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Abstract—The focus of this study is on gender classification
from speech signals produced by adults. Automatic estimation of
gender has a broad variety of applications ranging from forensics,
authentication systems, diarization of meetings, or user-centered
interactive agents, and plays a crucial role also in ‘internal’
technological solutions aimed at improving model accuracy, such
as selection of gender-specific acoustic models. In this study, we
explore scenarios where only a limited amount of real training
data is made available for training of a 2-D convolutional neural
network classifier. To address sparsity of the training data, the
training set is augmented by synthetically generated samples
produced by a generative adversarial network. The adversarial
network is given access only to the same limited real-world
training dataset as the gender classifier. We demonstrate that even
when 80 % of the already limited training data are removed and
replaced by synthetic spectrograms, the gender classifier models
can still be successfully trained thanks to the augmentation and
maintain competitive performance.

Index Terms—gender detection from speech, GAN-based aug-
mentation, synthetic spectrograms

I. INTRODUCTION

Spoken language represents one of the most prominent

forms of human communication and, with the recent advance-

ments in speech technologies, starts to become a valid modal-

ity also for human–computer interactions. Acoustic speech

signals contain both linguistic information, which can be

transcribed to text, and paralinguistic information about the

speaker’s identity [1], gender [2], speaking style [3], emo-

tional state and cognitive load [4], stress [5], physiological

properties (e.g., height [6] and age [2]), or health condition

[7]. In this study, our focus is on gender estimation from

adult speech. Gender information is instrumental for numerous

applications in forensics, security, personalized spoken dialog

systems and automated interactive agents, automatic segmen-

tation/diarization of audio streams, and can be utilized during

training and deployment of speech based systems for speech

feature equalization or building and engaging gender-specific

acoustic models for better performance [8]. Knowledge of a

subject’s gender can help improve modeling and prediction of

other paralinguistic speaker traits from speech [9].

Gender traits are displayed in speech signals across various

feature dimensions. Following the linear model of speech

production (see Fig. 1, [10]), parameters such as fundamental

frequency F0 [11], [12], vocal quality and pitch [13], spectral

slope [11], vocal tract length [14], and acoustic-phonetic

spaces [11], [15] have been known to be impacted by gender

of the speaker.

Fig. 1. Linear model of speech production.

Initial work on automatic gender recognition typically em-

ployed handcrafted features and a variety of classification

back-ends. [16] used speech formant estimates as features

for gender classification. [17] trained two hidden Markov

models (HMM) to represent statistical distributions of pitch in

males and females while [18] combined acoustic and prosodic

features. The authors in [19] performed gender classification

on short-term spectra which were extracted from 1-second

segments and passed to a neural network classifier. Later, [20]

proposed a two-stage classifier where the first stage identified

gender based on pitch and samples identified as ambiguous

were passed to the second stage that utilized a Gaussian

Mixture Model (GMM) classifier. [21] combined acoustic,

prosodic, and voice quality features and fused multiple back-

end classifiers while [22] adopted paradigms popular from

speaker identification, GMM–Universal Background Model

(GMM–UBM) and GMM–Support Vector Machines (GMM–

SVM), together with a Mel Frequency Cepstral Coefficients

(MFCC) front-end.
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Fig. 2. Learning and generation of GAN-based spectrograms.

The emergence of deep learning over a decade ago, followed

by discoveries of new neural network architectures, have

enabled tackling speech engineering tasks that were previously

confined to laboratory settings. At the same time, due to the

extensive number of trainable parameters in deep learning

models, modern speech systems typically require access to

larger amounts of training data compared to previous machine

learning solutions. Many recent gender classifiers rely on deep

learning and are typically implemented as end-to-end systems;

for example [2] applied convolutional neural network (CNN)

with a spatially designed multi-attention module (MAM) on

speech spectrograms. This being said, other state-of-the-art

studies successfully combine handcrafted features and deep

learning strategies, such as [23] where a 1-D CNN was used

to model MFCC, Mel spectrogram, and Chroma features.

Our focus in this study is on speech-based gender classifi-

cation in conditions where only sparse data are available for

training. We build a 2-D CNN-based gender classifier derived

from the AlexNet architecture [24] and train it on a very

small subset of the LibriSpeech database [25]. In order to aid

the training process, we augment the available real samples

by synthetic samples generated by a Generative Adversarial

Network (GAN) [26]. This GAN is trained on the same small

set of available speech samples and its task is to generate

gender-specific speech spectrograms that would meaningfully

reflect gender-specific traits seen in real spectrograms. These

artificial spectrograms are then used to augment the real speech

sample spectrograms for the CNN gender classifier training.

We demonstrate that with such augmentation, even if the

amount of real training samples is reduced to about 20 %

of the original size, the GAN-based augmentation assures

nearly intact classification performance. We disclose that a

preliminary version of this study was presented in the form of

a 1-paragraph abstract in [27].

The remainder of the text is organized as follows. Section

2 provides a brief overview of regularization techniques used

in deep learning. Section 3 outlines the experimental setup,

analyzes selected speech production features known to carry

gender traits, presents examples of GAN-generated spectro-

grams, and details results of gender classification experiments

under various augmentation conditions and in the presence of

additive noise. Section 4 concludes the study.

Fig. 3. Example of spectral slope extraction from short-term spectrum.

II. REGULARIZATION IN DEEP LEARNING

Deep learning has been successfully applied to various

domains including image processing, speech recognition, or

medical imaging. Data coming from these domains pose simi-

lar challenges when it gets to modeling and classification–high

variability of feature distributions, limited access to data, and

limited/costly access to ground truth transcriptions (labels).

Given the large number of trainable parameters in a typical

deep learning model, there is a high risk of overtraining in

scenarios where limited training data are available.

One approach to improve generalization performance is

through modification of the model’s architecture. For example,

modified architectures stemming from AlexNet have been

recently introduced–VGG-16 [28], ResNet [29], Inception-V3

[30], and DenseNet [31].

Another way to reducing the danger of overtraning is

regularization. The purpose of regularization techniques is

to assure good generalization and robustness of the models

[32], [33], [34], [35]. Some approaches to regularization are

adding a term into the loss function [32], dropout regular-

ization that masks activation values of random neurons dur-

ing training [36], batch normalization [37], transfer learning

[38], pretraining [39], and one-shot and zero-shot learning

[40]. Data augmentation addresses the issue of overfitting by

introducing a larger, more comprehensive dataset. There are

numerous data augmentation techniques available, all relying

on the assumption that the original data can provide additional

information to the training process if they are processed

by various transformations. Such transformations are often

introduced via data warping or oversampling [35]. Warping

can transform existing samples via geometric [41] and color

[42] manipulations, random erasing [43] and noise adding [44]

while oversampling creates synthetic samples that are used to

extend the existing dataset.

Generative Adversarial Networks (GANs) [26] provide an

excellent means for synthetic image generation [45] and have

been employed in image synthesis from text [46], genera-

tion of high-resolution images from low-resolution sources

[47], image-to-image translation [48], high-resolution image

blending [49], restoration of missing parts in images [50],



Fig. 4. Fundamental frequency F0 distributions in male and female subjects.

image denoising, and brain MRI synthesis [51]. The GAN

structure is outlined in Fig. 2 and can be broken down

into two parts–(i) a generator which is trained to produce

realistic images and (ii) a discriminator which is trained to

distinguish authentic vs. synthetic images. Both the generator

and discriminator are trained together. The generator’s goal

is to fool the discriminator while the discriminator gets better

and better in distinguishing real and synthetic images, which in

turn forces the generator to refine its outputs to better match

real-world references. Once the GAN training is completed,

the output from the generator is used to produce synthetic

images and the generator is usually discarded. As indicated

in the literature review above, GAN’s are excellent candi-

dates for oversampling-style data augmentation and have been

successfully employed in that function in various domains.

Our goal in this study is to investigate efficiency of GAN-

based augmentation in the context of gender classification

from speech spectrograms.

III. EXPERIMENTS

The following sections outline results of speech production

analyses, present examples of GAN-generated spectrograms,

and study performance of a CNN-based gender classifier when

given access to various augmentation rates during training and

Fig. 5. Formant F1–F2 and F3–F4 scatter plots for male and female subjects;
voiced segments.

Fig. 6. F1–F2 and F3–F4 formant distributions; voiced segments.

when exposed to speech samples corrupted by additive noise

at various signal-to-noise ratios (SNR).

A. Material

The speech samples utilized in the following experiments

are drawn from the LibriSpeech corpus [25]. The training set

consists of twenty male and twenty female sessions, the cross-

validation set is formed by ten male and females sessions,

each, and the open test set also consists of ten male and female

sessions, each. Each speaker session comprises 23 utterances.

The training, cross-validation, and test sets contain mutually

exclusive speakers (no speaker overlap). When all samples

available in all the speaker session are preserved, the total

duration per each set is as follows: Male Training–63 minutes,

Female Training–58 minutes, Male CV–29 minutes, Female

CV–29 minutes, Male Test–30 minutes, and Female Test–25

minutes. For the purpose of the following speech production

analyses, all speaker session samples were preserved and the

training, CV, and test sets were pooled together per gender. For

the GAN and CNN classifier training, only a limited subset of

the samples is made available.

B. Analysis of Gender Traits in Speech Production

As outlined in Introduction, a number of speech production

parameters can be expected to carry gender cues. To verify

the rate of these acoustic cues in the subset of LibriSpeech,

Fig. 7. Spectral slope distributions in male and female subjects.



Fig. 8. Example of GAN learning stages in spectrogram generation.

fundamental frequency F0, first four formant center frequen-

cies (F1–F4) and spectral slopes are analyzed. Fundamen-

tal frequency and formant frequencies were extracted using

WaveSurfer [52]. Spectral slopes were extracted by a script

written in Matlab which fits straight lines (by means of linear

regression) into short-term logarithmic spectra plotted over

a logarithmic frequency axis (see an example in Fig. 3).

Formant frequencies and spectral slopes were extracted only

from voiced segments of the utterances, where F0 labels were

used to identify voiced island boundaries. Fig. 4 provides box

plots for male and female F0 distributions.

Fig. 5 shows F1–F2 and F3–F4 formant scatter plots for

both genders. It can be seen that while the acoustic-phonetic

spaces overlap in the formant planes, female formant center

frequencies tend to be higher across all four formants. Formant

distributions are further detailed in Fig. 6. Finally, spectral

slope box plots are shown in Fig. 7. It can be seen that for

all studied production parameters–fundamental frequency, first

four formant locations, and spectral slopes in voiced segments,

there are prominent differences between genders.

Fig. 9. Gender classifier–learned convolutional layer kernels and examples
of kernel-filtered spectrograms.

Fig. 10. Effect on substitution of authentic training samples by GAN-
generated spectrograms on gender classification performance; male training
data substitutions; training on 100 samples per gender; CV–performance on
cross-validation set, Test–performance on open test set.

C. GAN-Based Spectrogram Generation

This section discusses experiments with GAN-based syn-

thetic spectrogram generation. As outlined in Sec. 2, our

GAN contains generator and discriminator modules. The gen-

erator consists of a dense layer, reshape, 3 x bilinear 2-D

upsample, and convolutional 2-D transpose layers and outputs

3 x 400 x 160 pixel bitmaps (where 3 indicates the 3 R,

G, B components). Our discriminator block consists of two

discriminator modules. Discriminator 1 operates on full R, G,

B bitmaps and contains one convolutional layer with twelve

4 x 4 kernels followed by a dense layer with 16 neurons.

Discriminator 2 applies 4 x 4 max pooling on the R, G,

B bitmaps, followed by a convolutional layer with six 4 x

4 kernels and a dense layer with 12 neurons. Fig. 8 shows

an example of spectrogram bitmaps generated by the GAN

shortly after its random initialization and at subsequent stages

of its training. It can be see that as the training progresses, the

generated bitmaps gain stronger resemblance with real speech

spectrograms. At the same time, the example demonstrates that

even after the GAN training is fully completed, the generated

Fig. 11. Effect on substitution of authentic training samples by GAN-
generated spectrograms on gender classification performance; female training
data substitutions; training on 100 samples per gender; CV–performance on
cross-validation set, Test–performance on open test set.



synthetic spectrograms contain components that may reveal

their artificial nature to a trained eye. This being said, as will

be shown in the following section, these artifacts do not seem

to have a prominent impact on the augmentation process and

success of gender classifier training.

D. Gender Classification with Augmented Training

The architecture of our CNN-based gender classifier is

derived from AlexNet [24]. The input convolutional layer has

400 x 160 x 3 neurons and implements eight 8 x 8 2-D

kernels, followed by max pooling, flattening, a dense layer

with 32 neurons, and an output producing gender scores. For

the classification experiments, a subset totalling at 100 samples

(utterances) per gender was used as the training set. These

samples were uniformly drawn from the twenty male and

twenty female speaker sessions outlined in Sec. III.A. In the

baseline experiment, When retraining the CNN model from

scratch on this training set, the equal accuracy rate (EAR),

which is calculated as a complement of equal error rate (EER),

EAR = 100 − EER (%), was averaging at 99 %, which

indicates that this training set is sufficient for training without

any need for augmentation. Kernels learned by the CNN layer

are shown in Fig. 9, together with an example of an input

spectrogram and its filtered versions by the kernels. It can

be seen that each kernel highlights different regions in the

spectrogram that are then passed to the following layers. Given

the high accuracy of the classifier, the highlighted regions can

be expected to carry strong gender-specific information.

In the next step, the training set was reduced to 50 samples

per gender, causing the EAR to drop to 67.4 %. This indicates

that the model does not have access to sufficient amount

of data to avoid overfitting and hence, data augmentation

might be necessary. To explore the impact of GAN-based

augmentation, we iterated over varying sizes of real training

data that were made available for training of the CNN classifier

from scratch. In the initial iteration, the first CNN classifier

was given access to all 100 samples per gender for training. In

the second iteration, the second CNN classifier had access to

only 90 % of the real training samples for one gender and

the missing 10 % were replaced by synthetic spectrograms

generated by the GAN. At the same time, the GAN itself

had access only to the same 90 % of the real samples for its

training as the CNN classifier. Progressively, in each iteration

of this experiment, further 10 % of the real samples were

removed for the the selected gender’s training set, both for

the GAN and CNN models. At the same time, the GAN was

tasked with supplying the CNN with increasing number of

synthetic spectrograms so the total size of the training set (real

+ synthetic samples) would stay constant at 100 samples per

gender. Results of this experiments are detailed in Fig. 10 and

11. It can be seen that there is some performance variability

with different rates of real data substitution by GAN samples.

However, this may not be necessarily only due to the data

substitutions. Given that each GAN and CNN training starts

with random initialization, neither the GAN generator or the

CNN gender classifier are guaranteed to converge with the

Fig. 12. Comparison of CNN-based and fully-connected gender classifier
performance on noisy data; training on 100 samples per gender contaminated
by white noise at SNR of 7 dB.

same success rate every time even if an identical training

set is provided. However, in spite of these considerations,

it can be seen that replacing up to about 80 % of the real

samples by GAN-generated spectrograms helped maintaining

a competitive classification accuracy which by far exceeded the

67.4 % EAR seen in the initial experiment with 50 % training

data reduction and no augmentation engaged.

Finally, robustness of the CNN gender classifier was com-

pared to a fully connected setup. Here, the 100 real training

samples per gender were mixed with white Gaussian noise

at 7 dB SNR and used for the CNN/fully connected (FC)

network training. The CNN and FC gender classifiers were

then exposed to the test set corrupted by white noise at SNR’s

from 1 to 10 dB SNR. As can be seen in Fig. 12, the FC setup

provides somewhat better performance at low SNR’s up to

6 dB. From 7 dB up, the CNN setup has a slight edge. It is also

noted that from 8 dB up, both the CNN and FC setups operate

at accuracy rates comparable to the clean test set scenario.

This demonstrates benefits of noise-based data augmentation.

IV. CONCLUSIONS

This study investigated efficiency of GAN-based data aug-

mentation in the context of gender classification from speech.

The GAN generator was trained to produce gender specific

synthetic spectrograms that were then used to extend a sparse

real data training set. The evaluation experiments suggest

that augmentation with synthetic spectrograms can notably

improve success of a CNN model training when only limited

real training samples are available. In addition, we have

experimentally confirmed benefits of data augmentation via

additive noise, where gender classifiers trained on noisy data

were able to reach competitive performance from approxi-

mately 8 dB SNR. In overall, our study demonstrates that

data augmentation strategies borrowed from the field of image

processing can be successfully applied also in processing of

1-D acoustic signals in the context of gender classification.
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