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Abstract
Speech/non-speech sound classification is an important problem
in audio diarization, audio document retrieval and advanced hu-
man interfaces. The focus of this study is on the development
of spectral and temporal acoustic features for speech/non-speech
sound classification based on production differences in speech
versus whistle. Seven time- and frequency-domain based fea-
tures are investigated. Performance of the proposed feature set
for the task of speech/whistle classification is evaluated at frame
level. This evaluation utilizes support vector machine (SVM)
models and Gaussian mixture models (GMM) for back-end clas-
sifiers. At the frame-level, the proposed front-end fusion gives an
absolute performance gain of +15.0 % and +3.1 % over MFCC
with SVM and GMM based classifiers, respectively. This re-
search will benefit the development of intelligent speech inter-
faces for identification, recognition, and speech coding, as a pre-
processing step for real world audio streams.

1. Introduction
Human sounds produced via the oral cavity can be classified into
two broad categories: i) speech and ii) non-speech. Non-speech
sounds include vocalizations such as: scream, whistle, cough,
laugh, snore, sneeze, hiccups, etc. Effective classification of non-
speech sounds is a necessary preprocessing step for robust speech
and speaker recognition, audio indexing and diarization, as well
as other applications. This study focuses exclusively on classifi-
cation of human whistles which are a part of the general class of
non-speech sounds.

Performance of speech systems for automatic speech recog-
nition (ASR) and speaker and language identification degrades
significantly as soon as they encounter a mismatch between train
and test conditions. Such a mismatch can be introduced either by
speaker dependent factors or environment/hardware dependent
factors. Speaker dependent factors include non-speech sounds
[1], vocal effort and speaking styles [2, 3, 4], speech under stress
[5], Lombard effect [6, 7], whereas environment/hardware de-
pendent factors include microphone characteristics, room acous-
tics, channel mismatch, etc.

Human whistle is produced by controlling the stream of air
flow generated via lungs and passing through the oral cavity.
Here, the oral cavity works as a resonant chamber. Whistling
can be used to get attention, to call a human or a pet, or to carry
a melody. In general, human whistle can be classified into many
categories such as pucker whistles, finger whistles, teeth whis-
tles, bird whistles, warble whistles, roof whistles, etc. However,
for this work, we only consider pucker whistles.

*This project was funded by AFRL under contract FA8750-12-1-
0188 and partially by the University of Texas at Dallas from the Dis-
tinguished University Chair in Telecommunications Engineering held by
J.H.L. Hansen.
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Figure 1: Time and frequency domain representation of speech
(top) and human whistle (bottom).

Pucker whistle is the most common form of human
whistling. Pucker whistles are produced by curving the tongue
inside the oral cavity such that the top of the tongue touches
the roof of the oral cavity, where the tip of the tongue should
be downwards to create turbulence followed by blowing out, or
sucking air from mouth. Different resonances can be produced
by changing the shape of the tongue and position of the jaw.

Human whistles are signal tone sounds that contain a single
dominant frequency. From the spectrogram shown in Fig. 1, we
can clearly see there is a harmonic line representing the pres-
ence of a dominating frequency in the spectrogram of human
whistle, whereas speech has simultaneous occurrence of multi-
ple frequencies. Automatic speech recognizers, speaker verifica-
tion systems, diarization systems, and other speech-oriented en-
gines are prevalently trained on clean speech and when exposed
to whistle sounds, their performance tends to deteriorate.

Speech/non-speech classification has been an active area in
the domain of auditory scene analysis [8]. Research have consid-
ered non-speech sounds such as scream [9, 10], snore [11], and
various environmental sounds [12]. However, the only work re-
lated to human whistle processing is by Nilsson [13], where the
study considered 20 subjects and included frequency analysis in
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noisy environments. The lack of research in the area of human
whistle processing suggests that further research is needed. The
applications of whistle classification can be found in the follow-
ing areas:

• Audio information retrieval: searching whistles in movies
and radio/TV shows;

• Audio indexing: indexing whistles in audio streams;
• Music technology: automatic melody extraction;
• Environment classification: steam whistles and train

whistles classification; environmental sniffing;
• Speech technology: impact on speech and speaker recog-

nition systems.

In this study, we first analyze and compare spectral and tem-
poral properties of speech and whistle segments. Based on the
analysis, we propose a set of features for speech/whistle classi-
fication. The features are evaluated side-by-side with traditional
mel frequency cepstral coefficients (MFCC) using Gaussian mix-
ture model (GMM) and support vector machine (SVM) based
classifiers. Finally, we demonstrate the benefits of the proposed
classification scheme on an example of speaker verification.

2. Corpus
At present, there is no publicly available corpus for human-
whistle research, especially none that would allow for studies
of whistle in the context of speech of speaker recognition. The
corpus used in this study was collected at the University of Texas
at Dallas. The recordings were captured at a 44.1 kHz sampling
rate in an ASHA certified single walled sound booth using a table
top microphone.

A total of 30 subjects (17 males and 13 females) partici-
pated in the corpus collection. Subjects were native as well as
non-native English speakers. Each subject participated in a sin-
gle recording session divided into three parts. In the first part,
the subjects read the first 11 lists (110 phonetically balanced
sentences) from the IEEE recommended set of phonetically bal-
anced sentences [14]. In the second part, the subjects produced
spontaneous speech while answering 6 questions. In the third
part, they were asked to whistle in a sequence of audio captures.
The subjects were asked to capture maximum variability in their
whistling style and were not instructed to imitate any particular
song or melody. The corpus details are given in Table 1. Here,
each sample is defined as a 10 seconds long speech or whistle
audio chunk. The samples incorporate silence segments that nat-
urally occurred during the speech/whistle production.

3. Front-End for Speech/Whistle
Classification

In this section, speech and whistle samples are analyzed in terms
of their spectral and temporal properties. Based on the obser-
vations, a set of features for speech/whistle classification is pro-
posed.

3.1. Analysis of Speech and Whistle

In voiced portions of speech, an air flow pushed from the lungs
causes vibration of the vocal folds. This vibration serves as ex-
citation for the vocal tract resonances. In unvoiced portions of
speech (unvoiced consonants or whispered speech) the glottis is

Class # Samples Total Duration (min)
Speech 1933 322
Whistle 247 45.6

Table 1: Whistle corpus details.
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Figure 2: Distribution of spectral center of gravity (SCG) in speech and
whistle samples drawn from the Whistle corpus.

kept open and a turbulent flow produced by the passing air serves
as a source for the articulators. As a result, voiced portions of
speech can be represented in the spectral domain as a series of
glottal waveform harmonics weighted by the transfer function of
the vocal tract, and unvoiced portions as a weighted spectrum
of noise. While exhibiting different spectral slopes (unvoiced
speech having a flatter tilt), the spectrum of both voiced and un-
voiced speech spans the whole frequency range considered in
traditional speech processing schemes. In comparison, the pro-
duction of whistle results in a sharp peak in the spectrum rep-
resenting the fundamental frequency, with a potential presence
of weak higher harmonics and a noise-like spectral component
representing the unvoiced sound created by the friction of the air
stream passing through the constrictions created by the tongue,
lips (and possibly fingers) while whistling (see Fig. 1). For this
reason, it can be expected that the distribution of spectral energy
in speech and whistle will display significant differences. For
the spectral analysis purposes, as well as with respect to the ob-
jective of automatic segment classification later in the text, we
choose parametric representations of the amplitude spectra.

Spectral center of gravity (SCG), representing the ‘center of
mass’ of the power spectrum, and spectral energy spread (SES),
which represents the standard deviation of the spectral energy
distribution from SCG [15], were extracted from speech and
whistle samples of the Whistle corpus and analyzed (see Fig.
2 and 3). It can be seen that the SCG distribution of speech
is sharper and centered at a significantly lower frequency com-
pared to whistle. The whistle SCG distribution directly reflects
the range of whistle fundamental frequencies produced by the
subjects. Due to the variety in the choice of a whistled melody
and pitch, the overall SCG distribution extracted across all sub-
jects displays larger variation compared to speech. As expected,
SES distributions in Fig. 3 show the opposite trend compared
to SCG – the energy spread around SCG within individual sam-
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Figure 3: Distribution of spectral energy spread (SES) in speech and
whistle samples drawn from the Whistle corpus.
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ples is much wider for the ‘broad’ speech spectrum compared to
sharp whistle spectra. The considerable differences in SCG and
SES distributions of speech and whistle suggest these two pa-
rameters could be valuable for the speech/whistle classification.

In the next step, we analyze pitch contours in speech and
whistle parameterized by so called pitch patterns. While the pitch
of modal speech and whistle clearly occupy different frequency
regions, as already reflected in the above mentioned spectral pa-
rameters, it may be interesting to see whether there are also dif-
ferences in their time trajectories independent of their absolute
positioning in frequency. For this purpose, we perform a pitch
pattern analysis introduced in [16]. In this method, after tradi-
tional frame-level pitch extraction, continuous voiced sections
are median-filtered and processed by a regression analysis using
a sliding window. Voiced sections shorter than the window are
dropped. A straight line is fit into the F0 contour within the win-
dow by means of linear regression. If the regression line is steep
enough to cross the whole ‘threshold’ frequency band within the
length of the analysis window, the segment is assigned a ris-
ing/falling pattern element; otherwise a flat pattern is assigned.
In the next step, Ngram statistics of the consecutive pitch pattern
elements representing the pitch contour are computed.

In our study, the RAPT cross-correlation algorithm [17] im-
plemented by WaveSurfer [18] is used for pitch extraction, and a
window length of 50 ms with a 100 % skip rate, together with a
5 Hz threshold frequency band are used for the pitch pattern ex-
traction. First, frequencies of unigram patterns were extracted for
speech (up – 22.3 %; flat – 45.2 %; down – 32.4 %) and whistle
(up – 40.2 %; flat – 28.1 %; down – 31.7 %). It can be seen that
while the down pattern occurred with similar frequency in speech
and whistle, the flat pattern was chosen by the subjects more fre-
quently in speech and up in whistle. Subsequently, frequencies
of pitch pattern bigrams were analyzed (see Fig. 4). It can be
seen that similarly as for unigrams, a flat–flat bigram dominates
speech pitch contours and up–up is dominating in whistle. The
overall distribution of pitch pattern bigrams is more uniform in
whistle than in speech, suggesting higher variability of the whis-
tled pitch contours. This suggests the subjects complied with the
instructions to produce a variety of whistle tones rather than just
stationary whistles.

The pitch pattern models discussed here show a good po-
tential to contribute to speech/whistle classification as additional
features, especially considering the fact that prosody-related con-
tent is known to be relatively consistent within a spoken lan-
guage (pitch patterns were successfully leveraged for example
in language identification [19]). On the other hand, pitch pattern
histograms are likely to be consistent within individual types of
whistle (e.g., single tone versus melodic whistle) while varying
across whistle types. To avoid a bias in our study on automatic
speech/whistle classification through having an a priori knowl-
edge of the whistle type (melodic), we refrain from utilizing pitch
patterns in the following experiments.
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Figure 4: Frequency of bigram pitch patterns in speech and whistle.

3.2. Features for Speech/Whistle Classification

Based on the fundamental differences in speech and whistle spec-
tra and pitch observed in the previous section, we propose to use
a combination of time-domain and spectral-based parameters as
features for speech/whistle classification. The features include:
zero-crossing rate (ZCR), spectral center of gravity (further de-
noted as spectral centroid – SC), spectral energy spread (further
denoted as ‘SS’), spectral crest factor (SCF), spectral decrease
(SD), spectral kurtosis (SK), and spectral skewness (SSk). Sev-
eral of these features have previously been considered for general
audio content analysis [20], speaking style classification [21],
and in emotion and cognitive load classification [22]. Since most
of these parameters are widely used in the community, we will
provide only a short summary of their properties. Zero Cross-
ing represents the rate of signal sign changes within a segment
and is popular for speech activity detection. Spectral Crest Fac-
tor is represented by the ratio of the maximum of the magnitude
spectrum over the sum of the magnitude spectrum. It is a mea-
sure of the tonalness of an audio signal. Spectral Decrease is the
measure of the steepness of the decrease of the spectral envelope
over frequency. Spectral Kurtosis is a measure of the spectral
‘peakedness’. Spectral Skewness measures the symmetry of the
distribution of the spectral magnitude values around their arith-
metic mean.

To complement the analysis from Sec. 3.1, means and vari-
ances of all parameter distributions are summarized in Table 2.
For classification purposes, the time and frequency domain fea-
tures are concatenated into a seven-dimensional feature vector
where each dimension (feature) is mean and variance normalized
on an sample level.

4. Experiments and Results
In this section, effectiveness of the proposed front-end for
speech/whistle classification is evaluated. Performance evalua-
tion is performed at the frame-level using SVM and GMM based
classifiers. About 6K frames are used for training and 31500
frames for testing. The training is speaker and gender indepen-
dent and a balanced amount of whistle and speech frames are
provided in both the training and the test set. The classification
features are extracted using a Hamming window of 25 ms with a
skip rate of 10 ms. Classification results are reported in terms of
accuracy, which is the ratio of correctly classified labels over the
total number of labels.

In the frame-level classification, the goal is to label whether
a frame belongs to speech or whistle. When utilizing individual
features (one feature at a time), classification accuracies ranged
between 72 % and 78 %. We also considered various combina-
tions of the individual features (2 to 6) from the proposed feature
vector, but with a few exceptions, the performance decreased.
Therefore, we conclude that all seven features contribute to the
classification task. As can be seen in Table 3, with one exception,
the classifier utilizing the proposed feature vector outperforms
the MFCC baseline both for the SVM and GMM setups. Me-

Feature Speech Whistle
mean std mean std

SC 656.5 118.1 1600.3 386.2
SCF 0.11 0.06 0.19 0.07
SD 0.05 0.04 0.01 0.05
SK 329.29 241.47 580.54 226.03
SSk 3.77 1.46 5.54 1.32
SS 489.0 140.8 165.5 133.2
ZCR 0.21 0.14 0.36 0.10

Table 2: Distributions of selected acoustic features
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No Filter 3pt Median 
Filter

5pt Median 
Filter

7pt Median 
FilterFront-End #Dim 

SVM GMM SVM GMM SVM GMM SVM GMM

MFCC 12 75.4 90.0 75.2 91.6 75.2 94.2 75.1 94.6

Proposed 7 84.4 91.4 87.1 93.3 88.8 94.6 89.9 94.2 
Fusion 19 84.7 94.8 87.4 97.0 89.2 96.9 90.1 97.7

Table 3: Frame-level classification results for different front end.

dian filtering of the frame-level decisions further improves the
classification performance. Finally, fusion of traditional MFCC
features with the proposed feature vector is evaluated and as can
be seen in the last row of the table, further improves the classifi-
cation accuracy for all setups. It can be observed that in general,
the GMM-based classification outperforms the SVM one.

5. Impact on Speaker Verification System
5.1. GMM-UBM Framework

Our earlier study has considered human scream, which repre-
sents another class of non-speech sounds, and reported its im-
pact on the speaker recognition systems [1]. In this section, we
investigate the impact of human whistles on the performance of
a speaker verification system. To compensate for the train/test
mismatch, where the speaker models are trained on speech seg-
ments and the test tokens are a mixture of speech and whistle, we
utilize the speech/whistle classifier proposed in the previous sec-
tion. The classifier is applied to detect and drop frames contain-
ing whistle so the test frames scored against the speaker models
would contain pure speech. From the corpus of 30 speakers, we
use 25 speakers for the speaker verification experiments and the
remaining 5 for training a speech/whistle classifier. The entire
scheme is depicted in Fig. 5.

We use a GMM-UBM framework for speaker recognition.
A universal background model (UBM) is constructed using
“CRSS-4English-14 corpus” which has a total of 454 speakers
from four different dialects of English. This corpus was collected
in identical conditions (microphone channel, recording room) as
the whistle corpus. For UBM training, a subset of 225 speakers
are selected with a total of 1801 sentences. A speaker specific
maximum a posteriori (MAP) adapted Gaussian mixture model
(GMM) is obtained from the UBM for each of the trained speak-
ers [23]. The test files are scored against the UBM and speaker
specific GMM and resulting scores were used to obtain overall
system accuracy. Performance is evaluated by computing equal
error rate (EER) for the ensemble of trials.

5.2. Front-End Processing

To observe the effect of whistle on speaker verification, audio
files consisting of sequences of alternated speech and whistle
segments were constructed. The ratio of speech to whistle seg-

Speech

Silence
Detector

Speech/Whistle
Classifier

Speaker
Verification

Sil

Sil

Whistle

Speech

Feature Set 
GMM/SVM Backend 

Decision

Whistle Speech 

Figure 5: Proposed compensation scheme for speech/whistle mismatch
in speaker verification.

With Whistle Detection 

Proposed Proposed+MFCCTest
Condition Baseline 

SVM GMM SVM GMM 

Speech 10.8 ---
Speech 

+Whistle 21.6 16.3 18.0 15.4 15.1

Table 4: Speaker verification compensation results; EER (%).

ments within speech-whistle audio streams was seven to four.

The front-end processing includes down-sampling the data
to 8 kHz. Silence frames are dropped using an energy and
zero crossing rate based voice activity detector (VAD). 36-
dimensional MFCC vectors containing c1-c12 static coefficients
and corresponding delta and delta-delta coefficients are extracted
using a Hamming window of 25 ms with a skip rate of 10 ms.
Cepstral mean and variance normalization is also applied across
all features at the sample (token) level.

5.3. Speaker Verification Experiment

A total of five 10-seconds long speech samples per speaker are
used to produce 64 mixture GMM speaker-specific models via
MAP adaptation of the UBM. A total of 62500 random trials
were generated for speaker verification. The ratio of target to im-
postor trials was 1:24 (2500 targets and 60000 impostors). Simi-
lar to training, each test sample is also 10 seconds long. Speaker
verification results are summarized in Table 4.

EER in the case of testing with clean speech samples is
10.80%. Although the absolute EER for matched training/testing
speech condition can be brought further down by increasing the
number of Gaussian mixture components, to limit the computa-
tional demands, 64 mixture components are used throughout all
experiments here. In the case speech-whistle mixture samples,
WER increases to 21.60%. It is evident that the speaker verifi-
cation system cannot sustain its performance when exposed to
audio containing whistle islands. Thus, to compensate for the
effects of whistle, we incorporate the proposed speech/whistle
classification scheme to identify and drop whistle frames from
the test audio stream. From Table 4, it is clear that automatic
dropping of whistle frames reduces EER by a large margin. We
note that the absolute duration of the speech frames in the mixed
speech and whistle test samples is about 7 seconds and hence,
even after successfully removing whistle segments, the verifica-
tion system has access to less speech frames than in the baseline
matched ‘speech only’ task. For this reason, the WERs here are
higher than the baseline ones.

6. Conclusion and Future Work

In this study, it was observed that the presence of human whis-
tle in audio streams impacts performance of speech systems.
To make the systems more robust, new features to classify
speech and whistle frames were proposed. Overall gains in
the speech/whistle classification were reached using the pro-
posed features combined with two alternative classifier backends.
The proposed front-end fusion provided an absolute performance
gain of +15.0 % and +3.1 % over MFCC with SVM and GMM
classifiers, respectively. A compensation scheme for non-speech
mismatch reduction was also evaluated and shown to improve
performance of a speaker verification system. A wider range
of environmental sounds could be explored as the next step for
multi-class non-speech sound classification.
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