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Abstract

The problem of automatic excitement detection in baseball videos
is considered and applied for highlight generation. This paper fo-
cuses on detecting exciting events in video using complementary
information from the audio and video domains. First, a new mea-
sure for non-stationarity which is extremely effective in separat-
ing background from speech is proposed. This new feature is em-
ployed in an unsupervised GMM-based segmentation algorithm
that identifies the sports commentators speech within the crowd
background. Thereafter, the “level-of-excitement” is measured
using features such as pitch, F1—F3 center frequencies, and spec-
tral center of gravity extracted from the commentators speech.
Our experiments using actual baseball videos show that these fea-
tures are well correlated with human assessment of excitability.
Furthermore, slow-motion replay and baseball pitching-scenes
from the video are also detected to estimate scene end-points. Fi-
nally, audio/video information is fused to rank-order scenes by
“excitability” in order to generate highlights of user-defined time-
lengths. The techniques described in this paper are generic and
applicable to a variety of topic and video/acoustic domains.
Index Terms: Video Segmentation, Multimodal Signal Process-
ing

1. Introduction

This study focuses on the problem of identifying exciting-events
in multimedia content. Our approach analyzes speech character-
istics that identify islands (or “hot-spots”) of strong emotion. In
general, the ability to automatically parse multimedia content and
tag “interesting events” is important for many domains such as
sports, security, movies/TV shows, broadcast news, efc. A num-
ber of technologies such as search, summarization, and mash-ups,
can utilize “hot-spot” information to enhance access to, as well as
navigation of content. For example, emotional “hot-spots” within
sports videos are very likely to be “exciting” and this informa-
tion can be used to guide the process of automatically generating
highlights. This constitutes the motivation for this work, where
automatic highlights of baseball videos are generated using emo-
tional “hot-spot” detection (or “exciting events” detection).
Researchers have utilized audio and video streams to extract
features that identify exciting plays in sports videos. Among
video-based features, motion and density of cuts have been found
to be useful for detection [1]. On the other hand, audio-based
features have been derived from both speech (generally commen-
tators) and background (generally audience), where audience-
events like cheering/applause as well as the commentators speech
characteristics have proven to be useful [2, 3]. While video-based
features tend to be more game-dependent, audio-based features
(audience and commentators) are more generic and reliable in
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detecting exciting plays. Research in audio-based features have
focused on detecting broad events like cheering, music, applause,
speech characteristics and employ this information with heuristics
to identify exciting plays. Alternatively, emotion analysis of the
commentators speech can be a more generic methodology of iden-
tifying excitability across a wide-range of games. While some re-
search has used speech-based features (such as mean pitch value
in [1]), the possibility remains largely under-explored in sports
highlights generation. It is for this reason that we specifically
focus on speech-based features for detecting exciting plays. In
particular, we employ both spectral and excitation based features
such as pitch (Fp), formant frequencies (Fi—F3), and spectral
center of gravity (SCG) which have been shown to work well in
stress detection and classification [4, 5, 6]. Our approach also uses
a GMM (Gaussian Mixture Model) based classifier to automati-
cally distinguish high and low excitement audio segments. The
GMM classifier is trained on human-annotated baseball games
where a subjective assessment of the excitement level for differ-
ent scenes is provided. We use the GMM classifier to assign soft
scores to audio segments, which rank orders the segments auto-
matically.

Since the proposed approach is based on speech features, ac-
curate speech background is necessary for good performance. Ac-
curate segmentation in sports videos can be especially challeng-
ing due to the low levels of SNR (signal-to-noise ratio) [7] and
changes in talking styles [8]. Therefore, existing approaches often
rely on supervised audio segmentation algorithms where speech
and background models are trained on labeled corpora. However,
such an approach is time consuming and often domain depen-
dent. In this study, we circumvent this problem by introducing
a new measure of non-stationarity. Interestingly, the new mea-
sure is observed to separate a wide range of noise types (and
speech) in a reliable and ordered fashion (i.e., increasing order
of non-stationarity). Using this new measure, a simple unsuper-
vised algorithm for audio segmentation is proposed. The com-
bination of speech segmentation, excitement measure extraction,
and GMM-based excitement level classification constitutes our
audio-processing system.

While the audio processing strategy is effective in identifying
periods of exciting play, end-points of scenes must be detected to
provide meaningful highlights. For this purpose, we use the video
signal to detect baseball pitching scenes and slow-motion replay.
Detection of these events allows a high-level segmentation of the
game play on a pitch-by-pitch basis. Hereafter, pitching scenes
are rank-ordered by using the excitement scores of constituent
audio segments. This information can now be used to provide
highlights of any desirable length.

2. Audio Processing

2.1. Audio-Features Based Segmentation

The proposed segmentation strategy is described below. Let m;;
be the Mel-filter bank energy (MFBE) of the i‘" filter-bank and
4" audio-frame. In this study, 40 filter banks are used (i.e., i =
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Figure 1: Probability distribution of (a) different unique environ-
ments, and (b) mixed environments.

1...40) and each audio frame is 25 ms long with 10 ms overlap.
Next, the non-stationarity in the signal is estimated by computing
the standard deviation of MFBE over a longer time period termed
as segments. Let oy; be the k'™ standard deviation for the j'*
Mel-filter bank given by:

kN, EN,

PORCIES DS

i=(k—1)Ns+1 ® i=(k—1)Ns+1

1
Okj = -
s

mi;)? (1)

where N is the time period in number of frames. In this study,
we choose N; such that the time period for measuring non-
stationarity is 200 ms with a 100 ms overlap.

Our experiments show that the vector 65 = [0k1 ... Tkao)
as well as the standard-deviation of &y given by std(d%) are
very effective at distinguishing audio environments. For example,
Fig. 1(a) shows the probability distribution function of std(o%)
for various environment-types, namely, (i) Quiet, (ii) Office, (iii)
Bradley Fighting Vehicle, (iv) F-16 Fighter Aircraft, (v) Large
Crowd Noise, and (vi) Conversational Speech. The distributions
show that the different environments separate effectively within
the feature space. For example, Quiet and Office environments
show low values of std(c%) indicating relatively stationary en-
vironments, and Large Crowd and Speech display high values
of std(cy) indicating highly non-stationary environments. Ad-
ditionally, Fig. 1(b) shows the distribution of std(ay) for (i) Os-
car ceremony acceptance speeches, and (ii) commentators speech
from baseball games. It is noted that the background for Os-
car ceremonies and baseball games contain audio-events like ap-
plause, shouting, cheering, whistling, laughing, music, efc.. Fig-
ure 1 (b) shows the bimodal nature of the non-stationarity mea-
sure distribution, with distinct peaks for speech and background.
In both scenarios, a suitable threshold can be determined to effec-
tively separate speech and background.

Next, we present a simple unsupervised segmentation algo-
rithm that utilizes the proposed non-stationarity measure for seg-
mentation. First, the non-stationarity measure std(cy) is com-
puted for each segment of the entire game video. Next, a 2-
mixture GMM is trained using the non-stationarity measure and
the expectation-maximization (EM) algorithm. The underlying
intuition here is that while one Gaussian would learn speech, the
second would learn background distribution characteristics from
overall bimodal feature distribution. This learning is now ex-
ploited by computing the posterior probability of each mixture
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Table 1: Segmentation Accuracy Using the Proposed Technique
| || Accuracy | Miss | False-Alarms |

80.1% | 26% | 173% |

| Average ||

component for every feature Py as:

L (std(oR) — 1)’
= ex
V2ro, p( 202

where 4 and 052, are the mean and variance of the g Gaussian
(g = 1,2). Using the posterior probabilities Py, each segment
can now be assigned to the more likely Gaussian, (i.e., the one
with the higher posterior probability). As observed in Fig. 1, the
Gaussian with the larger p14 is more likely to be speech since the
non-stationarity of speech is much larger than the typical back-
ground acoustics. Using this observation, speech and background
Gaussians within the GMM can be identified and every k*" seg-
ment can be assigned to either speech or background. Speech and
background decisions are persistent in time and rapid switching
of decisions is very unlikely. This intuition is applied to the algo-
rithm by utilizing Viterbi smoothing to the above decisions while
employing a high self-transition probability (values from 0.90 to
0.99 work best). The smoothed decisions are utilized as the final
decisions for the remainder of the system. Table 1 shows the seg-
mentation accuracy of the proposed technique using data from 6
separate baseball games (about 15 hours of audio). An accuracy
rate of 80.1 % is achieved with very low miss rate of 2.6 % (miss
is speech detected as background) and reasonable false-alarm rate
of 17.3 % (false-alarm is background detected as speech).

Py ) (@3]

2.2. Speech-based Excitement Analysis

In this section, we search for a set of speech parameters that would
be in some way correlated with the excitement level observed in
commentators and, hence, would allow for an automatic speech-
based spotting of key moments in sports. Past studies have shown
that emotions and stress affect a number of speech production pa-
rameters [4, 5, 6, 9]. It has been observed that not only speech
parameters vary across various emotional and stress classes, but
the rate of their change is often proportional to the intensity of the
particular emotion or stress.

In the first step, a correlation between selected speech pro-
duction parameters and human-labeled excitement levels is an-
alyzed. For this purpose, islands of commentators’ speech in
6 baseball games were manually labeled by an expert annota-
tor into 4 subjective perceived excitement levels (ordered level
1 — no excitement, level 4 — maximum excitement). The follow-
ing parameters were extracted from the commentators speech in
an automatic fashion using WaveSurfer and in-house tools: fun-
damental frequency Fp, first four formant center frequencies in
voiced speech segments Fi_4, spectral center of gravity (SCG),
and so called spectral energy spread (SES), which represents a
frequency interval of one standard deviation from SCG, (i.e., an
interval that would capture approximately 34% of the spectral en-
ergy, if the spectrum envelope were Gaussian). While in reality
the shape of the spectral envelope deviates from Gaussian, we
have observed that SES provides a reasonable measure of changes
in energy spread over frequency and together with SCG provides
a more noise-robust spectral descriptor than spectral slope [6].

Figures 2 and 3 show the distribution of mean Fy and SCG
across human labeled excitement levels and games (error bars de-
note 95% confidence intervals). It can be seen that while the range
of parameter values varies across games, due to the varying phys-
iological properties and talking manners of the actual commenta-
tors, there is an increasing trend in Fp and SCG with the level of
perceived excitement. Similar observations were made for Fi_3
and SES. To assess the degree of correlation between the speech
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parameters and perceived excitement levels, a linear regression
was conducted for all parameters. To compensate for the inter-
commentator differences across games, all parameters were nor-
malized to zero mean and unity variance at the game level, by
subtracting a game-dependent parameter mean from all respective
game samples, and dividing them by a game-dependent standard
deviation. We note that this type of normalization assumes an of-
fline processing of the game recording. The outcomes of linear
regression are shown for Fy and SCG in Fig. 4 and 5, and sum-
marized for all parameters in Table 2.

The degree of linear relationship between the subjective ex-
citement levels and parameter changes are represented by the cor-
relation coefficient R?. The spread of the actual samples around
the estimated regression line is measured by the means of mean
square error (MSE). It can be seen in Table 2 that mean game
Fo, SCG, and Fi_» exhibit a relatively high linear relationship
with subjective excitement labels, while F3 and SES display just
a moderate relationship (also note increased MSE values), and Fj
seems to be unaffected by the perceived excitement.

Based on the correlation analysis, Fy, SCG, and Fi_3 were
selected to form a feature vector for automatic excitement-level
assessment. A Gaussian Mixture Model (GMM) maximum like-
lihood (ML) classifier was trained on the feature vectors extracted
from 4 baseball games, utilizing the subjective excitement levels
as transcriptions of the training data, and evaluated on 2 distinct
games representing the open test set. The task was to distinguish
‘moderate’ excitement (corresponding to subjective excitement
levels 1-2) and ‘high’ excitement (levels 3—4). During the test
phase, a binary decision threshold yielding an equal error rate
(EER) was searched in an iterative procedure. To evaluate the
repeatability of the results, the experiment was repeated 3x in a
round robin scheme. In all cases, 4 index-wise adjacent games
were used for training and two games for testing. The overall ex-
citement level classification results for islands of commentators
speech are shown in Table 3, accompanied by the confusion ma-
trices (‘Mod’ stands for moderate excitement). It can be seen that
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Figure 5: Linear regression - mean/variance normalized SCG.

the EER in the round robin scheme range from 21.4-22.4 %. It is
noted that the binary decision threshold in the ML classifier can
be adjusted to reduce the probability of missed high excitement
islands, at the costs of increased probability of false alarms from
the moderate excitement islands.

3. Video processing
3.1. Video Shot Boundary Detection

First, the video is segmented using the cut detection method pre-
sented in [10]. A 48 dimensional color histogram based features
extracted from each video frame are used for this purpose. For
each color, we subdivide the color range into 16 equal intervals
and compute the number of pixels in that range. Thus, 16 coeffi-
cients of the feature is generated for each color yielding a dimen-
sion of 48.

3.2. Pitching shot detection

Baseball pitching shots are detected based on the approach pre-
sented in [11]. Grass and soil color pixels were detected using
their respective color distribution in the HSV color space [11].
The area ratio [12], R, is then computed and used to classify the
shot in three categories based on the rules: (i) If R, > 45% then
it is an outfield scene, (i) If 25% < R, < 45% then a pitching
scene, and (iii) If R, < 25% then other scene.

‘We ensure that our miss rate is a minimal in the first stage. For
each frame ¢ classified as a pitching scene from the first pass, three
binary conditions, C(7), C2(¢) and C3(2) are set in the following
manner. The default value of these variables is set to FALSE.

e (C'1(7): If the number of field pixels in the lower half of the
frame is more than 2 times greater than that of the higher
half, C1 (i) =TRUE.

e (5 (7): Compute the vertical profile of the field pixels and
search for a valley. If there is a strong valley on the left
side of the screen such that the value is less than the mean
value of the average profile, C>(i) =TRUE.



Table 2: Correlation analysis.

Fo F, F, Fs F,  SCG SES
R* 0.947 0.926 0.922 0.779 0.018 0.932 0.538
MSE 0.043 0.081 0.063 0.181 0.803 0.056 0.378

Table 3: Excitement level classification; equal error rates (%).
Round Robin
1 2 3

Ground Truth Mod High Mod High Mod High
Mod 1579 431 1972 536 2558 738
High 83 304 123 444 171 597

EER (%) 21.4 21.6 22.4

e ('3(i): Compute a binary edge image of the current frame.
The frame is divided into 16 equal blocks [12] and the edge
image is analyzed in each block to determine the pres-
ence of the pitcher and the batter. If the image intensity
in blocks 7, 10, 11, and 14 is greater than the average in-
tensity of the image, C5(i) =TRUE.

We declare the frame as a pitching shot if for a frame ¢, the
boolean variable P = Cy(i) - (C2(i) + Cs(4)) yields a TRUE
value, where + and - indicate the binary OR and AND operation.

3.3. Slow motion detection

We utilized the pixel-wise mean square distance (PWMSD) fea-
tures for detecting the slow motion regions. Slow motion fields
are usually generated by frame repetition or drop, which cause
frequent and strong fluctuations in the PWMSD features, D(t).
This fluctuation can be measured using a zero crossing detector
as described in [13]. First, the D(t) feature is segmented in small
windows of N frames. In each window, the zero crossing detec-
tion is performed and if it is greater than some predefined thresh-
old, \ the window is assumed to contain slow motion frames.

4. Automatic Highlights Generation

The proposed system is summarized with the major components
shown in Fig. 6. For automatic highlights generation, each
pitching scene end-points are first determined using the tech-
nique described previously. The scene end-points provide a high-
level play by play segmentation of the game. Next, the ex-
citement level for each of these scenes is determined by using
the GMM-based excitement classifier described previously. It
is noted that the log-likelihood ratio of the GMM classifier it-
self is used as a soft score to represent the level of excitement.
Based on these score assignments, the pitching scenes are rank-
ordered by excitement level. Now, automatic highlights can be
generated by combining the top /N exciting scenes, where N
is determined based on user-specified time length. Some ex-
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Figure 6: The highlight generation system block diagram
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amples of highlights can be viewed on the following website:
http://crss.utdallas.edu/demos/highlights.html.

5. Conclusion

In this study, a novel methodology that uses estimates of ex-
citability in sports video to create automatic highlights was pre-
sented. The new method uses speech-based emotion/stress fea-
tures to estimate excitement in baseball videos. In this manner,
it complements existing approaches that rely on video or audio
based features to detect excitement. Furthermore, a novel unsu-
pervised audio segmentation technique that separates speech from
background in noisy sports videos was also presented. The new
technique uses a measure of non-stationarity to identify and sepa-
rate disparate environment types. Additionally, video-processing
techniques were employed to detect pitching and slow-motion
scenes in order to identify end-points of plays more effectively.
Finally, the combination of segmentation, excitement-estimation,
and scene-identification was uses to create automatic game high-
lights. The techniques presented in this study are generic and may
be equally applicable to a variety of domains.
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