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Abstract
In real-world adverse environments, speech signal corruption by
background noise, microphone channel variations, and speech
production adjustments introduced by speakers in an effort to
communicate efficiently over noise (Lombard effect) severely
impact automatic speech recognition (ASR) performance. Re-
cently, a set of unsupervised techniques reducing ASR sensitiv-
ity to these sources of distortion have been presented, with the
main focus on equalization of Lombard effect (LE). The algo-
rithms performing maximum-likelihood spectral transformation,
cepstral dynamics normalization, and decoding with a codebook
of noisy speech models have been shown to outperform conven-
tional methods, however, at a cost of considerable increase in
computational complexity due to required numerous decoding
passes through the ASR models. In this study, a scheme utiliz-
ing a set of speech-in-noise Gaussian mixture models and a neu-
tral/LE classifier is shown to substantially decrease the computa-
tional load (from 14 to 2–4 ASR decoding passes) while preserv-
ing overall system performance. In addition, an extended code-
book capturing multiple environmental noises is introduced and
shown to improve ASR in changing environments (8.2–49.2 %
absolute WER improvement). The evaluation is performed on
the Czech Lombard Speech Database (CLSD‘05). The task is to
recognize neutral/LE connected digit strings presented in differ-
ent levels of background car noise and Aurora 2 noises.
Index Terms: Lombard effect, speech recognition, codebook de-
coding, frequency transformation, cepstral normalization

1. Introduction
In adverse environments, speech corruption by noise and Lom-
bard effect (LE) represent dominant sources impacting perfor-
mance of ASR systems. Even after noise in the speech signal
is suppressed, LE causes severe ASR degradation [1]. LE im-
pacts the shape and spectral slope of glottal waveforms, as well
as locations and bandwidths of formants, and hence, has a direct
impact on speech coding used in ASR [2, 3, 4], causing a mis-
match between the parameters of LE speech and ASR acoustic
models trained on noise-clean neutral (modal) speech. Past stud-
ies focusing on the suppression of LE in ASR have searched for
speech coding less sensitive to LE, transformations of LE speech
towards neutral, enhanced training methods, and acoustic model
adjustments and adaptation (see [3, 4] for overviews). Many
of the proposed LE-suppression methods perform fixed signal
transformations estimated from a limited amount of training LE
speech samples, assuming that the level and quality of LE will
not change over time, which may be not true in real environments
with varying background noise [5].

Recently, novel unsupervised frequency and cepstral domain
equalizations that reduce the impact of LE on ASR have been
proposed and shown to outperform common compensations in
ASR on neutral/LE noisy speech in various levels of car noise
[6]. The drawback of the algorithms is the required extensive
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number of decoding passes conducted per utterance in order to
estimate maximum likelihood parameters of the frequency trans-
formation, and to select the noisy acoustic models that best match
the actual noisy conditions.

This study presents an alternative approach to the selection
of optimal spectral transformation and noisy acoustic models,
which significantly reduces the number of necessary ASR de-
coding passes. In addition, an extended system employing an en-
vironment detector and a codebook of acoustic models capturing
multi-environmental noises is presented and shown to improve
ASR in changing noise environments.

The paper is organized as follows. First, a system utilizing
the compensations from [6] is introduced (baseline). Second,
Gaussian mixture model (GMM) speech-in-noise model selec-
tion, neutral/LE speech classification, and noise type detection is
presented. Third, the new system is evaluated and compared to
the baseline.

2. Baseline system
LE introduces variations of the formant structure, where espe-
cially low formants tend to shift to higher frequencies [2, 3]. To
compensate for the formant migration, [6] introduces a frequency
transformation Shift: FShift = F + β. Taking advantage of the
fact that translation of a feature extraction filterbank in the fre-
quency has the same effect as shifting the amplitude spectrum
(in the opposite direction), Shift is applied directly to the cut-
offs of the front-end filterbank. The translation parameter β (Hz)
is searched to maximize the likelihood of the transformed ob-
servations Oβ

utt given the ASR acoustic model λn. The search
procedure is identical with the fully optimized search proposed
in [7] in the context of vocal tract length normalization (VTLN).
The search procedure is described in Table 1, where Ψ denotes
the search grid (Ψ = {0, 50, ..., 300} (Hz)), selected based on
the observed maximum range of formant variations in LE, W is
the sequence of words for language L, Θl denotes the language
model, and Ŵ is the resulting transcription estimate. Given the
search grid, Shift performs 7 decoding passes to determine the
optimal β.

Table 1: Procedure of Shift frequency transform.

1) For each ,  transform test utterances ;utt uttO O

Decode transformed set using acoustic model :n

ˆ arg max , ;utt utt n lPr Pr
W

W O W W
L

2) Find axm  maximizing decoding likelihood: 

max

max

ˆ ˆarg max ,

ˆ ˆ .

utt utt n utt l

utt utt

Pr PrO W W

W W

Changes in the spectral slope of the glottal waveform and
formant locations and bandwidths in LE [2, 3, 4], as well as
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the presence of additive noise [8] and channel transfer function
variability affect distributions of cepstral coefficients. In [6],
quantile-based cepstral dynamics normalization, QCN, is intro-
duced as an alternative to common cepstral mean normalization
(CMN), cepstral variance normalization (CVN) [9], and recent
cepstral gain normalization (CGN) [10]. QCN exploits the fact
that cepstral distributions, especially of low order cepstral coef-
ficients, deviate from Gaussian, and hence, the dynamic range of
the cepstral samples can be better estimated from the sample his-
togram quantiles rather than from the mean and variance. QCN
is defined:

cQCN4
n,i =

cn,i −
`
qCn
4 + qCn

96

´
/2

qCn
96 − qCn

4

, (1)

where i is the index of the cepstral sample in the time window
of the normalization, and qCn

4 , qCn
96 (n = cepstral dimension) are

4 % and 96 % quantiles which were found to provide superior
performance in ASR task on a development set.

A simple speech decoding scheme employing a codebook of
noisy acoustic models is used in order to increase match of the
input noisy speech and ASR acoustic models in changing level
of background noise. The codebook consists of HMM’s trained
on data with different SNR’s, where clean speech is mixed with
car noises at SNR’s of -5, 0, . . ., 20, ∞ dB, yielding ‘noisy’
models denoted λ1, . . . , λ7. During recognition, the observation
sequence O is decoded as:

Ŵn = arg max
W∈L

h
Pr (O|W, λn) Pr (W|Θl)

i
. (2)

Applying Eq. (2) consecutively for all noisy models λ1, . . . , λ7

yields a set of transcription estimates Ŵ1, . . . ,Ŵ7. Subse-
quently, the λn that provides the highest likelihood decoding
path (best match) is found:

BM = arg max
n

Pr
“
O|Ŵn, λn

”
(3)

with the corresponding output transcription ŴBM . The HMM
with the closest noise structure is expected to give the highest
score. The Shift transform is conducted subsequently, utilizing
the best matching noisy model set. In total, utterance decoding
requires 14 decoding passes – 7 to find the best matching λn, 7
to search for the best β.

3. Optimized system
As discussed in Sec. 2, a major portion of the computational
load in the baseline system is due to the extensive search for best
matching acoustic models and optimal frequency transformation
of the incoming speech samples. In the following subsections,
Gaussian mixture model (GMM) classifier-based efficient noisy
model selection and neutral/LE utterance classification that di-
rects the frequency transform are introduced.

3.1. Noisy model selection (SNR estimation)

The results presented in [6] suggest that assigning the noisy ut-
terance to the matching noisy model set based on maximizing the
likelihood of the decoding path across codebook models is suc-
cessful, however, the computational cost of utterance decoding is
high and grows linearly with codebook size, preventing possible
extension to multiple or mixed noise types. To address this, a
GMM-based noisy model selection is proposed. For each SNR
captured in the noisy codebook, a unique GMM is trained (on the
same data used for training the noisy ASR models), yielding a set
of models GMM−5dB , GMM0dB ,..., GMM20dB , GMM∞dB . In-
stead of decoding the utterance consecutively by all codebook
HMM’s (see Eq. (2)), a computationally efficient scoring of
the incoming utterance against the set of GMM’s is conducted.
The highest scoring GMM determines which λn should be used
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Figure 1: Optimized system – GMM-based noisy model selec-
tion and neutral/LE classifier driven Shift transform.

for utterance decoding. Note that the task here corresponds to
SNR estimation. However, while a variety of available defini-
tions of SNR are to a certain level sensitive to the proportion of
speech/non-speech segments in the speech signal and character-
istics of background noise, the GMM-based noise level classifi-
cation proposed here directly captures the speech-in-noise char-
acteristics as modeled by the ASR acoustic models. Hence, this
method is promising to provide more reliable speech/noise level
assessment with respect to the acoustic model assignment.

In the implementation of the noise level classification, multi-
hypothesis testing (where the highest scoring GMM representing
the actual SNR would be searched) is transformed into a series of
pairwise GMM score comparisons incorporating a set of individ-
ual decision thresholds. This allows for fine tuning of the inter-
class classification performance as known from two-hypothesis
tasks. In particular, the score from GMM−5dB is compared to
GMM0dB and the higher scoring model is selected as the win-
ner. Subsequently, GMM0dB is compared to GMM5dB , etc., up
to the pair GMM20dB ,GMM∞dB . The model that wins in most
cases (i.e., twice), becomes the overall winner. Special cases:
if GMM−5dB wins zero times and all other models win once,
GMM∞dB is selected as a winner; if GMM∞dB wins zero times
and all others once, GMM−5dB is the winner. For each pairwise
comparison of scores s1 and s2, an individual decision threshold
s1/s2 <> Th12 is searched on the development set to maximize
overall classification accuracy. This selection scheme exploits
the fact that GMM’s representing adjacent SNR’s are cohorts and
the distance between models increases with the difference in their
SNR indexes (e.g., if a speech sample captures SNR = 20 dB,
when scored against the pair GMM−5dB , GMM0dB , the latter
model is acoustically closer and is more likely to be selected as a
winner). Similarly, from the pair GMM0dB , GMM5dB the latter
is likely to win. However, in both pairs GMM15dB , GMM20dB

and GMM20dB , GMM∞dB , the model GMM20dB is most likely
to win.

3.2. Directing the Shift transform

The Shift transform compensates for formant shifts due to LE by
shifting the short time spectral envelope down in frequency. Un-
like VTLN, the shift is constant across the whole frequency band
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and does not aim at compensating for the inter-speaker vocal tract
differences. When analyzing neutral speech samples, the max-
imum likelihood-assigned β’s in Shift were almost exclusively
β = 0 Hz, or reached the smallest allowed non-zero value (50
Hz). In order to eliminate multiple decoding passes performed by
Shift when processing neutral speech, a GMM-based neutral/LE
classifier is incorporated into the system. If the utterance is clas-
sified as neutral, the classifier assigns β = 0 Hz and no further
decoding is conducted.

The complete system is shown in Fig. 1. In the rightmost
part of the scheme, front-end feature extraction is first conducted,
followed by the cepstral dynamics normalization (see Eq. (1)).
Subsequently, noisy model selection incorporating the informa-
tion from the SNR estimator (Sec. 3.1) is conducted, yielding the
best matching acoustic model λBM . Based on the output of the
neutral/LE classifier, λBM is used either for direct decoding the
utterance (neutral speech) or in the search for the optimal β in
Shift (Table 1) and subsequent decoding of the optimally warped
utterance.

3.3. Extended codebook system

Due to the computational savings provided by the GMM-based
noisy model selection in Sec. 3.1, the codebook can be easily ex-
tended for multiple noise types, where each environmental noise
will be represented by a sub-codebook of models covering var-
ious SNR’s. To achieve reasonable accuracy for model assign-
ment, the GMM-based model selection is split into two stages:
(i) environmental noise identification, (ii) SNR estimation.

4. Experiments
The Czech Lombard Speech Database (CLSD‘05) [4] that cap-
tures neutral speech and speech uttered in simulated noisy con-
ditions (90 dB SPL of car noise produced to speakers through
headphones) is used in all experiments. A close-talk microphone
was used in recordings, yielding high SNR signals (mean SNR
of 28 dB). The subjects were provided listener feedback to en-
sure proper reaction to the noisy background. The recordings
were downsampled to 8 kHz and filtered by a G.712 telephone
filter. In the ‘single environment’ experiment, clean recordings
were mixed with 20 car noise samples [4] at SNR’s of -5, 0,..., 20,
∞ dB, where∞ dB represents clean data with no noise added. In
the ‘multiple environments’ setup, clean recordings were mixed
correspondingly also with airport, babble, restaurant, street, and
train samples from the Aurora 2 database [11]. The long noise
samples were cut into a number of 2 sec. samples which were
then randomized and mixed with clean speech samples.

The HMM-based recognizer used in experiments comprises
43 context-independent monophone models and two silence
models (3 emitting states, 32 Gaussian mixtures). The fea-
ture vector consists of 13 static cepstral coefficients c0–c12 and
their first and second order time derivatives. Gender-dependent
phoneme models are obtained from 46 iterations on large vocabu-
lary material from 37 female/30 male Czech SPEECON database
sessions. The task is to recognize 10 Czech digits (16 pronunci-
ation variants) in connected digits utterances. The female neu-
tral/LE test sets contain a total of 4930/5360 words, respectively,
from 12 speakers, while the male neutral/LE test sets contain
1423/6303 words from 14 speakers (per each SNR level).

Based on the superior performance in [6], a front-end de-
noted 20Bands–LPC0-3200, derived from PLP by replacing the
trapezoid filterbank with a bank of 20 non-overlapping rectangu-
lar filters, is used in the codebook system. The filters are uni-
formly spaced on a linear scale over 0–3200 Hz.

4.1. Evaluation & discussion

Noisy model selection: In the preliminary experiment on the
development set (small subset of open test set data – 2 female
and 2 male sessions), PLP provided superior classification per-
formance to MFCC and 20Bands–LPC. In particular, PLP cep-

stral coefficients c0–c14 and their first and second time deriva-
tives provided superior performance. The overall accuracy of
the noisy model assignment reached approximately 60 %. It was
observed, that most of model assignments were falling either
on the diagonal of the confusion matrix (correct assignment) or
were right adjacent to it. For this reason, the original SNR es-
timate was extended for an adjacent, complementary candidate
(denoted ‘+1 Neighbor’), increasing the probability that the SNR
output contains a correct value. For GMM−5dB the neighbor was
GMM0dB , for the rest the lower model (difference -5 dB SNR)
was picked. Together with the pairwise decision threshold, tun-
ing on the development set yielded an accuracy of 94.96 % and
94.62 % on development neutral and LE sets, and 92.13 % and
91.37 % on neutral and LE open test sets. The selection scheme
yields a pair of noisy model candidates, the optimal being se-
lected based on Eq. (2, 3).
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Figure 2: Performance of optimized system for neutral and LE
speech versus noise SNR and gender.

Neutral/LE classification: MFCC, PLP, Expolog [1], and
20BandsLPC0–3200 were compared for the task of neutral/LE
speech classification. All classifiers were trained and tested on
the clean development set (closed test). The best performance
was reached by MFCC (100 % on clean, 88 % on all SNR’s set),
followed by 20BandsLPC0–3200 (100 % on clean, 85 % on all
SNR’s set). To reduce computational demands during feature
extraction, 20BandsLPC0–3200 (c0–c12 and their first and sec-
ond order derivatives) was selected for the neutral/LE classifier
(as already used in the ASR front-end).
Optimized system (single environment): The optimized code-
book system utilizing the ‘+1 Neighbor’ model selection strat-
egy requires 2 ASR decoding passes to select the matching noisy
model set. The neutral/LE classifier reduces the number of addi-
tional Shift decoding passes for speech classified as neutral from
7 to 0. To further reduce the computations in the case of LE
speech, the search grid for β is limited to β ∈ {0, 100, 200},
representing 2 additional decoding passes compared to neutral
speech. The performance of the optimized system is shown in
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Fig. 2, denoted ‘Opt. Codebook’, and compared to the base-
line system ‘BL Codebook’ [6], and single-pass 20BandsLPC
system with QCN4, and MFCC and PLP HMM systems em-
ploying CVN (the last three trained on clean speech). It can
be seen that both codebook systems considerably outperform the
single-pass recognizers, and that the optimized codebook recog-
nizer provides comparable performance to the ‘BL Codebook’.

Table 2: Environmental detector – performance, all SNR’s.

  Assigned Environment   

Cond. Test Set  Car Street Restaurant Acc (%) 

Car 20558 38 4856 80.77 

Street  2699 14112 8641 55.45 

Restaurant  81 142 25229 99.12 

N+LE

Optimized system (multiple environments): Here, three sep-
arate sub-codebook model sets are trained on the clean train
set mixed with car, street, and restaurant noise samples, respec-
tively. Each sub-codebook contains models from -5 dB SNR to
20 dB SNR. A set of clean-trained models is shared among the
sub-codebooks. The GMM-based environmental noise classifier
(setup similar to the SNR estimator) is trained on the training
clean data mixed with the corresponding noises at -5 dB SNR.
Performance on the open test set is shown in Table 2. It can be
seen that utterances with car and restaurant noises are assigned
with acceptable accuracy, while street samples are frequently
confused either with car or restaurant noises. This can be ex-
plained by the high non-stationarity of the street noise samples,
which contain both babble noise from pedestrians (observed also
in restaurant) and traffic noises (also in car environment). It is
noted that noise classification accuracy reduces with increasing
SNR of the signals, as the noisy background is less pronounced.
Table 3 shows performance of the neutral/LE classifier on open
test sets comprising all SNR’s. The accuracy ranges consistently
around 80 % for all environments.

For each environmental noise in the codebook (car, street,
restaurant), a separate GMM-based SNR estimator was trained
(similarly to Sec. 3.1). Considering the imperfect performance
of the environmental detector, and moreover, the possibility of
the ASR system being exposed to out-of-codebook noises, it is
required that the SNR estimator provide good accuracy also for
non-matching noisy environments. When tested on development
non-matching noisy data, the street-trained SNR estimator pro-
vided superior performance compared to the car- and restaurant-
trained estimators. This is due to the fact that the street environ-
ment comprises broad range of noise components that can be ob-
served also in other environments. Hence, a single, street-trained
SNR estimator is incorporated in the final system (providing av-
erage accuracy of 84 % on the airport, babble, car, restaurant,
street, and train open test sets).

Table 3: Neutral/LE classification – all environments.

Open Test N/LE Classification, All SNR’s, Acc (%)  

Airport Babble Car Restaurant Street Train 

83.19 80.8 81.14 83.52 78.08 79.05 

The performance of the optimized extended codebook
system is presented by means of overall word error rate
(WER) reduction compared to the baseline single pass
20BandsLPC+QCN4 HMM recognizer trained on clean neutral
speech (see Table 4). The delta WER values for each environ-
ment are obtained by calculating average WER across genders
and all SNR’s in the particular environment for both baseline and

codebook systems, yielding WERBaseline and WERCodebook,
and subtracting. Negative values signify WER reduction when
using the codebook system, positive values have a WER increase.
It can be seen that for five of the six environments, the codebook
system provides considerable WER improvement. Note that the
system improves performance also for environmental noises not
present in the codebook (airport, babble, train), selecting the
closest noise type/level match from the available codebook mod-
els. In the case of street, the slight WER increase may be ex-
plained by the ambiguity and relatively high non-stationarity of
the environment, which makes the selection of the matching ASR
models difficult.

Table 4: Extended codebook system – WER reduction.

Performance Improvement, WERCodebook – WERBaseline (%)

Airport Babble Car Restaurant Street Train 

-11.11 -8.23 -49.2 -14.48 1.61 -15.54 

5. Conclusions
This study has presented a computationally efficient framework
for compensating for the impact of Lombard effect and additive
noise on ASR. The proposed system incorporates maximum like-
lihood spectral transformation directed by a neutral/LE classifier,
cepstral dynamics normalization, and a codebook of noisy acous-
tic models utilizing GMM-based noisy model selection. Com-
pared to a previously developed system, the number of ASR de-
coding passes is reduced from 14 to 2 (or 4) in the case of speech
classified as neutral or LE, respectively, while overall WER per-
formance is preserved. In addition, an extended scheme with
a codebook capturing speech contaminated by multiple environ-
mental noises at various SNR’s was presented and shown to mea-
surably improve ASR performance (8.2–49.2 % WER improve-
ment) for 5 out of 6 noisy environments, including environments
not covered in the extended noise codebook.
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