another concept has been proposed in (Womack and Hansen, 1996b). Here, for each incoming ut-

terance the actual condition was first assessed by a condition classifier, and subsequently, the utterance
was passed to the corresponding CS recognizer1. This approach does not allow for switching between
the CS models on the sub-word level, on the other hand, computational demands are considerably
reduced here since the complexity of the utterance decoding in the CS single-channel HMM recognizer
is lower compared to the multi-channel HMMs.
Both the multi-channel HMM and ‘condition classifier/CS recognizers’ approaches mentioned above

assume that the conditions likely to occur are known already during the system design and a sufficient
amount of training data is available per each of these conditions. In (Bou-Ghazale and Hansen, 1998),
a lack of training samples per scenario was compensated for by generating synthetic CS speech from
neutral samples using perturbation models, see Sec. 3.5.
In Chap. 9, features obtained from the data-driven design provided a significant improvement of

the Lombard speech recognition when using neutral-trained acoustic models. Increasing the feature
performance on Lombard speech was accompanied by a performance drop on neutral speech. In this
chapter, two front-ends observed to provide superior performance on neutral and Lombard speech,
respectively, are used in the design of a two-stage system (TSR) for neutral/LE speech recognition2.
Following the ‘condition classifier/CS recognizers’ architecture, in the first stage of TSR, the utterances
are classified based on talking style (neutral/LE) and in the second stage, they are passed to the
corresponding CS recognizer. Unlike in the case of the previously mentioned studies, the CS recognizers
require only neutral speech data for training.
This chapter is organized as follows. First, the architecture of the neutral/LE classifiers used in

the TSR experiments is described. Subsequently, neutral and LE distributions of spectral slope are
analyzed. Spectral band limitation is used to reduce the overlap of the neutral/LE slope distributions.
Performance of a set of candidate features in the neutral/LE classification is evaluated. Several

1An alternative scheme can be found in (Womack and Hansen, 1995a), where the output of the set of stress-dependent
recognizers was weighted by a condition classifier.

2The design of TSR was published in (Bořil et al., 2007).
117



Chapter 11: Two-Stage Recognition System (TSR)

candidate subsets are compared and the most efficient one yields the final classification feature vector
(CFV) used for training ANN and Gaussian ML TSR classifiers. Finally, the TSR is constructed,
employing the neutral/LE classifier and two neutral/LE-specific recognizers.

11.1 Classification of Neutral/LE Speech

In the following sections, the CFV for gender/phonetic content-independent neutral/LE speech
classification is searched. An overview of the literature on this topic has been provided in Sec. 3.4.
Significant differences in vocal intensity, F0 means and standard deviations, F1,2 means and band-
widths, and vowel durations were observed for neutral and Lombard speech in CLSD‘05 (see Chap.
6). Since formant and duration characteristics are heavily dependent on the phonetic content of the
actual utterance, they were excluded from the set of CFV candidates3. On the other hand, the set
was extended for the spectral slope of voiced speech which has been reported in previous studies to
be a reliable cue for the talking style assessment (see Sec. 3.2.4).
Neutral and Lombard digits and phonetically rich sentences from 8 female and 7 male CLSD‘05

speakers formed the CFV development data set. The development set was used for analyzing neu-
tral/LE discriminability provided by feature distributions and for training the classifiers. The open test
set comprised digits and phonetically rich sentences uttered by 4 female and 4 male CLSD‘05 speakers
(speakers are separate from the development set)4 and was used for the classifier open testing. The
data were all in 16 kHz sample format (i.e., 8 kHz bandwidth).

11.1.1 Gaussian ML Classifier

A Gaussian ML classifier was used in the following experiments which consisted of two n-
dimensional PDFs modeling CFV component distributions in neutral and LE speech. Each PDF
dimension contained a single Gaussian and the number of dimensions n corresponded to the number
of CFV components. Mean vectors and covariance matrices of neutral PDF and LE PDF were esti-
mated from the training data. Bayesian hypothesis testing was applied during classification. For each
CFV extracted at the utterance level (one CFV per utterance), two hypotheses were tested: H0 – the
utterance comprises neutral speech, H1 – the utterance comprises Lombard speech. Given the CFV
observation oi extracted from the utterance i, a likelihood ratio was calculated:

λ =
P (oi |H1 )
P (oi |H0 )

, (11.1)

where P (oi |H0 ) and P (oi |H1 ) are conditional probabilities evaluated by applying (2.8) (Sec. 2.2)
to the neutral PDF and LE PDF, respectively. For λ < 0.55, H0 was accepted and the utterance was
classified as neutral, otherwise, H0 was rejected and the utterance was classified as LE.

11.1.2 ANN Classifier

As an alternative to the Gaussian ML classifier, a fully-connected three-layer feed-forward Multi-
Layer Perceptron (MLP) was used in TSR to estimate the posterior probabilities of utterances being

3The inefficiency of using mean vowel F1,2 locations as features in the classification task was experimentally verified
by (Zhou et al., 1998).

4The assignment of female speakers to the development or open set was preserved as in Sec. 9.1 to assure that none
of the open test data used for evaluating the TSR performance in the end of this chapter were also employed in the
data-driven feature design or in the CFV/classifier design.

5Adjusting the threshold for H0 rejection can be used to optimize the ratio of false acceptances and rejections, (Zhou
et al., 1998). In the presented experiments, the threshold was kept constant.
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11.1 Classification of Neutral/LE Speech

either neutral or LE. The number of neurons in the MLP’s6 input layer was set equal to the number
of components in the CFV. The hidden layer contained 3000 neurons and the output layer 2 neurons.
Each neuron in the hidden layer and output layer implemented activation function F according to Fig.
11.1 where A1, A2, . . . , AN are the incoming neural activations, W1j ,W2j , . . . ,WNj are the incoming
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Figure 11.1: Multi-Layer Perceptron – activation function, after (Stergiou and Siganos, 1996).

connection weights, θj is the bias, Aj is the output activation, and Wj1,Wj2, . . . ,WjM are the output
connection weights. In the hidden layer, a sigmoid function was used as the activation function:

sig (qj) =
1

1 + e−qj
, (11.2)

where qj is the biased sum of weighted inputs to the j-th neuron:

qj =
N∑

i=1

WijAi + θj . (11.3)

The sigmoid function maps the input values to the interval (0, 1). For input values out of the range
(-1, 1) the output becomes insensitive, reaching values very close to 0 for negative input values and
values very close to 1 for positive inputs. The function is smooth and easily differentiable, which
are important assumptions for applying the traditional gradient-based MLP training procedure called
back propagation, (Rabiner and Juang, 1993). In the output layer, a softmax activation function was
used:

softmax (qj) =
eqj

M∑
i=1

eqi

, (11.4)

where qi are the weighted input sums in the output layer neurons (see Eq. (11.3), substitute qi for
qj). A softmax function assures that the MLP outputs will reach values interpretable as posterior
probabilities (i.e., each lying in the interval 〈0, 1〉 and all together summing up to 1).
The training procedure implemented in QuickNet originates from back propagation where the

partial derivatives of the MLP’s output error (difference between the training sample target value
and the MLP’s output) are used to adjust the MLP weights. The weight adjustment step, called
the learning rate, is chosen as a compromise between the speed, convergence, and precision of MLP
learning.
For the purposes of MLP training, a small set of samples (cross-validation set – the CV set) was

excluded from the training set. In each training period, the entire training set was processed and
MLP weights were adjusted. Subsequently, the actual MLP performance was evaluated on the CV
set. In the initial retraining periods, the learning rate was set to a relatively high value. After the
performance improvement between two consecutive periods decreased below 0.5%, the learning rate
was halved before each subsequent period to increase precision of the local optimum search. The

6The MLP framework was implemented using the ICSI QuickNet suite, (QuickNet, 2007).
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training process was terminated when the performance improvement decreased again below 0.5%
between consecutive training periods.
The described adaptive training scheme is used to protect the MLP from over-training, (QuickNet,

2007). When further retraining increases the MLP performance on the training set but at the same
time reduces the performance on the CV set, it can be assumed that the MLP starts to overfit the
training data and has reduced generalization properties. To prevent from this from happening, the
training procedure is terminated once the performance improvements on the CV set decrease below a
chosen threshold7.
In the experiments presented in the following sections, MLP was trained against hard targets –

the required MLP outputs were either 0 or 1 (either neutral or LE). 90% of the development data
were used for MLP training and 10% for CV.

11.1.3 Exploiting Spectral Slope

As discussed in Sec. 3.2.4, spectral slope of the glottal pulses provide an important cue to the
talking style classification. Spectral slope of voiced speech is determined by combined contribution
of glottal pulse spectrum and transfer function of the lip radiation. Since the lip radiation can be
considered to have a constant slope (+6 dB/oct), see Sec. 3.1, the slope of the glottal pulse spectrum
is directly proportional to the slope of the voiced speech spectrum, (Childers and Lee, 1991). In this
section, the neutral/LE discriminability provided by the spectral slope of voiced speech is studied.
Spectral slopes were obtained by fitting a regression line to the amplitude spectra of voiced segments
of speech, see Sec. 4.4, following (Summers et al., 1988). In the initial step, spectral slopes were
extracted from the full-band spectrum, i.e., from the frequency interval of 0–8 kHz.

Vowel Slopes

First, mean spectral slopes in vowels were analyzed. Time boundaries of the development set
phonemes were estimated by means of forced alignment. These boundaries were used to determine
endpoints of the variable length segments used for the spectral slope extraction. Before conducting the
actual extraction, each segment was weighted by a Hamming window. An example of the spectral slope
of a single realization of the female vowel /a/ is shown in Fig. 11.2. Mean slopes of five Czech vowels
/a/, /e/, /i/, /o/, /u/ were estimated from the development set (see Table 11.1, 11.2). Here, #N,
#LE denote the number of neutral and LE phoneme occurrences in the development set, respectively.
It can be seen that spectral slope differs across vowels and is in general steeper for female voices in
both neutral and LE utterances. The slope is less steep in LE speech, confirming observations made
in previous studies (see Sec. 3.2.4). The slope flattening results from migration of the glottal pulse
spectral energy to higher frequencies.

Voiced Segment Slopes

The task of the classifier employed in the TSR system is to reliably discriminate neutral and
Lombard speech without information regarding phonetic content of the actual utterance or gender
of the speaker. To evaluate the suitability of spectral slope for participation in CFV, its phoneme-
independent distributions in neutral and Lombard data are studied in this section, followed by analysis
of the gender-independent slope distributions in the subsequent section.
Neutral and LE phoneme-independent distributions were obtained by extracting spectral slope

from all voiced segments of neutral and Lombard speech, respectively. Locations of voiced segments

7The threshold is experimentally set to limit the number of retraining iterations to the extent where further retraining
is not expected to provide significant MLP performance gains. In the present experiments, the default QuickNet threshold
of 0.5% was used.
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Figure 11.2: Example – single realization of female vowel /a/, amplitude spectrum and corresponding spectral
slope (−6.09 dB/oct).

were estimated based on the output of the pitch tracker. Every segment yielding a positive F0 value
was considered voiced. Two variants of spectral slope extraction were used. In the first variant, the
slope was extracted from the frequency band of 0–8000 Hz (full-band slope), similarly as in the previous
section. In the second variant, the band for extraction was limited to 60–8000 Hz. The latter setup
was motivated by the assumption that in voiced speech, the F0 subharmonics contain noise rather
than speech related information and, hence, do not contribute to the neutral/LE classification. Means
and standard deviations of the slopes obtained from both extraction setups are shown in Table 11.3.
It can be seen that even when extracted across all voiced segments, the mean values of spectral slope
significantly differ for neutral and Lombard speech. In the case of the band-limited setup, the slopes
are steeper by omitting the initial low-energy portion of the spectra. Neutral/LE discriminability
provided by full-band slopes and ‘60–8000 Hz’ slopes will be analyzed in the following subsection.

Gender-Independent Slopes

In the next step, gender/phoneme-content independent distributions of spectral slope were ana-
lyzed. The male and female neutral development sets were merged into a single neutral set, similarly,
the LE sets were merged into a single LE set. Several variants of slope extraction were examined. To
allow for analysis of the neutral/LE discriminability provided by the particular slope extraction setup,
the neutral and LE slope distributions were constructed and normalized to an equivalent surface. The
area bounded by the overlap of the two distributions represents a portion of data which cannot be
unambiguously assigned to one of the classes using the given slope extraction scheme.
Neutral/LE distribution overlaps obtained from slope extraction employing two types of weighting

windows and various frequency band-limiting were evaluated:

• Band 0–8000 Hz (rectangular/Hamming window) – full-band spectrum,

• Band 60–8000 Hz – non-speech portion of spectrum excluded,

• Band 60–5000 Hz – area of F0–F4 occurrence,

• Band 1000–5000 Hz – area of F2–F4 occurrence,
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Neutral LE 
Vowel 

# N T (s) Slope 
(dB/oct) (dB/oct) # LE T (s) Slope 

(dB/oct) (dB/oct) 

/a/ 454 69.03 
-6.8

(-6.9; -6.7) 
1.13 350 73.40 

-3.2 
(-3.4; -3.0) 

1.78 

/e/ 1064 69.33 
-5.6

(-5.7; -5.6) 
1.06 840 83.55 

-3.1 
(-3.2; -3.0) 

1.41 

/i/ 509 58.92 
-5.0

(-5.1; -4.9) 
1.15 405 64.26 

-2.5 
(-2.7; -2.3) 

1.75 

/o/ 120 9.14 
-8.0

(-8.1; -7.8) 
0.91 90 13.44 

-4.5 
(-4.8; -4.2) 

1.61 

/u/ 102 5.73 
-6.1

(-6.3; -6.0) 
0.77 53 2.09 

-3.9 
(-4.4; -3.5) 

1.55 

Table 11.1: Mean spectral slopes of female digit vowels, band 0–8 kHz. Mean values followed by 95%
confidence intervals in parentheses.

Neutral LE 
Vowel 

# N T (s) Slope 
(dB/oct) (dB/oct) # LE T (s) Slope 

(dB/oct) (dB/oct) 

/a/ 162 25.99 
-8.0

(-8.2; -7.8) 
1.11 484 101.14 

-4.9 
(-5.0; -4.7) 

1.78 

/e/ 414 25.37 
-7.1

(-7.2; -7.0) 
1.14 1072 102.63 

-3.9 
(-4.0; -3.8) 

1.53 

/i/ 260 28.71 
-6.5

(-6.7; -6.4) 
1.15 528 88.67 

-3.8 
(-3.9; -3.6) 

2.00 

/o/ 54 3.29 
-8.2

(-8.5; -7.9) 
1.06 129 14.35 

-5.7 
(-6.0; -5.5) 

1.45 

/u/ 43 2.14 
-7.1

(-7.4; -6.9) 
0.96 97 3.78 

-5.0 
(-5.1; -4.8) 

0.92 

Table 11.2: Mean spectral slopes of male digit vowels, band 0–8 kHz. Mean values followed by 95% confidence
intervals in parentheses.

• Band 0–1000 Hz – formants starting from F2 excluded,

• Band 60–1000 Hz – only F0–F1.

Frequency bands in the first two setups were preserved as in the previous section. The band 60–
5000 Hz in the third setup was chosen to exclude either F0 subharmonics and highly attenuated
frequency components corresponding to F5 and higher (see Fig. 10.12, 10.13 in Sec. 10.4.1). Bands
in the remaining setups were chosen to allow for separate analysis of F2–F4 and F0–F1 component
contributions in neutral/LE discrimination.
In the case of the first extraction setup, normalized full-band slope distributions displayed an over-

lap of 28.06% for a Hamming window and 32.24% for a rectangular window. The higher distribution
overlap observed in the latter case can be attributed to the increased spectral blending typical for
signal weighting by a rectangular window. Based on this result, a Hamming window was used for all
remaining experiments. Overlaps of the normalized slope distribution are listed in Table 11.4 in the
row ‘M+F’. For comparison, overlaps of the corresponding gender-dependent slope distributions are
also provided. The normalized gender-independent slope distributions are depicted in Fig. 11.3.
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Neutral LE 
Set 

# N T (s) Slope 
(dB/oct) (dB/oct) # LE T (s) Slope 

(dB/oct) (dB/oct) 

M 2587 618 
-7.42 

(-7.48; -7.36)
1.53 3532 1114 

-5.32 
(-5.37; -5.27) 

1.55 
0–8000

Hz
F 5558 1544 

-6.15 
(-6.18; -6.12)

1.30 5030 1926 
-3.91 

(-3.96; -3.86) 
1.77 

M 2587 618 
-8.68 

(-8.75; -8.61)
1.82 3532 1114 

-6.44 
(-6.50; -6.38) 

1.82 60–8000
Hz

F 5558 1544 
-7.18 

(-7.22; -7.14)
1.57 5030 1926 

-4.89 
(-4.95; -4.83) 

2.03 

Table 11.3: Comparing full-band and 60–8000 Hz slopes. Mean values followed by 95% confidence intervals in
parentheses.

Neutral – LE distribution overlap (%) 
Set

0–8000 Hz 60–8000 Hz 60–5000 Hz 1k–5k Hz 0–1000 Hz 60–1000 Hz 
M 26.00 28.13 29.47 100.00 27.81 27.96 
F 26.20 28.95 16.76 100.00 25.75 22.18 

M+F 28.06 30.48 29.49 100.00 27.54 26.00 

Table 11.4: Slope distribution overlaps for various extraction schemes, Hamming window.

Limiting the full-band to 60–8000 Hz resulted in an increase of the distribution overlap. Since
this limiting was supposed to exclude non-speech components from the slope extraction scheme, this
result is somewhat surprising. A possible explanation can be as follows. During the voiced speech
production, besides vocal fold vibration, a noise component can also participate in the vocal tract
excitation (see Sec. 3.1), causing an occurrence of speech production-related components at F0 sub-
harmonics. In such a case, the subharmonics may carry information contributing to the neutral/LE
discrimination. Another reason for this result can lie in the inaccuracy of voiced segment boundary
estimation. The estimated voiced regions could also contain portions of unvoiced speech which have
significantly different slopes, thereby affecting the spectral slope distributions.
For the band 1000–5000 Hz, the neutral and LE slope distributions overlap completely, indicating

that spectral slope does not provide any neutral/LE discriminability in this case. The last two setups
represent the cases when this ‘inefficient’ frequency band is excluded from the extraction scheme. As
could have been expected, both of them provide the lowest distribution overlaps compared to the
other setups. The best discriminability is displayed by the spectral slope extracted from the band of
60–1000 Hz, yielding an overlap of 26%.

11.1.4 Classification Feature Vector

Based on the analyses conducted in Chap. 6 and Sec. 11.1.3, the following features were chosen
to participate in the set of CFV candidates:

• SNR – mean SNR (dB) per utterance, proportional to vocal intensity (see Sec. 6.3),

• F0 – mean F0 per utterance. Two frequency representations: (1) linear frequency scale, F0Hz

(Hz), (2) logarithmic frequency scale – cents of a semitone, F0% (%), defined:

F0% = 1200 log2

F0

Fref
(%) , (11.5)
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Figure 11.3: Normalized slope distributions extracted for various frequency bands.

where Fref is the reference frequency (chosen Fref = 60 Hz) and F0% is the frequency difference
between F0 and Fref in cents of a semitone,

• σF0 – standard deviation of F0 per utterance. Two representations: (1) linear frequency scale
– σF0Hz (Hz), (2) logarithmic frequency scale – the tonal deviation σF0% (%), deviation of F0

represented in semitone cents, defined similarly to F0%,

• Spectral slope – mean spectral slope per utterance, extracted from the spectral band of 60–1000
Hz, Slope60−1kHz (see Sec. 11.1.3).

Mean values of F0, SNR, and spectral slope, as well as σF0 were extracted within utterances, yielding
a single feature vector per each utterance. Besides the linear representation of F0 and σF0, their
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11.1 Classification of Neutral/LE Speech

semitone variants F0%, σF0% were also included in the candidate set, representing pitch measures
inspired by human pitch perception8.
To evaluate neutral/LE discriminability provided by the particular CFV candidates, each was con-

secutively employed in the training and testing of a single-feature MLP classifier. For this purpose, the
development set described in the beginning of Sec. 11.1 was split into a training set (2202 utterances)
and CV set (270 utterances). Both sets comprised utterances from the same male and female speakers.
Performances of the single-feature classifiers are shown in Table 11.5. UER stands for the Utterance
Error Rate – the ratio of the number of incorrectly classified neutral/LE utterances to the number of
all classified utterances. The Train row represents the closed test performances and the CV row rep-
resents the open test performances. The best neutral/LE discriminability was displayed by SNRdB ,

Set SNRdB F0Hz  F0Hz F0%  F0% Slope0-8kHz Slope60-1kHz

Train (# 2202) 
10.9 

(9.6–12.2) 
23.8 

(22.0–25.5) 
25.8 

(23.9–27.6) 
25.5 

(23.7–27.3) 
36.3 

(34.3–38.3) 
24.0 

(22.2–25.8) 
19.3 

(17.6–20.9) UER 
(%)

CV (# 270) 
12.2 

(8.3–16.1) 
18.5 

(13.9–23.2) 
25.6 

(20.4–30.8) 
24.8 

(19.7–30.0) 
31.1 

(25.6–36.6) 
20.4 

(15.6–25.2) 
18.2 

(13.6–22.7) 

Table 11.5: Efficiency of single-feature trained MLP classifier, merged male and female development sets.
Mean values followed by 95% confidence intervals in parentheses. Gender-independent task.

followed by Slope60−1kHz. For a comparison, also Slope0−8kHz was tested. Confirming the obser-
vations from the analysis of distribution overlaps, Slope60−1kHz outperforms the full-band spectral
slope. The semitone representations of F0 and σF0 provided lower neutral/LE discriminability than
their linear frequency equivalents. The performance drop in the case of F0% seems to result from the
logarithmic compression of the frequency axis which reduces difference between mean neutral and LE
pitch. The tonal variation σF0% was outperformed by σF0Hz , suggesting that tonal deviations within
the same talking style differ for females and males. Based on these results, the following features were
chosen to form the CFV set: SNRdB , F0Hz, σF0Hz , Slope60−1kHz. Normalized distributions of the
CFV features are shown in Fig. 11.4.
Before normalizing the distributions, occurrences of the features extracted on the utterance level

were weighted by the actual utterance lengths. In the plots on the right side, single-feature MLP
posterior probabilities are shown, where Pr (N) and Pr (LE) are probabilities that the feature comes
from neutral or Lombard utterance, respectively. It can be noted that overlaps of the normalized
feature distributions shown in Fig. 11.4 do not simply correspond to the classification performances
reached by the single-feature MLP classifier in Table 11.5. This is caused by the fact that the feature
occurrences seen by the MLP during training and testing are proportional to the number of utterances
generating the feature values (the MLP was trained to perform classification at the utterance level,
that is, each training utterance was represented by a single feature vector during MLP training),
while the depicted distributions are proportional to the number of occurrences weighted by the total
duration of the utterances9.

8Due to the logarithmic characteristic of human pitch perception, the F0 variations in male and female speech that
would be perceived as equivalent, i.e., variations by the same number of semitones, differ when represented in the linear
scale (Hz). In particular, a semitone step in female speech typically corresponds to a bigger change in F0Hz than in males
as the female mean F0 occurs at higher frequencies, see Sec. 6.4. If males and females produced similar or close tonal
deviation in neutral speech and LE speech, respectively, σF0% would represent a gender-independent variant of σF0Hz.

9Moreover, MLP models prior probability of each class (the probability of occurrence of a sample from the given
class) while the normalized distributions discard this information. However, the development set used in the presented
experiments was well balanced, comprising 1238 neutral utterances and 1234 LE utterances, hence, the priors can be
considered equal.
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Figure 11.4: Normalized distributions of CFV features, merged male and female development sets. OL –
distribution overlaps. Dashed and dash-dotted plots: left – DM–GMLC PDFs, right – single-feature ANN

(MLP) posteriors (gender-independent classification).
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11.1 Classification of Neutral/LE Speech

Subsequently, MLP classifier and Gaussian ML classifier (GMLC) were trained on the development
set parameterized by CFV. The development set comprised both male and female utterances. Two
variants of the GMLC were trained. The first variant comprised PDFs employing full covariance ma-
trices (FM–GMLC), the second variant employed diagonal covariance matrices (DM–GMLC). Means
and variances of DM–GMLC PDFs are shown in Fig. 11.4. PDFs employing DM are frequently used
in ASR systems for their computational efficiency. When using DMs, it is assumed that the modeled
feature vector components are independent and, hence, their variances (forming the diagonal of the
matrix) define completely the covariance matrix while the non-diagonal components, covariances, are
equal to zero. If the CFV components are not completely independent, the DM PDFs will provide
less accurate models of the data sets compared to FM PDFs.
Performance of MLP, DM–GMLC, and FM–GMLC was tested in the closed and open tests. The

closed tests were carried out on the development set which was used for training the classifiers. The
open tests employed open sets described in the beginning of Sec. 11.1. In the case of MLP, the
development set was further split into the training set, representing the data used for training the
MLP parameters, and the CV set, which was used to control convergence of the MLP’s training.
Means and standard deviations of utterance durations in the development set and open test set are
shown in Table 11.6, and classification results are presented in Table 11.7, 11.8. Confusion matrices
of the open test classification are in Table 11.9.

Set #Utterances 
Devel 2472 4.10 1.60 
Open 1371 4.01 1.50 

sUtterT sUtterT

Table 11.6: Means and standard deviations of utterance durations in devel. set and open test set.

Set Train CV Open 
# Utterances 2202 270 1371 

UER (%) 
9.9 

(8.7–11.1) 
5.6 

(2.8–8.3) 
1.6 

(0.9–2.3) 

Table 11.7: MLP classifier – CFV-based classification; closed/open test, merged male and female utterances,
train set + CV set = devel set. Mean values followed by 95% confidence intervals in parentheses.

Gender-independent task.

Set Devel FM Open FM Devel DM Open DM 
# Utterances 2472 1371 2472 1371 

UER (%) 
6.6 

(5.6–7.6) 
2.5 

(1.7–3.3) 
8.1 

(7.0–9.2) 
2.8

(1.9–3.6) 

Table 11.8: GMLC classifier – CFV-based classification; closed/open test, merged male and female utterances,
FM/DM – full/diagonal covariance matrix. Mean values followed by 95% confidence intervals in parentheses.

Gender-independent task.

The best performance in the closed test was displayed by FM–GMLC. In the open test, MLP
reached the best accuracy, followed by FM–GMLC and DM–GMLC. The MLP’s performance gain
on GMLC classifiers was statistically significant while the differences between the FM–GMLC and
DM–GMLC performances were insignificant.
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Chapter 11: Two-Stage Recognition System (TSR)

MLP FM–GMLC DM–GMLC 
Set 

Neutral LE Neutral LE Neutral LE 
Neutral 591 13 600 4 598 6 

LE 9 758 30 737 32 735 

Table 11.9: GMLC and MLP classifiers – open test confusion matrices, merged male and female utterances.
Mean values followed by 95% confidence intervals in parentheses. Gender-independent task.

Consistently for all three systems, the classification accuracy on the open test set reached higher
values than on the development set. This somewhat surprising observation can be explained based on
the results of the digit recognition experiments conducted in Sec. 9.2.3. There, the development/open
sets were subsets of the development/open sets used in the actual classification task. As shown in Table
9.1, the open LE test set WERs were consistently higher than the development LE set WERs. Note
that in that particular experiment the ‘development’ set was neither used for training the recognizer,
nor for adjusting the front-ends, and, hence, represented only another open data for the recognizer.
This suggests that the open LE set recordings capture a higher level of LE compared to the development
LE set. This hypothesis is supported by the results of the actual classification task, where the open
LE set utterances are more easily distinguishable from the open neutral utterances compared to the
development LE set.
As shown in Table 11.9, false rejections and acceptances10 are best balanced in the MLP. In the

GMLC, further adjustment of the likelihood ratio threshold λ would be required to approach the
matrix symmetry.

11.2 TSR Experiment

Finally, a TSR system consisting of the neutral/LE classifier in combination with the neutral/LE-
dedicated recognizers was formulated (see Fig. 11.5). Front-ends for the dedicated recognizers were
chosen based on the performance tests conducted in Sec. 9.4.2 (see Table 9.5). RFCC–LPC was
chosen as a front-end of the LE recognizer due to its superior performance on Lombard speech. For
neutral speech, PLP–DCT, PLP, and MFCC–LPC provided the best results. Since the performances
were statistically identical in all three cases, the standard PLP features were selected as a front-end
for the neutral recognizer11. Three TSR variants, employing MLP, FM–GMLC, and DM–GMLC,
were compared. The LE-robust RFCC–LPC features were designed for female speech, hence, the TSR

Neutral/LE 
Classifier 

Neutral Recognizer 

LE recognizer 

Speech 
Signal 

Estimated 
Word 

Sequence 

Figure 11.5: Two-Stage Recognition System.

experiments were conducted exclusively on female utterances. Gender dependent acoustic models of
the dedicated recognizers were trained on the train set described in Sec. 9.1. The neutral and LE

10See Sec. 11.1.1.
11It is noted that PLP and RFCC–LPC share, besides the difference in the filter banks used, a similar extraction
scheme, which is convenient when optimizing the system implementation.
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11.3 Conclusions

open test sets were also preserved as in Sec. 9.1, except the files where SNR Tool12 failed to extract
SNR were excluded, reducing the neutral set from 1450 to 1439 digits and the LE set from 1880 to
1837 digits. The TSR task was applied on the merged neutral and LE open test sets.
To allow for comparison of the TSR performance with the optimal case when all neutral data were

processed by the neutral recognizer and all LE data by the LE recognizer, transcriptions obtained from
the TSR system were split into two groups, neutral and LE, according to the real talking style origin
(neutral/LE) of the input speech files. Results of the TSR experiment are shown in Table 11.10. The
first two rows of the table represent the cases when the neutral and LE open test sets were processed
by a single recognizer employing either PLP or RFCC–LPC features. The results displayed by PLP on
the neutral set and by RFCC–LPC on the LE set represent optimal performances given the systems
available in this experiment and given the utterance talking style (neutral/LE) assignments provided
by CLSD‘05.

Set Real – neutral Real – LE 
# Female digits 1439 1837 

PLP 
4.3 

(3.3–5.4) 
48.1 

(45.8–50.4) 

RFCC–LPC 
6.5 

(5.2–7.7) 
28.3 

(26.2–30.4) 

MLP TSR 
4.2 

(3.2–5.3) 
28.4 

(26.4–30.5) 

FM–GMLC TSR 
4.4 

(3.3–5.4) 
28.4 

(26.4–30.5) 

WER 
(%) 

DM–GMLC TSR 
4.4 

(3.3–5.4) 
28.4 

(26.3–30.4) 

Table 11.10: Performance of single recognizers and TSR systems. Mean values followed by 95% confidence
intervals in parentheses.

It can be seen that all three TSR systems reached optimal performance on both neutral and LE sets,
significantly gaining on the single recognizers when exposed to mismatched talking styles (PLP/LE
speech, RFCC–LPC/neutral speech). MLP TSR displayed an even slightly higher accuracy on the
neutral set than the ‘optimal’ PLP recognizer. This suggests that some utterances labeled in CLSD‘05
as neutral or LE were acoustically closer to the opposite talking style and the classifier was able to
assign them to a more appropriate style class. No performance loss was observed when switching from
FM–GMLC TSR to DM–GMLC TSR, hence, computationally less demanding DM–GMLC may be
an efficient classifier choice for TSR-based systems.

11.3 Conclusions

Adapting an ASR system towards a target environmental scenario and talking style may yield
considerable performance improvements, however if often comes at a cost of weakening the system’s
resistance to condition drifts. An example of this phenomenon can be found in Chap. 9 where
improving the front-end efficiency for the purposes of LE task was proportional to decreasing its
performance in the neutral task (see Fig. 9.3). This chapter addressed such a performance tradeoff
by combining neutral/LE specific sub-systems into one unit. At the input stage of the system, talking
style comprised in the actual utterance is classified and subsequently, the utterance is passed to the
corresponding neutral/LE-dedicated recognizer.

12See Sec. 4.3.1.
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Chapter 11: Two-Stage Recognition System (TSR)

During the system design, features suitable for gender/phonetic content-independent neutral/LE
classification were searched first. Based on the analysis of neutral and LE feature distributions, SNR,
F0, σF0, and spectral slope were chosen to form CFV. It was found that linear F0 representation (Hz)
provides better neutral/LE discrimination compared to the logarithmic one (cents of semitones). Dis-
criminative properties of spectral slope extracted from various frequency bands were studied, finding a
band of 60 Hz–1 kHz to yield superior results. Subsequently, MLP and Gaussian maximum likelihood
neutral/LE classifiers were trained using the proposed CFV. In the open tests, MLP displayed the best
classification accuracy. GMLC employing full and diagonal covariance matrices reached comparable
results. This suggests that, similarly to GMM/HMM ASR systems, in neutral/LE classification diago-
nal covariance matrices provide efficient substitutes for computationally more complex full covariance
matrices.
Finally, a two-stage recognition system comprising neutral/LE classifier and neutral/LE-dedicated

recognizers was formulated. The neutral-dedicated and LE-dedicated recognizers employed PLP and
RFCC–LPC, respectively (i.e., features that displayed superior performance for the given talking styles
in the previous experiments). Both recognizers were trained using neutral speech samples only. The
two-stage recognition system yielded an improvement from 6.5% to 4.2% WER on neutral speech and
from 48.1% to 28.4% WER on LE speech when compared to the dedicated recognizers exposed to
adverse talking style (RFCC–LPC recognizer exposed to neutral speech and PLP recognizer exposed
to LE speech). Compared to previous studies using style-dependent subsystems to formulate a style-
independent recognizer, the newly proposed TSR requires LE data just for training the neutral/LE
classifier while only neutral speech samples are required for training the neutral/LE-dedicated recog-
nizers (it is noted that training neutral/LE classifier requires considerably lower amount of data than
training acoustic models of an ASR system).
It can be assumed that performance of the neutral/LE classifier is dependent on the duration of the

classified utterance. For very short utterances comprising a limited amount of voiced segments, the
classification rate can be expected to drop considerably. Evaluation of the duration–WER dependency
of the proposed classifier is a matter of future work.
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Chapter 12

Conclusions

The goal of this thesis has been to study the speech production variations introduced by Lombard
effect and to design algorithms that increase the resistance of ASR systems to these variations. The
study was conducted in the following steps:

• Establishing a framework for speech feature tracking and ASR,

• Acquisition of Lombard speech database,

• Analysis of speech feature distributions in neutral and Lombard speech,

• Evaluation of the impact of Lombard effect on the performance of the ASR systems,

• Proposal of methods for Lombard effect-robust ASR.

The following sections summarize the outcomes of these steps and suggest future research directions
in the area of Lombard speech recognition.

12.1 Data Acquisition and Feature Analysis

• Acquisition of CLSD‘05: To address the problem of the sparse occurrence of LE in available
Czech speech corpora, a Czech Lombard speech database CLSD‘05 was acquired. The newly
proposed recording setup motivated speakers to maintain intelligible communication over simu-
lated background noise. The database comprises recordings of neutral and LE utterances from
26 speakers.

• Compensation for auditory feedback attenuation: During the CLSD‘05 Lombard speech record-
ing, speakers were provided a simulated noisy background through closed headphones. The
headphones caused attenuation of the speakers’ auditory feedback. To allow for elimination of
this undesirable effect in the future recordings, the attenuation by headphones was measured
and a transfer function of the compensation speech feedback determined.

• Design of a time-domain pitch tracker DTFE: A time-domain pitch tracker DTFE was proposed
and compared to five state-of-the-art pitch trackers on the reference database. DTFE displayed a
comparable performance to autocorrelation and cross-correlation algorithms on high SNR audio
channels while considerably reducing computational requirements of the other methods.

• Comparison of selected Czech speech corpora: Detailed analysis of speech collected in neutral and
adverse environments was conducted on two commercial databases and on the newly established
CLSD‘05 database. While the feature shifts due to LE were mostly negligible in the case of the
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Chapter 12: Conclusions

commercial databases, in CLSD‘05, considerable variations of excitation, vocal tract transfer
function, and phoneme durations were found, suggesting that CLSD‘05 recordings are strongly
affected by LE, and hence, valuable for further thesis experiments.

12.2 Newly Proposed Techniques for LE-Robust ASR

In particular, data-driven features, modified VTLN, formant-driven frequency warping, and two-
stage recognition employing neutral/LE classification and neutral/LE-specific recognizers were pro-
posed in this thesis. In addition, equalization of LE using a voice conversion system provided by
Siemens Corporate Technology, Munich, and model adaptation to LE using adaptation/recognition
framework provided by TUL Liberec were evaluated.
The methods were tested in ASR experiments incorporating various subsets of male/female gender-

dependent digit/LVCSR tasks, depending on the aims of the given method. A considerably higher ASR
deterioration by LE was observed in females, hence, part of the algorithms suppressing an impact of LE
on ASR focused on female speech exclusively. Efficiency of the individual LE-suppression approaches
in the female digit recognition task is compared in Fig. 12.1. Due to a relatively high number of
algorithm variants proposed throughout the thesis, only setups yielding the best performance are
presented for each suppression approach. Blue and yellow bars in the figure represent baseline WERs
on neutral and Lombard speech, respectively, red bars denote WER on Lombard speech after the
LE-suppression techniques were applied.

0

10

20

30

40

50

60

Model Adapt to
LE - SI

Model Adapt to
LE - SD

Voice
Conversion -

CLE

Modified FB -
RFCC-LPC

VTLN
Recognition -

Utt. Dep. Warp

Formant
Warping

MLP TSR

Baseline Neutral
Baseline LE
LE Suppression

W
E

R
 (%

)

Comparison of proposed techniques for LE-robust ASR 

Figure 12.1: A comparison of proposed techniques for LE–robust ASR – female digit recognition task.

Baseline performances varied across the experiments due to differences in the recognizers and data
sets used, however, effectiveness of the individual methods can still be easily compared.
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12.2 Newly Proposed Techniques for LE-Robust ASR

• Acoustic model adaptation was used to transform means of neutral models towards LE adaptation
data1. Both speaker-dependent (SD) and speaker-independent (SI) adaptation (Table 7.1 – ‘SD
adapt to LE’ and ‘SI adapt to LE – disjunct speakers’) provided the highest WER reduction on
LE speech compared to the other methods2. Model adaptation requires availability of a sufficient
amount of labeled adaptation data. In the real-world system, adaptation data can be collected
on-the-fly. A presence of strong LE may slow down the adaptation convergence as the accuracy
of transcriptions estimated from decoding the adaptation data by the initial (unadapted) neutral
acoustic models will be presumably quite low.

• Voice conversion (VC) was trained on parallel Lombard/neutral utterances and used for nor-
malizing Lombard speech towards neutral3. VC was applied on the speaker-dependent level to
transform both formants and excitation component of LE speech towards neutral (CLE) or to
transform only excitation component (CLEF0). CLE considerably improved accuracy of female
digit recognition (Table 8.6). In the female LVCSR task and in the male digit and LVCSR tasks,
CLE was not effective. In some of these cases, CLEF0 helped to reduce WER. The limited
success of VC can be attributed to the observed inaccuracies of formant transformation. When
applying VC in the real-world ASR, the recognition system will have to contain a speaker iden-
tification unit to choose actual speaker-dependent voice conversion models (which will increase
the complexity of the system).

• Features employing modified filter banks – contribution of frequency sub-bands to speech recog-
nition performance was analyzed, yielding curves of linguistic information distribution across
frequency. Based on the information distributions, new front-end filter bank replacements for
MFCC and PLP features were designed, providing superior robustness to LE. PLP with modified
filter bank (RFCC–LPC) reached the second best performance improvement4 on LE speech (af-
ter model adaptation) when employed in a neutral-trained recognizer, see Fig. 12.1 (Table 9.5).
While RFCC–LPC was designed exclusively for female LE speech, it can be expected that the
proposed design scheme will be effective also for male speakers. No modifications of an ASR sys-
tem architecture are needed when replacing a standard front-end by RFCC–LPC. Furthermore,
novel 20Bands–LPC features replacing the bark-distributed trapezoidal filter bank in PLP by 20
equidistant rectangular filters were proposed. 20Bands–LPC considerably outperformed MFCC
and PLP on Lombard speech while preserving performance of the former features on neutral
speech. This suggests that auditory models-based filter banks do not necessarily represent the
optimal choice for ASR front-ends.

• Vocal tract length normalization (VTLN) – a modified vocal tract length normalization method
was proposed. In the standard VTLN recognition procedure, the warping factor is determined
with respect to the utterance transcription estimated using the normalized models. However,
the mismatch between Lombard speech to be recognized and normalized neutral models would
result in very inaccurate utterance transcription estimates and warping estimates. The modi-
fied approach addresses this issue by considering all transcription estimates obtained from the

1The framework was provided and the model adaptation conducted by Dr. Petr Červa, Technical University of
Liberec. Author of the thesis designed the experiments and provided data for adaptation.

2In the adaptation task, the baseline neutral and LE WERs are higher than in other experiments because here, a
LVCSR system was used for the digit recognition.

3Using voice conversion (VC) for normalization of Lombard speech was proposed by Prof. Harald Höge, Siemens
Corporate Technology, Munich, Germany. David Sündermann (Siemens) provided the VC system (Sündermann et al.,
2006b) and conducted the system training and data conversion. Author of the thesis provided data for VC training and
for conversion, analyzed impact of VC on speech features, and evaluated VC efficiency in the ASR experiments.

4The baseline WERs shown for RFCC–LPC in Fig. 12.1 refer to the performance of the recognizer with unmodified
PLP.
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warping grid and picking the most likely one. The modified VTLN provided significant improve-
ments of recognition accuracy on both female and male LE speech (Table 10.1). Performance
of utterance-driven and speaker-driven warping was compared. The results shown in Fig. 12.1
refer to the performance of VTLN recognition employing utterance-driven frequency warping.
Compared to the standard GMM/HMM ASR systems, a multiple decoding pass for each utter-
ance is required in VTLN recognition. The number of the decoding repetitions is given by the
interval in which the optimal warping candidate is searched and by the coarseness of the search
grid. The impact of limiting the speech bandwidth on distribution and evolution of frequency
warping factors was also studied.

• Formant-driven frequency warping – a linear function mapping mean LE F1–F4 to the neutral
ones was searched and used to warp incoming LE utterances before entering a neutral ASR
system. For both females and males, formant-driven warping displayed considerable performance
gains (Table 10.6). In the presented experiments, the gender-dependent warping function was
determined from a relatively large amount of open test set data. To reach more flexible warping,
the initial formant-mapping function can be updated on-the-fly by the estimates obtained from
the incoming utterances. Formant-driven warping assumes that a reliable formant tracking is
available.

• Classification of neutral/LE speech: Based on the speech feature distributions found in neutral
and LE speech, a set of gender/lexicon-independent parameters effective for neutral/LE classifi-
cation was proposed (CFV). Subsequently, multi-layer perceptron-based and Gaussian maximum
likelihood-based neutral/LE classifiers were built, reaching utterance classification accuracy on
the open test set over 97%.

• Two-stage recognition system (TSR) – adapting an ASR system towards a target environmental
scenario and talking style may yield substantial performance gains, however, often at a cost of
deteriorating the system’s resistance to condition variations. The proposed TSR attempts to
exploit the superior performance of the neutral/LE-specific recognizers operating in the matched
conditions, while, at the same time, preserving the system’s robustness to the neutral/LE con-
dition changes. In the first stage of TSR, neutral/LE classifier decides whether the incoming
utterance is neutral or Lombard. Subsequently, the utterance is passed to the corresponding
neutral-specific or LE-specific recognizer. This scheme ensures that the neutral/LE-specific rec-
ognizers always face utterances of similar or acoustically close talking style. When exposed to the
mixture of neutral and LE utterances, TSR significantly outperformed isolated neutral-specific
and LE-specific recognizers (Table 11.10). The proposed TSR system requires LE data just for
training the neutral/LE classifier while only neutral speech samples are required for training the
neutral/LE-dedicated recognizers (note that training neutral/LE classifier requires considerably
lower amount of data than training acoustic models of an ASR system).

12.3 Future Directions

Although many of the approaches and algorithms proposed in this thesis extend concepts suggested
by previous studies on LE, they still represent initial steps for an ultimate solution to the LE-robust
ASR. Future studies might consider to explore, among others, the following topics:

• On-the-fly model adaptation and formant-driven warping: To increase the recognizer’s resistance
to speaker/talking style changes, acoustic models and front-end warping functions can be adapted
to the incoming data on-the-fly. Since the adaptation parameters will be estimated from a limited
amount of samples, update rate constrains assuring convergence of the adaptation have to be
established.
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• Two-stage system employing a codebook of LE level-specific recognizers: The type and level
of background noise as well as the communication scenario (distance between a speaker and
listeners, number of listeners) affect the rate of speech production changes. Extending the
current TSR setup for a set of recognizers addressing separately different levels of LE may bring
further performance gains. Based on the experimental results presented in this thesis, using
fixed LE level-dependent equalization, LE level-specific front-ends, or model adaptation may be
effective means for obtaining the neutral-trained LE level-specific recognizers,

• A comprehensive analysis of speech feature variations in various types and levels of environmental
noise: In the past works, continuous dependencies of noise level/vocal effort (Lombard function)
and vocal effort/fundamental frequency were found, see Chap. 3. Analyzing how other speech
parameters (spectral slope, formants) vary with the level and type of background noise would be
valuable for the design of automatic speech normalization driven exclusively by the estimated
noise parameters,

• Neutral/LE talking style assessment in spontaneous speech employing lexical information: (Lee
and Narayanan, 2005) has shown that in spontaneous speech, speakers tend to use specific
‘emotionally’ salient words to express emotions. It can be assumed that the presence of strong
noisy background may also affect the vocabulary of spontaneous speech. E.g., speakers may
prefer using words more intelligible in noise rather than words containing prevailing number of
consonants or confusable words. In such a case, lexical information could complement acoustic
features as a cue to the neutral/LE style classification.
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