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Abstract

This paper studies various aspects of child vocalization as cap-
tured in a newly established parallel corpus of sixteen 18–31
months old US and Shanghainese toddlers. The recordings were
acquired in 16-hour sessions during an ‘ordinary’ day in the
child’s natural environment and manually labeled. The vocal-
ization characteristics are studied by means of phonotactic and
prosodic analysis with emphasis on automatic processing. In
the phonotactic domain, a Gaussian mixture model (GMM) to-
kenizer, a bank of phone recognizers, and formant tracking are
used to analyze the movements in the acoustic-phonetic space.
In the prosodic domain, pitch patterns, duration, and rhythm
are analyzed. Besides strong individual-specific characteristics
of the subjects in some of the domains considered, the two lan-
guage groups show differences in the occupation of the F1–F2

formant space, choice of pitch pattern durations, and consis-
tency in producing complex phonetic patterns.
Index Terms: children vocalization, speech acquisition, phono-
tactic modeling, pitch patterns, rhythmicity parameters

1. Introduction
While the mechanisms of speech perception, production, and
language acquisition in children have been studied for an exten-
sive period of time, it is just recently where speech technology
has matured to the level to be able to considerably contribute
to these domains. Recent studies have shown the potential of
automatic speech processing to perform tasks such as detection
of language delay [1], early communication disorders [2], and
autism [3], computer-aided reading tutoring [4], or emotional
state assessment [5]. While most current speech systems are
designed with adult users in mind, better understanding of chil-
dren speech perception and production can benefit the design of
more effective children-oriented engines [6].

Observing the importance of social interactions and their
impact on early language learning [7], the current studies fo-
cus on the automatic assessment of the child vocal development
[8] with the prospect of providing the child’s peers with con-
structive feedback. Our study aims at expanding the ensemble
of techniques for automatic child vocalization assessment pre-
sented in [8]. The proposed methods are applied on the newly
established corpus of US and Shanghainese children across an
age range of 18–31 months. The remainder of the paper is or-
ganized as follows. First, wet present the corpus of children
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recordings. The next part is dedicated to prosodic analyses uti-
lizing pitch patterns and speech rhythm measure. The third part
discusses phonotactic techniques.

2. Corpus of US/Shanghainese Toddlers

The corpus utilized in this study captures audio recordings of
eight US and eight Shanghainese children across an age range of
18–31 months (five female and three male subjects per each lan-
guage background) and represents a subset of recordings from
an ongoing large scale parallel US and Shanghainese children
speech acquisition campaign. The subjects in our corpus were
selected to have, in terms of age and gender, an identical coun-
terpart in each language group (age in months/gender): 18 M,
23 M, 25 F, 26 F, 2 x 27 F, 27 M, and 31 F. The recordings were
acquired in the children’s natural home environment using a
lightweight digital recorder [8]. The recorder was placed in
the pocket of the child’s clothes, allowing for free and natu-
ral movement. For each subject, a whole day recording was
acquired (typically 14–16 hours).

The sessions capture segments of the child staying at home
(playing, eating, taking a rest), accompanying parents to shop-
ping malls and restaurants, visiting grandparents, etc. Due to
the nature of the recordings, the audio tracks contain not only
vocalizations of the child subject but also voices of siblings
and peers as well as other ambient sounds (TV, radio, kitchen
sounds, barking dogs, sounds produced by friction of the clothes
and recording device, etc.). The level of these secondary sounds
varies and in some instances reaches or overcomes the child’s
voice. At times, identifying the instances of the child’s vocal-
ization may become difficult, especially when the subject inter-
acts with similar aged siblings or friends, or while listening to
children TV programs.

The time instances of the child vocalization (CV) were
manually annotated by two labelers. For each subject, approx-
imately (but never less than) 20 minutes of vocalized segments
were selected. The segments were chosen as follows: CV seg-
ments without interfering secondary vocalizations were picked;
CV boundaries were set to exclude barge-ins. If a barge-in
occurred during the first word or word-like sound of the CV,
the segment was dropped. In other cases, a CV representing
even only a part of speech would be kept. CVs were dropped
when interference with sounds of a harmonic structure (mu-
sic, squeaking toys) occurred. Following these criteria, approx.
200–800 segments per session were identified to reach the 20
minutes of child vocalization per subject; however, 400–700
segments were predominant for most sessions. The subject (US,
23 M) with the record number of 843 CV segments preferred to

Copyright © 2013 ISCA 25-29 August 2013, Lyon, France

INTERSPEECH 2013

2405



� � �� � �� � 	
 � ����
� ��
� ��
���
���
���
�� 
!"#

$%&' ()'*+

, -.
/ 0
12.
3 04
, 526
-2.
789: ;
<

= > ?@ A BC D EF G HI J KL M NOPQR
STU
VWX
YZZ
[[\
]^_
`ab
cde

fghi jkilm

Figure 1: Extraction of pitch patterns; example: Twin = 200ms,
Tstep = Twin/2, Fth = 15Hz.

utter single syllable words up and juice at numerous instances.
On the other hand, CV segments of more extensive length usu-
ally contained a higher degree of babbling [9]. Surprisingly,
even the oldest and/or most articulate subjects would sometimes
return to babbling, especially when playing alone. In total, 4326
CV segments were labeled for the US group and 3288 for the
Shanghainese group to meet the target quota of 20 mins/subject.

3. Pitch Patterns
In [10], seven simple shapes were manually fit into the F0 con-
tours and used to analyze the frequency of repetition of pitch
patterns in infant vocalic utterances. In this paper, we utilize
a simple automatic pitch pattern production/analysis technique
inspired by [10]. In the first step, WaveSurfer [11] is used to
extract the pitch track from each CV segment. Subsequently,
voiced islands of continuous nonzero F0 values are found. Each
island is median filtered and processed by a sliding window of
length Twin shifted with a step Tstep. Voiced islands shorter
than Twin are dropped from the analysis. A straight line is fit
into the F0 values captured by the window by means of linear
regression. If the regression line is steep enough to cross a fre-
quency band Fth within the range of the window, the window
segment is assigned a rising/falling pattern element; otherwise
a flat pattern is assigned. Figure 1 demonstrates the pattern
matching process. The regression lines are presented as solid
lines, the slope of the dashed lines denotes the decision pattern.
The actual slope value is subsequently discarded and only the
direction is kept (rising/flat/falling). Finally, frequency of pat-
tern unigrams and their sequences (N -grams) is calculated.

For several settings of Twin in the range of 50–200 ms (and
Fth 5–20 Hz), similar patterns would prominently appear for
both US (AE) and Shanghainese (Shang) groups. Fig. 2 shows
pattern bigram frequencies for AE subjects and Table 1 details
both unigram and bigram frequencies for AE and Shang groups.
It can be seen that the falling pattern is dominant, followed by

the rising and flat pattern. The same is replicated in bigrams by
the double-falling, double-rising and double-flat patterns. The
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Figure 2: Frequency of bigram patterns in AE subjects; Twin =

50ms, Tstep = Twin , Fth = 5Hz.

order of preference of the subsequent bigrams is slightly dif-
ferent for AE and Shang, however, the frequencies are similar.
Given that Shanghainese is a tonal language, one might expect
the differences in pattern choices would be more prominent.
However, for the range of settings tested by the authors, such
a hypothesis was not confirmed. Finally, Fig. 3 presents the
frequency of appearance of pitch patterns with respect to their
length (e.g., the leftmost plots represent CV segments that con-
tain only one pitch pattern element). For each length, AE (left)
and Shang (right) are presented. Here and in the rest of the text,
the boxplots read as follows: the edges of the box represent
25th and 75th percentiles, the central mark is the median, the
whiskers extend to the most extreme points that are not consid-
ered outliers, and the outliers are plotted as individual points.
Fig. 3 suggests that the AE group produces unigram and bigram
patterns almost equally likely, higher order N-grams being in
decline, while Shang prefers bigrams and trigrams to unigram
patterns. Shang still chooses four-grams more frequently than
AE. In other words, in most CV segments, Shang tends to pro-
duce consistently longer pitch patterns than AE. This correlates
well with the higher number of CV segments required for the
AE to fulfill the same 20 mins/subject requirement (Sec. 2).

4. Speech Rate
This section utilizes a speech rate estimation algorithm imple-
mented following [12]. The algorithm derives a sequence of
prominent minima and maxima in a smoothed RMS envelope
of the acoustic signal. The algorithm adaptively sets the deci-
sion thresholds to identify the envelope extremes and filters out
groups of extremes that are likely related to a single syllable nu-
cleus.In our study, the inverse of the distance between the estab-
lished envelope extremes is used to estimate the rhythmicity in
the vocalization segments – for simplicity denoted speech rate.
Fig. 4 shows the speech rate distributions for all 16 children. It
can be seen that the rates vary across the individuals and do not
display any obvious trends with age. In a separate analysis of
the overall rhythm distributions for the two language groups, the
25th–75th percentile boxplots displayed a nearly perfect over-
lap, suggesting there are no observable effects of the language
factor on the speech rhythm in our dataset.

5. Formant Analysis
Location of formants during phonation in children reflects both
physiological characteristics of their vocal tracts as well as the
content and variability of phonation. In [13], it was shown
that the first formant F1 continues to decrease until approx.
30 months of age while F2 was found steadier starting from
18 months. In [14], F1,2 stayed relatively unchanged in 15–24
months, followed by a significant decrease in 24–36 months. In
our study, the first two formants are extracted using WaveSurfer.
Formant tracks in the voiced islands, established from pitch
analysis are smoothed by a moving average filter, with unvoiced
segments discarded. The distribution of formants in the F1–
F2 plane is shown in Fig. 5, 6 by means of 2–σ ellipses [15].
The left hand side of Fig. 5 shows an example scatter plot of
formant realizations for AE subject 23 M. It can be assumed
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Table 1: Frequency of pitch patterns (%).
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that some of the leftmost F1 values result from errors in for-
mant tracking, however, most values occupy a meaningful in-
terval. The right hand part compares 2–σ ellipses for the com-
plete AE and Shang groups. The tilt of the Shang distribution
is steeper as a result of F1 samples occupying a more compact
space than its AE counterpart. Fig. 6 details distributions for
ten female subjects. While the overall orientation of the ellipses
follows that from Fig. 5, there is also a notable reduction in
the ellipse surface for both AE and Shang subjects 31 F com-
pared to their younger colleagues. As a matter of fact, the el-
lipse surfaces were found to mostly reduce with increasing age
of the female subjects (AE 3.17, 3.16, 2.94, 2.91, 2.51(×106);
Shang 3.01, 3.01, 3.102.80, 2.36(×106)). On the other hand,
the surfaces in male subjects did not follow such a trend (consis-
tently increasing in AE males and being rather steady in Shang).
Clearly, the available amount of subjects per page group in this
study does not allow any significant analyses of the age effects.
However, the reduction observed in females seem to follow
those in [14].

6. GMM Tokenizer
In this section, the acoustic-phonetic space in the child vocal-
ization segments is studied by means of a Gaussian mixture
model (GMM) tokenizer. The concept of a GMM tokenizer has
been popular in the field of speaker and language identifica-
tion [16]. In our study, the GMM is trained using expectation-
maximization algorithm on the complete set of CVs from all
subjects. Thirteen static mel frequency cepstral coefficients
(MFCC) are extracted from 25 ms window shifted with a step
of 10 ms. The GMM mixtures model the acoustic space occu-
pied by the subjects during phonation. Since the MFCC features
carry both speaker-dependent and linguistic content-dependent
characteristics, we set the number of GMM mixtures inten-
tionally low (32). In this case, the mixtures are forced to be
shared between the subjects and hence, profile more towards
the phone-like groups rather than towards the speaker specific
characteristics. After the GMM is trained, the mixtures are split
to form individual single Gaussian states in single state hidden
Markov models (HMM). All subject CVs are subsequently de-
coded by the HMMs, generating a sequence of symbols (indices
of the original GMM mixtures). The symbol sequences reflect
the transitions of the individual’s phonation in the acoustic-
phonetic space. We opted for using ‘mixture’ HMMs rather
than Gaussian models for decoding to be able to regulate the
state transition probabilities and hence, the rate of transitions
between the ‘mixture states’. The output strings from the tok-
enizer are processed by means of sequential pattern analysis.
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Figure 3: Frequency of N-gram occurrences.
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Figure 4: Speech rate distribution in AE and Shang subjects.

6.1. Sequential Pattern Analysis

Sequential pattern mining [17] is employed to discover frequent
sub-sequences as common patterns shared among the subjects.
The motivation of this analysis is that frequent sequential pat-
terns, which reflect strong associations within the test group,
capture the underlying combination of acoustic units produced
by the children. Our assumption is that longer unique sequential
patterns are a sign of higher language proficiency. In our study,
we employed a PrefixSpan approach [18] to mine the hidden se-
quential patterns in the CVs. The PrefixSpan approach is based
on a divide-and-conquer framework, where the first scan is per-
formed to derive the set of 1-symbol long sequential patterns of
all data. Subsequently, each sequential pattern is treated as a
prefix and the complete set of sequential patterns can be par-
titioned into different subsets according to different prefixes.
Finally, PrefixSpan is set to find all the sub-sequences whose
occurrence frequency in the set of sequences is no less than the
minimum support threshold. More details regarding PrefixSpan
technique can be found in [18].

6.2. Sequential Patterns of GMM mixtures

A consecutive sequence of the same decoded mixtures are
grouped into a single unit (i.e., 1 1 1 1 3 3 4 4 4 4 4 → 1 3 4).
We are interested in analyzing sequential patterns of the GMM
mixtures (i.e., the transition patterns between GMM mixtures
in the acoustic space) consistently shared by the members of
the two language groups. The minimum support threshold was
set to 1 % of the total number of frame clusters. The analysis
identified that all 32 mixtures were actively involved in the pat-
terns of both AE and Shang subjects. In addition, there were
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Figure 5: Left – example of F1–F2 realizations in a subject; right –
comparison of the effect of language background on the formant space.
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Figure 6: 2–σ ellipses for female AE and Shang subjects.

586 unique two-symbol patterns, 890 3-symbol patterns, 361 4-
symbol patterns, and 52 5-symbol patterns that appeared more
frequently in the Shang CV segments than the threshold. A for-
matted version of this result is presented as 32/586/890/361/52.
Using the same notation, the AE subjects were able to pro-
duce 32/472/210/0/0 unique patterns. This means that besides
the 1-symbol, Shang subjects generated more unique mixture
transition patterns than their AE counterparts for all sequential
lengths. For illustration, Fig. 7 presents the occurrence of 2-
symbol patterns for the two language groups, where each pixel
represents a transition pattern between the row index mixture
and the column index mixture, and the brighter the color, the
more transition occurrences. As can be seen, Shang phonation
results in approx. 10 % higher 2-symbol transition coverage
than the AE group.

7. Parallel Phone Recognizers

Parallel phone recognizers (PPR) are frequently used as a front-
end in speaker and language identification systems [19, 20, 21].
Similar to the GMM tokenizer, the PPR generates strings of
symbols that can be subsequently modeled and classified. Un-
like the case for our GMM tokenizer, the phone recognizers
are frequently trained on a material seemingly unrelated to the
target task. For example, in language/dialect identification,
phone recognizers trained on unrelated languages often pro-
vide more relevant information than matched recognizers [22].
The reason for that is that phone models trained on various lan-
guages are sensitive to different aspects of acoustic variation
and, when combined, can provide substantially finer resolu-
tion of the acoustic-phonetic nuances compared to the recog-
nizer trained on the target domain. This concept is explored in
this section by utilizing recognizers trained on non-English and
non-Shanghainese subjects. In addition, the recognizers were
trained on adult speech which introduces yet another, and most
likely, the most substantial mismatch. While this setup may
seem completely counterintuitive, as far as the recognizers are
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Figure 8: Number of exclusive phone-like patterns in AE and Shang
group. Boxes – pattern counts across 7 BUT phone recognizers.

capable of producing non-trivial responses to the input CV seg-
ments, the concept should be meaningful. A set of seven BUT
(Brno University of Technology) phone recognizers [23] Czech,
Hungarian, Russian, German, Hindi, Japanese, and Spanish are
used to tokenize the CV segments.

7.1. Sequential Patterns of Phonetic Units

In this analysis, the elements of sequences are the output
phonemes decoded by ASR. The PrefixSpan was employed to
mine a set of common and unique sequential patterns of pho-
netic units uttered by the two language groups. For a fair com-
parison, the output phonemes of all open-set phone recognizers
were used to mine the sequential patterns. The minimum sup-
port threshold was set to 5 % of the total phonemes decoded
by each phone recognizers for each language group. Fig. 8
compares the number of unique sequential patterns of 1-symbol
to 5-symbols mined from the two groups. As it can be seen,
with increasing length of the sequential patterns, the number
of discovered patterns increases exponentially. We can further
observe that the Shang group generates consistently a higher
number of unique patterns compared to the AE group for all
sequential lengths.

8. Conclusions
This study analyzed child vocalization segments in the newly
acquired parallel corpus of sixteen US and Shanghainese tod-
dlers. The corpus captures a realistic audio footprint of a daily
life of the subjects. The recordings were manually labeled to
avoid segmentation errors due to the frequent interference of
the vocalizations with secondary acoustic sources. A set of au-
tomatic prosodic and phonotactic analyses was established and
used to study various aspects of vocalizations. It was found
that the Shanghainese language group tends to, in the major-
ity of vocalizations, produce pitch patterns of longer durations
compared to the US group. The interval of the typical first
formant occurrence was found broader in the US group. Fi-
nally, the Shanghainese group tended to produce a consistently
higher number of phone-like patterns. No consistent differ-
ences in the preferred formation (contour) of short pitch pat-
tern sequences was observed between the groups. Distribution
of speech rhythm in the two language groups was found nearly
identical while there was a strong variation among the individu-
als. The results presented in this paper suggest that the proposed
automatic assessment framework is sensitive to various aspects
of child vocalization and the authors intend to apply the estab-
lished methods to analyze a broader group of subjects from the
ongoing parallel US/Shanghainese acquisition campaign.
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