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Abstract—Whisper is a common means of communication
used to avoid disturbing individuals or to exchange private
information. As a vocal style, whisper would be an ideal candidate
for human-handheld/computer interactions in open-office or
public area scenarios. Unfortunately, current speech technology is
predominantly focused on modal (neutral) speech and completely
breaks down when exposed to whisper. One of the major barriers
for successful whisper recognition engines is the lack of available
large transcribed whispered speech corpora. This study introduces
two strategies that require only a small amount of untranscribed
whisper samples to produce excessive amounts of whisper-like
(pseudo-whisper) utterances from easily accessible modal speech
recordings. Once generated, the pseudo-whisper samples are used
to adapt modal acoustic models of a speech recognizer toward whis-
per. The first strategy is based on Vector Taylor Series (VTS) where
a whisper “background” model is first trained to capture a rough
estimate of global whisper characteristics from a small amount of
actual whisper data. Next, that background model is utilized in the
VTS to establish specific broad phone classes’ (unvoiced/voiced
phones) transformations from each input modal utterance to its
pseudo-whispered version. The second strategy generates pseudo-
whisper samples by means of denoising autoencoders (DAE). Two
generative models are investigated—one produces pseudo-whisper
cepstral features on a frame-by-frame basis, while the second
generates pseudo-whisper statistics for whole phone segments.
It is shown that word error rates of a TIMIT-trained speech
recognizer are considerably reduced for a whisper recognition
task with a constrained lexicon after adapting the acoustic model
toward the VTS or DAE pseudo-whisper samples, compared to
model adaptation on an available small whisper set.

Index Terms—Denoising autoencoders, generative models, vec-
tor Taylor series, whispered speech recognition.

I. INTRODUCTION

WHISPER represents an effective mode of communica-
tion in scenarios where the communicator does not wish

to disturb uninvolved parties, or where private or discrete in-
formation needs to be exchanged. Clearly, this makes whis-
per perfectly suited for human-machine interaction, especially
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with handheld devices such as smartphones being used in open-
office settings, company meetings, or public places. Unfortu-
nately, a majority of current speech technology is designed
and fine-tuned for modal (neutral) speech and breaks down
when faced with the acoustic-phonetic differences introduced by
whisper.

In the voiced portions of modal speech, the airflow from the
lungs results in vibration of the vocal folds within the larynx.
These vibrations serve as the excitation source to drive the res-
onances of the vocal tract. In whispered speech, the glottis is
kept open and an audible turbulent flow produced by the pass-
ing air serves as the excitation source for the articulators [4].
Besides the lack of periodic excitation from the glottal folds,
other prominent differences between modal speech and whis-
per can be observed in prosodic cues [5], phone durations [6],
energy distribution between phone classes, spectral tilt, and for-
mant locations due to different configurations of the vocal tract
[4], [7]–[14], resulting in altered distributions of phones in the
formant space [15].

Neutral-trained automatic speech recognizers (ASRs) per-
form poorly in the presence of whisper due to the signif-
icant acoustic mismatch between the input whispered sam-
ples and neutral speech material used to train the recognizer’s
models during system design. A majority of studies on whis-
pered speech recognition attempt to reduce the acoustic mis-
match through model adaptation. In [10] and [12], a max-
imum likelihood linear regression (MLLR) adaptation was
used to transform neutral, whispered, and speaking style in-
dependent ASR models trained on pooled neutral and whisper
samples toward speaker-dependent whisper models. Speaker-
dependent models were also formed in [13] using MLLR,
maximum a posteriori (MAP) adaptation, and eigenvoice de-
composition. [16] employed MLLR-based adaptation in a mis-
matched train-test style speech recognition setup, combined
with a parametric spectral ratio method to detect whispered
segments in normally phonated speech. [17] used a piezo-
electric throat microphone together with MLLR, feature space
adaptation, sigmoidal low-pass filtering, and linear multivari-
ate regression to recognize soft whispery speech. A whis-
pered speech database containing one female speaker recorded
through two channels—a non-audible-murmur microphone and
a headset condenser microphone was acquired in [18]. The
recordings were used to train/test speaker-dependent whisper
ASR models and a traditional vector Taylor series (VTS) al-
gorithm was employed to compensate for mismatched noisy
conditions (clean whisper training/noisy whisper evaluations).
Discriminative training and hidden Markov models (HMM)
with deep neural network (DNN) model states (HMM–DNN)
were recently explored for whisper ASR in [6], and an audio-
visual approach to speech recognition was studied in [19]. In
addition, recent studies [20] and [21] analyzed the impact of
signal-to-noise-ratio and inverse filtering on speaker-dependent
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whisper recognition in the context of a small vocabulary isolated
word task.

In addition to speech recognition, whispered speech process-
ing has also been considered for speaker identification [8], [9],
[22], automatic whisper island detection [7], and modal speech
synthesis from whisper [4].

In this study, our focus is on the design of effective low
resource strategies that would alleviate the mismatch between
neutral-trained ASR models and incoming whispered speech
with only minimalistic requirements on the availability of whis-
pered adaptation data. While large vocabulary speech recogni-
tion of whisper with neutral-trained models may seem unreal-
istic at this moment, it will be shown that in modest ASR tasks
with a constrained lexicon and language model, neutral-trained
ASR models can be successfully adapted toward whisper to
both significantly reduce whisper recognition errors and at the
same time accommodate neutral speech recognition, without the
need for external neutral/whisper segmentation. In this paper, we
use a Gaussian mixture model (GMM)-HMM model instead of
DNN-HMM due to the lack of whispered data to train a suitable
DNN model. Indeed, for applications such as voice control of
smart phones/sending pre-set texts messages, constrained ASR
may be quite suitable.

We explore two approaches that enable production of large
quantities of whisper-like (pseudo-whisper) utterances from eas-
ily accessible modal speech recordings while requiring only a
small amount of untranscribed whisper samples to learn the
target whisper domain characteristics. The generated pseudo-
whisper samples are used to adapt neutral ASR models to whis-
per. The two proposed methods utilize either a vector Taylor se-
ries (VTS) algorithm or denoising autoencoders (DAE). In both
instances, dedicated feature space transformations from neutral
speech to whisper are derived for two broad phone classes. In
the case of VTS, the transformations are re-estimated for every
input utterance while the DAE establishes global class-specific
transformations. In addition, two generative models are inves-
tigated in the context of DAE—one produces pseudo-whisper
cepstral features on a frame-by-frame basis while the second
generates pseudo-whisper statistics for whole phone segments.
In spite of the inherent differences between the two methods in
terms of their computational costs and potential flexibility, both
VTS and DAE reach mutually competitive performance and
considerably reduce recognition errors over the baseline ASR
system.

The remainder of this paper is organized as follows. First, the
speech corpora used in this study is introduced. Next, an analysis
on the neutral and whisper speech contents of the corpus is
performed in Section III. In Section IV, feature and model-based
compensation methods are introduced. Section V discusses the
experiments and evaluation results for the proposed methods.
Finally, conclusion is presented in Section VI.

II. CORPUS OF NEUTRAL/WHISPERED SPEECH

The audio samples used in this study are drawn from the UT-
Vocal Effort II (VEII) corpus [23]. The corpus consists of two
parts—read and spontaneous speech—produced by 112 speak-
ers (37 males and 75 females).

The spontaneous portion was acquired in a simulated cyber
cafe scenario where two subjects were engaged in a mixture of
neutral and whispered communication and a third subject was

TABLE I
SPEECH CORPORA STATISTICS; M/F – MALES/FEMALES; Train – TRAINING SET;
Adapt – MODEL ADAPTATION/VTS–GMM SET; Ne/Wh – NEUTRAL/WHISPERED

SPEECH; #Sents – NUMBER OF SENTENCES; Dur – TOTAL DURATION IN

MINUTES. CLOSED SPEAKERS – SAME SPEAKERS (DIFFERENT UTTERANCES) IN

Adapt/Test; OPEN SPEAKERS – DIFFERENT SPEAKERS IN Adapt/Test.

#Sessions

Corpus Set Style M F #Sents Dur #Wrds

Train Ne 326 136 4158 213 5701
TIMIT

Test Ne 112 56 1512 78 2797

Ne 577 23 152
Adapt

Wh 580 34 150
VEII Closed Speakers 19 39

Ne 348 14 102
Test

Wh 348 21 109

Ne 766 30 154
Adapt 13 26

Wh 779 45 159
VEII Open Speakers

Ne 351 14 152
Test 5 13

Wh 360 20 137

trying to pick up as much key information as possible. The third
subject was included to naturally motivate the communicating
party to lower their voices in certain stages of the conversation.
The read part of the corpus comprises whole sentences—41
phonetically balanced TIMIT sentences [24] read in alternated
neutral and whisper modes; whispered words—two paragraphs
from a local newspaper read in a neutral mode, with some words
being whispered; whispered phrases—two paragraphs from a
local newspaper read in a neutral mode, with some phrases
being whispered.

The recording was carried out in an ASHA-certified single-
walled sound booth. A head-worn close-talk Shure Beta-53 mi-
crophone and a Fostex 8 D824 digital recorder were used to
capture and store the speech with a 44.1 kHz/16 bits sampling.
In addition, each session captures a 1 kHz/75 dBL pure-tone cal-
ibration test sequence which serves as an absolute sound level
reference as the microphone preamplifier gain had to be altered
between sessions from time to time to accommodate varying
vocal intensities in the subjects.

This study utilizes a subset of VEII containing neutral and
whispered TIMIT sentences from 39 female and 19 male speak-
ers. The recordings were downsampled to 16 kHz. In all ASR
tasks, the TIMIT [24] database is used for acoustic model train-
ing and baseline evaluations. Table I summarizes the VEII and
TIMIT datasets used in our experimenters.

III. NEUTRAL/WHISPERED SPEECH ANALYSIS

To get a better understanding of the acoustic differences be-
tween neutral speech and whisper, and hence, the likely sources
of whisper ASR errors, this section studies several parameters
related to the linguistic content of a speech signal in the two
speech modalities. Fig. 1 shows a time domain waveform and
a spectrogram of the neutral and whispered utterance “Don’t
do Charlie’s dirty dishes.” produced by the same speaker. It
can be seen that the periodic glottal excitation is replaced in
whispered speech by a noise-like excitation from an airflow
pushed from the lungs through the open glottis. In addition, the
spectral energy in the whispered utterance is distributed more
uniformly in frequency compared to the neutral case where the
major portion occupies low frequencies. Past literature reports
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Fig. 1. Time domain waveform and spectrogram of neutral and whispered utterance “Don’t do Charlie’s dirty dishes” produced by one speaker.

additional production changes from neutral to whispered speech
such as longer phone durations, energy redistribution between
phone classes, spectral flattening, and upward formant shifts in
frequency for whisper [8], [10]–[13], [23]. These additional ef-
fects are in many ways similar to those observed in stressed and
Lombard speech [25]–[31].

To verify the presence and rate of some of these production
changes in the VEII corpus, distributions of the first two formant
center frequencies (F1 , F2) and their bandwidths are analyzed
for the neutral and whispered samples, together with spectral
center of gravity (SCG), spectral energy spread (SES) [32], and
the first two Mel frequency cepstral coefficients (MFCC; c0 , c1)
[33].

For the analysis purposes, word boundaries in the neutral
recordings were estimated via forced alignment using the avail-
able orthographic transcriptions and an ASR system described
in Section V-A. The analyzed neutral samples are drawn from
the pooled VEII adaptation and test sets (see Table I). For whis-
pered samples, forced alignment with neutral-trained acoustic
models is expected to be less accurate and hence, word bound-
aries were manually labeled by an expert transcriber for selected
116 whispered utterances. Subsequently, for both neutral and
whispered samples, the word boundary labels were combined
with the output of a RAPT pitch tracker from WaveSurfer [34]
to label voiced/unvoiced speech segments. The labeling process
reveals a ratio of unvoiced to voiced speech segments in the VEII
neutral set of 37.6/62.4 (%), respectively, and 99.4/0.6 (%) in
the whispered set. This confirms that the whispered portion of
VEII contains almost exclusively a pure unvoiced whisper.

Figures 2 and 3 show distributions of formant center fre-
quencies and bandwidths in neutral and whispered speech. For-
mant tracks were extracted using WaveSurfer and split into
voiced/unvoiced segments using the RAPT-generated labels as
described above. The edges in the box plots stand for 25th
and 75th percentiles, the central mark is the median, and the
whiskers reach to the most extreme samples that are not consid-
ered outliers.

The percentile intervals for voiced whispered segments
(Wh_V) are noticeably wider as the occurrence of voicedness
in the VEII whisper samples is very limited. In Fig. 2, the
medians of the unvoiced F1–F3 center frequencies are consis-
tently higher than the voiced ones, and the whispered unvoiced

Fig. 2. Formant center frequency distributions; Ne/Wh—neutral/whisper;
V/UV—voiced/unvoiced.

F1–F2 are higher than the neutral unvoiced ones. This may be
due to the coarticulation effects where in neutral speech, the
unvoiced formant tracks are to a certain extent pulled down by
the surrounding voiced segments. A similar effect, in the oppo-
site direction, can be observed for the voiced whisper formants
whose medians are located higher than the voiced neutral ones.
Here, the coarticulation with the predominantly unvoiced whis-
pered segments is likely resulting in voiced formants moving
up in frequency from their neutral locations. It is noted that the
sample size of voiced whisper in VEII is too limited to gener-
alize the observed trends. As shown in Fig. 3, unvoiced F1–F3
exhibit broader bandwidths than the voiced ones. The unvoiced
whisper F1 median is higher than the unvoiced neutral one while
the opposite is true for F2 and F3 .

In the next step, SCG and SES are analyzed. SCG can be
viewed as the ‘center of mass’ of the energy spectrum and SES
represents the standard deviation of the energy distribution from
its SCG. For the VEII neutral and whispered sets, the sample
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Fig. 3. Formant bandwidth distributions; Ne/Wh—neutral/whisper; V/UV—
voiced/unvoiced.

mean SCG is 532.2 Hz and 702.0 Hz, respectively. SES distri-
butions are detailed in Fig. 4 with sample means of 601.3 Hz
for neutral and 1238.4 Hz for whispered samples. This confirms
observations from the literature that the spectral energy tends
to redistribute toward higher frequencies and the spectral tilt
is becoming flatter in whisper (see also Fig. 1). The underlying
cause of this is likely the combination of the upward shifts of low
formants (note that neutral speech is dominated by voiced seg-
ments and hence, voiced formants prevail in shaping the long
term neutral spectrum) as well as the flatter spectrum of the
noise-like excitation in whisper compared to the steep spectral
tilt of glottal waveforms in voiced neutral speech [35].

The left part of Fig. 5 displays c0 distributions in silence,
unvoiced, and voiced segments. The c0 coefficient represents
the logarithm of segmental energy. As expected, neutral voiced
segments tend to exhibit higher energy (i.e., higher c0) than un-
voiced segments and silences. Since VEII whispered utterances
contain almost exclusively unvoiced and silence segments, their
overall c0 distribution is located at lower energies compared
to neutral. The distribution analysis also reveals a higher pro-
portion of silence segments in the whisper utterances (38.7 %)
compared to neutral (4.4 %).

The right part of Fig. 5 depicts the c1 distributions. The c1
coefficient is related to the spectral slope [36]. Voiced neutral
c1 distribution is located at highest values (i.e., steepest spectral
slopes). Unvoiced and silence c1’s are aligned at lower val-
ues, suggesting flatter spectral slopes. For whispered samples,
silences and unvoiced speech segments are aligned with the
neutral ones, and the overall c1 distribution is situated at lower
values compared to neutral, confirming the literature reports of
flatter spectral slopes in whisper.

IV. MODEL AND FEATURE BASED COMPENSATION METHODS

A. SAN and Shift Algorithms

The notion of normalizing or transforming non-neutral to
neutral, or neutral to non-neutral speech has been considered

Fig. 4. Spectral energy spread (SES) distributions in neutral and whispered
portions of VEII.

Fig. 5. Normalized cepstral distributions of broad acoustic classes in neutral
and whispered speech.
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in various contexts in several earlier ASR studies, such as
[25], [37]–[41]. This section reviews two frequency-domain
based transformation techniques – a spectral axis normalization
(SAN) and a Shift transformation, and proposes two strategies of
pseudo-whisper sample generation for efficient neutral-trained
ASR model adaptation toward whisper.

SAN is a class of algorithms used to address a signal–model
mismatch which can be approximated by spectral warping. Vo-
cal tract length normalization (VTLN) [42], [43] is likely the
most popular SAN algorithm used in ASR to compensate for
inter-speaker variability caused by vocal tract length (VTL)
variations. VTLN aims at maximizing decoding likelihood for
whole speaker sessions or individual utterances through a simple
frequency warping procedure applied in the feature extraction
front-end. The warping can be conveniently implemented by
altering the cutoff frequencies in the front-end filter bank [42].

VTLN has been successfully applied to compensate for for-
mant shifts caused by Lombard effect [26], [44], which are to
a certain extent similar to those seen in whisper [10]–[13] (see
also Section III – Fig. 2).

In the VTLN-based SAN, the frequency axis is scaled by a
factor α:

FSAN =
F

α
, (1)

and the optimal warping α̂ is selected from a list of candidates
using a maximum likelihood optimization criterion [42]–[46]:

α̂ = arg max
α

[Pr(O(α) |W, λ)], (2)

where O(α) is the vector of cepstral features extracted from
the utterance’s short-term amplitude spectra warped by α, W
is the word-level transcription of the decoded utterance, and λ

is the acoustic model of the ASR system. In this paper, this
method is referred to as a feature-domain SAN, since O(α) is
extracted through multiple warping of the utterance features.
In an alternative approach, a model-domain SAN, the optimal
warping factor is searched through decoding of an unwarped
feature sequence with a set of warped acoustic models λ(α)

(i.e., models trained on samples warped with different α’s):

FSAN = Fα, (3)

α̂ = arg max
α

[Pr(O|W, λ(α))]. (4)

While the warping concept is shared by the feature- and model-
domain approaches, each of them has its own benefits and
drawbacks. The model-based approach needs to train and store
multiple warped acoustic models but requires only a single un-
warped feature extraction pass during decoding. The feature-
based approach requires only an unwarped acoustic model—
reducing the training and storage costs, however, it relies on
multiple decoding passes through feature sets warped with var-
ious factors. It is noted that the two methods may have different
impact on the ASR performance as the ability of the state mod-
els in the model-based approach to capture spectral differences
due to warping will vary with the choice of the model struc-
ture and efficiency of the training algorithm (e.g., the number
of mixture components in the hidden Markov model–Gaussian
mixture model, HMM–GMM, and the number of expectation–
maximization retraining iterations).

TABLE II
ACOUSTIC MODEL TRAINING WITH FEATURE-BASED SAN

Feature-Domain SAN Training:
1) Train non-normalized acoustic model λ on unwarped train utterances Ou t t ;
2) For each warping factor α ∈ A , transform training utterances

Ou t t → O(α )
u t t ;

3) Using λ, perform forced alignment on all warped O(α )
u t t ;

4) For each utterance, find α maximizing alignment likelihood:

α̂u t t = argmax
α

[
P r(O(α )

u t t )|Wu t t , λ
]

;

5) Transform training set by optimal utterance α̂u t t
′s;

Ou t t → O( α̂ )
u t t ;

6) Retrain l using all warped O( α̂ )
u t t to obtain feature-domain normalized

λN o rm Fe a t u r e

TABLE III
ACOUSTIC MODEL TRAINING WITH MODEL-BASED SAN

Model-Domain SAN Training:
1) Train non-normalized acoustic model λ on unwarped train utterances Ou t t ;
2) For each warping factor α ∈ A , transform training utterances

Ou t t → O(α )
u t t

and retraining λ on Oα
u t t to obtain warped model λ(α ) ;

3) For each warping factor α ∈ A , use λ(α ) to perform forced alignment on
unwarped Ou t t ;

4) For each utterance, find a maximizing alignment likelihood:

α̂u t t = argmax
α

[
P r(O(α )

u t t )|Wu t t , λ
]

;

5) Transform training set by optimal utterance α̂u t t
′s;

Ou t t → O( α̂ )
u t t ;

6) Retrain λ using all warped O( α̂ )
u t t to obtain model-domain normalized

λN o rm M o d e l

SAN can be applied during both training (yielding SAN-
normalized acoustic models) and decoding. In the training
phase, the ground truth word transcriptions are utilized to search
α̂ via Eq. (2) or (4). Once the utterance-specific factors α̂utt are
established, they are applied on the training set features Outt ,
yielding a warped training set O(α̂)

utt . The acoustic model λ is
then retrained on O(α̂)

utt to obtain a SAN-normalized acoustic
model λNorm .

In the decoding phase, the unknown transcription Ŵ(N )
utt is

first estimated by decoding the unwarped test utterance with the
SAN-normalized λNorm . Subsequently, similar to the training
phase, α̂utt is estimated using Eq. (2) or (4) on the utterance
level. Finally, the test utterances are either warped by the corre-
sponding α̂utt’s and decoded by λNorm – feature-domain SAN
decoding, or they are decoded by the corresponding warped
normalized models λ

(α)
Norm – model-domain SAN decoding, to

extract the resulting utterance transcription Ŵutt . In both in-
stances, the language model λLM is utilized in the decoding
process. Since there is no closed form solution for Eqs. (2) and
(4), a grid search over 9 warping factors in the range of 0.8
to 1.2 is typically used, which is also followed in this study.
Tables II, III, and IV summarize the feature- and model-based
SAN training, and feature-based SAN decoding as implemented
in our study.

As can be seen in Fig. 2, low formants in whisper tend to
shift with a higher rate from their neutral locations than the
higher formants. However, as a result of the scalar warping in
Eq. (1), higher formants will be always affected more by the
VTLN SAN than lower formants, in terms of their absolute
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TABLE IV
UTTERANCE DECODING WITH FEATURE-BASED SAN

Feature-Domain SAN Decoding:
1) Decode test utterances using normalized model λN o rm ;

Ŵ
(N )
u t t = argmax

W ∈L
[P r(Ou t t )|W, λN o rm )P r(W |λL M )]

2) For each warping factor α ∈ A , transform training utterances

Ou t t → O(α )
u t t ;

3) Using λN o rm , and estimated transcriptions Ŵ
(N )
u t t perform forced alignment on

all warped Oα
u t t ;

4) For each test utterance, find α maximizing alignment likelihood:

α̂u t t = argmax
α

[
P r(O(α )

u t t )|WN
u t t , λN o rm

]
;

5) Decode test set warped with utterance-optimized α̂u t t
′s using normalized model

λN o rm :

Ŵ u t t = argmax
W ∈L

[
P r(O( α̂ )

u t t )|W, λN o rm )P r(W |λL M )
]

shift in frequency. In an effort to alleviate the disproportion in
the high versus low formant manipulation, [44], [47] introduced
a so called Shift transform:

FShift = F + β, (5)

in which β is a frequency translation factor and FShift repre-
sents the transformed filter bank cutoff frequencies. The trans-
form was found successful in Lombard speech ASR, surpassing
both the traditional VTLN and a generalized linear frequency
transformation. Due to the similarities of the formant reconfig-
uration in whispered and Lombard speech, Shift is evaluated as
one of the compensation strategies also in this study. The search
for the optimal β̂ in our implementation directly follows the
procedures outlined in Tables II, III, and IV (simply replace α
by β); the search grid consists of seven candidates uniformly
distributed in the range of 0 to 300 Hz (step 50 Hz). Note that this
search grid allows for only upward shifts of the filter bank cutoffs
which correspond to translating the amplitude spectrum down in
frequency (the greater the shift, the more of the low-frequency
spectral content being discarded and the high-frequency content
being included).

In the VTLN SAN and Shift setups in our experiments, the
transformations are applied both during model training and de-
coding. During training, either feature- or model-domain align-
ment is performed to estimate optimal training set α̂utt’s. In
the recognition stage, feature-domain decoding is applied in
all cases. This resulted from our preliminary, and somewhat
surprising, experimental observation that the feature-domain
SAN/Shift decoding procedures were able to further benefit
from being combined with model-domain based training while
model-based training combined with model-based decoding
yielded slightly inferior performance. Since all SAN/Shift sys-
tems in this study utilize feature-domain decoding, they are
labeled as ‘Feature Domain’ or ‘Model Domain’ based on the
SAN/Shift method used during model training.

B. VTS Algorithm Description

Past studies on whispered speech recognition [12], [13], [16],
[18] suggest that neutral-trained model adaptation toward whis-
per is effective in reducing the acoustic mismatch between the
two speech modalities. However, for a successful supervised
adaptation, a sufficient amount of transcribed whisper adap-
tation data is required. In this and the following section, two

Fig. 6. Pseudo-whisper generation for neutral-trained ASR model adapta-
tion toward whisper; switch positions: (i) left—conventional adaptation to real
whisper, (ii) middle—adaptation to VTS-produced pseudo-whisper, (iii) right—
adaptation to DAE-produced pseudo-whisper.

strategies are proposed that require only a small amount of
untranscribed whispered utterances to produce a large popula-
tion of pseudo-whisper samples from available neutral speech.
The pseudo-whisper samples are used for effective neutral ASR
model adaptation toward whisper. This is motivated by the fact
that large corpora of transcribed neutral speech are easily ac-
cessible to system designers while transcribed whisper is rare
and difficult to acquire. The proposed approaches are based on
the VTS and DAE paradigms and their application for pseudo-
whisper based acoustic model adaptation is outlined in Fig. 6.

The VTS algorithm was originally introduced in [48], [49] to
compensate for the effects of stationary additive noise and chan-
nel distortion in ASR. The observed speech signal was modeled
as a clean speech corrupted by additive noise and convolutional
distortions representing room acoustics and the transmission
channel. The goal of VTS was to estimate the clean speech
component from the corrupted signal.

Our VTS-based pseudo-whisper sample generation is in-
spired by a concept originally introduced in the area of speaker
recognition [8], where neutral speech samples yne (t) are as-
sumed to be a corrupted version of whispered speech samples
xwh (t) passed through a channel h (t) and distorted by additive
noise n (t):

yne (t) = xwh (t) ∗ h (t) + n (t) . (6)

In the log-spectral domain, Eq. (6) becomes

yne = xwh + h + g (xwh ,h,n) , (7)

where

g (xwh ,h,n) = ln (1 + exp (n − xwh − h)) , (8)

and xwh , yne , h and n are the log-spectra for xwh (t), yne (t),
h (t) and n (t), respectively. For simplicity, Eq. (7) assumes
that in the log-spectral domain, the cosine of the angle between
xwh (t) ∗ h (t) and n (t) is zero. Moreover, it is assumed that (i)
xwh can be modeled by a mixture of Gaussian distributions, (ii)
n has a single Gaussian distribution, and (iii) h is deterministic.
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Fig. 7. VTS-based generation of pseudo-whisper samples using whisper
GMM and samples from neutral Adapt set.

The nonlinear function g (xwh ,h,n) in Eq. (7) makes the
computation of the neutral speech probability density function
(PDF) from the whispered speech PDF a non-trivial problem.
Assuming μxw h

is the mean of xwh , the computation can be
simplified using a vector Taylor expansion of yne around the
point

(
μxw h

,h0 ,μn

)
. As a result, the mean vector and the co-

variance matrix of the kth mixture component of the neutral
GMM, μyn e , k

and Σyn e , k
, can be obtained from the kth mixture

component of the whisper GMM, μxw h , k
and Σxw h , k

:

μyn e ,k ≈ μxw h ,k + h + g
(
μxw h

,h0 ,μn

)
, (9)

Σyn e ,k ≈ GΣxw h ,kGT . (10)

whereG is the gradient of the non-linearity function with respect
to the channel.

To calculate the mean vector and variance matrix for each
Gaussian mixture using Eqs. (9) and (10), noise and chan-
nel characteristics are first estimated using the Expectation
Maximization (EM) algorithm. Once the neutral speech dis-
tribution parameters are computed, the pseudo-whisper features
can be estimated using the Minimum Mean Square Estimation
(MMSE) algorithm [50]:

x̂wh ,M M SE = E (xwh |yne ) = ∫xw h
xwhp (xwh |yne ) dxwh , (11)

x̂wh ,M M SE = yne −
K −1∑
k=0

p[k|yne ] ∫xw h
g (xwh ,h,n)

× p[xwh |k,yne ]dxwh , (12)

in which E(.) is the expectation operator, k is the mixture index,
and K denotes the total number of mixtures. In Eq. (12), g(.) is
replaced by its vector Taylor approximation. For example, for
the zero order expansion we obtain the following formula:

x̂wh,MMSE ∼= yne − (13)

ΣK−1
k=0 p[k|yne ]

∫

xw h

g(μxw h , k ,n,h)p[xwh |k,yne ]dxwh =

yne − ΣK−1
k=0 p[k|yne ]g(μxw h ,k ,n,h) (14)

The process of the VTS-based pseudo-whisper generation is
outlined in Fig. 7. In the initialization stage, a small amount of
untranscribed whisper samples drawn from the Whisper Adapt
set (see Table I) are used to train a whisper GMM (WhAdapt
GMM). The WhAdapt GMM is subsequently utilized in the VTS
procedure to determine transformations of broad phone classes

(unvoiced consonants, voiced consonants and vowels) for neu-
tral samples from the Neutral Adapt set. Forced alignment is
applied to estimate phone boundaries in the neutral samples
and unique transformations are estimated for each utterance. Fi-
nally, each neutral sample is subjected to the utterance-specific
transformations to produce a pseudo-whispered sample. The
pseudo-whispered sample is assigned the word-level transcrip-
tion from its neutral source. Once the procedure is completed for
all neutral samples, the neutral ASR acoustic model is adapted
using the pseudo-whisper set (see Fig. 6) and the word-level
transcriptions adopted from the neutral set.

C. Denoising Autoencoder

In this section, we explore the use of a DAE for pseudo-
whisper sample generation. Our focus on DAE is motivated by
the recent success of generative modeling with single layer and
stacked autoencoders in denoising and dereverberantion in the
ASR domain [51], [52]. An autoencoder is an artificial neural
network trained to reconstruct its input [53]. The autoencoder
first maps its input nodes x(i) to a hidden representation as:

y = hW ,b(x) = f1(Wx + b), (15)

in which y represents the vector of hidden samples, W is a
d × d′ weight matrix, b is the bias vector, and f1(.) is a nonlinear
activation function such as sigmoid or tanh. The latent samples
are then mapped to the output to reconstruct the input:

z = hW ′,b ′(x) = f2(W′x + b′), (16)

where W′ is a d′ × d weight matrix, b′ is the bias vector, and
f2(.) is either a nonlinear (e.g., sigmoid, tanh) or a linear func-
tion. During training, the goal is to minimize the reconstruction
error between the input and output samples. The parameters of
the model are optimized to minimize the loss function

J = ||x − z||2 , (17)

where ||.|| denotes the Euclidean matrix norm. To prevent the
autoencoder from performing an identity function, some con-
straints or input signal manipulations can be imposed during
training. One example of such manipulation is corruption of the
input signal through masking or addition of a Gaussian noise.
An autoencoder trained to reconstruct the original input from its
corrupted version is called a denoising autoencoder [54]. DAE
are expected to learn more stable latent representation of the
input data and be robust to input signal variability.

Autoencoders can be used as building blocks of DNN, where
the output of one latent representation is fed to the input of the
following layer [55]. DNNs constructed in this fashion utilize a
greedy layer-wise initialization (pre-training) to avoid local op-
tima in the concluding supervised back-propagation fine-tuning
stage [55], [56]. In the pre-training stage, one layer is updated at
a time, to pass a stable representation of its input to the input of
the subsequent layer. After the pre-training is completed for all
layers, backpropagation is applied through all layers to fine-tune
the network parameters for the desired targets.

Similar to Section IV-B, in the proposed DAE approach dis-
cussed in the following paragraphs, neutral speech samples
are viewed as a corrupted version of whispered speech and
the DAE’s task is to reconstruct whispered samples from their
neutral counterparts. The DAE framework utilizes neutral and
whispered samples drawn from the Adapt set (see Table I). For
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Fig. 8. Data segmentation for DAE fine-tuning—feature-based approach:
(i) neutral and whispered streams of concatenated phone segments are aligned;
(ii) sliding window selects pairs of neutral and whispered segments for DAE
fine-tuning; (iii) extraction is concluded when reaching the last segment in the
shorter of the two (neutral, whispered) streams.

Fig. 9. Data segmentation for DAE fine-tuning—statistics-based approach:
vector of cepstral means and a covariance matrix is extracted from each neutral
and whispered phone segment.

the neutral adaptation samples, word-level transcriptions are
assumed to be available at all instances. Forced alignment us-
ing the neutral-trained ASR system is used to estimate phone
boundaries in the neutral adaptation stream. For DAE training,
word-level transcriptions and phone boundaries for whispered
adaptation samples are roughly estimated in a decoding pass
with a neutral-trained ASR engine. Moreover, since we do not
have access to the same utterances in neutral and whispered
modes in the UT-Vocal Effort II corpus, phone-aligned seg-
ments are used as the input and output of the DAE system.
Experimental Section V considers also a setup with no initial
ASR decoding pass on the whisper adaptation set and a setup
where the whisper transcriptions are available. These variants
are considered for reference purposes and will be discussed in
the experimental section, whereas this section will focus on the
core DAE approach which assumes availability of only untran-
scribed whisper.

We consider two methods of pseudo-whisper generation:
(i) feature–based—the DAE generates pseudo-whisper cepstral
features on a frame basis, and (ii) statistics–based – the DAE
produces a vector of segmental means and variances, which
are then used to transform whole neutral segments to pseudo-
whisper in a mean–variance normalization (MVN) fashion. In
both cases, the DAEs are first pre-trained to reconstruct neu-
tral samples corrupted by masking. Once the pre-training is
completed, they are fine-tuned to learn transformations between
input neutral samples and target whispered samples.

Neutral sample frames labeled by the alignment as a certain
phone (e.g., /aa/) are pooled together to form phone-specific
streams. The same is repeated for whispered frames whose
labels are obtained from an ASR decoding pass. Two DAEs

Fig. 10. DAE-based generation of pseudo-whisper samples using unvoiced-
and voiced-specific nets trained on available portion of Adapt set. In feature-
based approach, DAE directly generates pseudo-whisper cepstral frames; in
statistics-based approach, DAE produces phone segment statistics that are then
used to transform neutral phone segments to pseudo-whisper.

are trained at a time—one for unvoiced consonants and an-
other for voiced consonants and vowels. In the pre-training
stage of the feature-based approach, the DAEs are trained to
reconstruct cepstral vectors representing individual frames of
the neutral phone streams. Each of the two DAEs is exposed to
the sequence of all respective phone-specific streams (e.g., the
unvoiced DAE is sequentially presented with all unvoiced con-
sonant streams). Once the generative pre-training is completed,
the DAEs are fine-tuned with matched streams of neutral and
whispered phone frames, neutral frames being an input and
whispered frames the target for the backpropagation algorithm.
In general, neutral and whispered streams will contain differ-
ent number of frames per phone. To accommodate for this, the
phone-specific fine-tuning iteration stops when the last frame of
the shorter stream is reached. The input/output stream match-
ing for the feature-based DAE fine-tuning is outlined in Fig. 8.
The statistics–based DAE method follows the same steps, only
here the input/output streams are represented by whole phone
segment statistics – cepstral means and variances (see Fig. 9).

Once the DAE pre-training and fine-tuning are completed,
the DAEs can be used to transform neutral samples to pseudo-
whisper. As in the training stage, phone boundaries in the input
neutral utterances are estimated through forced alignment. The
utterance transformation process is outlined in Fig. 10. Similar
to VTS, the pseudo-whisper samples share word-level transcrip-
tions with the original neutral samples they were generated from.
An example of statistics-based pseudo-whisper generation for
concatenated segments of phone /b/ is shown in Fig. 11.

D. VTS and DAE Initialization

Fig. 12 summarizes the offline initialization procedures in
the proposed VTS and DAE methods. In VTS, untranscribed
whispered samples are used to train a whispered GMM model.
The model is later utilized in the extraction of utterance-level
transformations and a frame-level production of pseudo-whisper
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Fig. 11. Example of c0 temporal trajectory in neutral, whispered, and gen-
erated pseudo-whisper stream comprising concatenated instances of phone /b/.
Pseudo-whisper stream was produced using statistics approach.

Fig. 12. Offline initialization of VTS and DAE strategies.

cepstral vectors. In DAE, transcribed neutral and untranscribed
whispered samples are used to pre-train and fine-tune feature-
or statistics-based DAEs for frame-level or segmental-level
pseudo-whisper generation.

V. NEUTRAL/WHISPERED ASR EXPERIMENTS

A. System Description

This section evaluates performance of the proposed algo-
rithms. All experiments utilize a gender-independent recognizer
implemented in CMU Sphinx 3 [57]. Three-state left-to-right
triphone HMMs with 8 Gaussian mixture components per state
are used to model 39 phone categories, including silence. In all
non-DAE setups, the feature extraction front-end produces 39
static, delta, and acceleration coefficients. In the DAE setups,
13-dimensional static cepstral features are directly processed by
the feature-based autoencoders, and 26-dimensional statistical
features (13 cepstral means and 13 cepstral standard deviations)
derived from the 13-dimensional static vectors are utilized by
the statistics-based autoencoders. Cepstral coefficients in all se-
tups are extracted using a 25 ms analysis window shifted with
a skip rate of 10 ms. All speech material is sampled at 16 kHz
with a 16-bit quantization. The front-ends are implemented in
the LabRosa Matlab toolkit [58] and employ cepstral mean nor-
malization [59]. Variance normalization was not used as it was
observed to considerably degrade performance on whisper tasks
in our preliminary experiments.

The acoustic models are trained on the standard TIMIT train-
ing set [24] (see Table I). In experiments on the VEII neutral
and whispered datasets, the TIMIT-trained models are further
adapted toward the VEII acoustic/channel characteristics with

Fig. 13. VEII whisper task: TIMIT model adaptation toward neutral, whis-
pered, and combined neutral + whispered VEII adaptation sets; full versus
constrained LM; MFCC versus MFCC–20U–Redist–5800 front-end (Revised
Feat).

the neutral adaptation sets detailed in Table I, using a supervised
MLLR [60]. Depending on the task, a whispered adaptation set,
or a generated pseudo-whispered set are pooled together with the
neutral adaptation set to perform a multi-style (i.e., combined
neutral and whisper) adaptation. Unless specified otherwise, the
multi-style adaptation is chosen over a ‘whisper only’ adap-
tation as the goal is to both improve whisper recognition and
maintain good performance for neutral speech.

Two application scenarios are considered in the adapta-
tion/evaluation set partitioning: (i) closed speakers task – dif-
ferent utterances from the same pool of speakers are captured in
the adaptation and test set; this is oriented toward applications
where the group of users is known and does not vary over time—
such as the use of family/company mobile phones, tablets, and
laptops; (ii) open speakers task—a general task with no overlap
between adaptation and open test set speakers.

B. Baseline Experiments

In the initial experiment, the baseline recognition system is
trained and evaluated on the standard TIMIT task, using a tri-
gram language model (LM; 6K words) trained on TIMIT tran-
scriptions. For a traditional Mel frequency cepstral coefficients
(MFCC) front-end [33] and a perceptual linear prediction (PLP)
front-end [61], the system reaches word error rates (WER) of
6.0% and 6.6%, respectively.

In the next step, the neutral TIMIT acoustic models are
tested against neutral and whisper test sets from the VEII
database. Performance for the neutral TIMIT-trained MFCC
setup with a 6K-word TIMIT LM drops from the TIMIT test
set’s 6.0% WER to 47.9% WER on the neutral VEII closed
speaker test set and to 50.3% WER on the neutral VEII open
speaker test set. This is not surprising given the room impulse
response/microphone/channel mismatch between TIMIT and
VEII. Fig. 13 details performance of the MFCC setup on the
VEII whisper test sets for scenarios where no acoustic model
adaptation is applied (no adapt), and where the TIMIT acous-
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tic models were adapted to the neutral (ne), whispered (wh),
and combined (ne + wh) VEII adaptation sets. The results
are presented for both closed speakers (Closed spkr) and open
speakers (Open spkr) tasks. For the unadapted TIMIT-trained
MFCC setup with 6K-word LM (Full Vocab), the whispered
VEII closed speaker task yields a 100.9% WER and the open
speaker task a 99.4% WER. Here, the acoustic mismatch be-
tween TIMIT and VEII is further magnified by the acoustic-
phonetic differences between neutral and whispered speech (see
Figs. 1–5).

To reduce the mismatch between TIMIT and VEII corpora,
the neutral TIMIT acoustic models are adapted to the VEII adapt
sets (see Table I). As can be seen in Fig. 13, adapting neutral
TIMIT acoustic models toward the neutral Closed/Open VEII
adaptation sets considerably reduces whispered WERs as the
room impulse response/microphone/channel mismatch is alle-
viated. TIMIT model adaptation to whispered and neutral +
whispered VEII adaptation sets further improves the perfor-
mance as here, also the acoustic-phonetic mismatch between
neutral and whispered speech is partly equalized.

While model adaptation to the VEII sets substantially reduces
WERs, the acoustic mismatch is still too prominent to enable
a reasonable medium vocabulary recognition. To transform the
whisper recognition problem into a more realistic task with
outcomes applicable in real world scenarios, in the next step, we
experiment with constraining the size of the language model. As
discussed in Introduction, there are application domains where
a constrained grammar/language model is well justified (e.g.,
voice-control for smartphones, tablets, laptops; sending pre-set
messages during meetings, etc.), and which would benefit from
supporting the whisper input modality. To mimic such tasks, we
reduce the lexicon to approximately 160 words which are also
captured in the VEII test sets.

Recognition results for the TIMIT adapted/unadapted mod-
els combined with the constrained lexicon are shown in Fig. 13
for whisper tasks and detailed in Table V for both neutral and
whisper tasks (columns MFCC and PLP in the table). Here,
the whisper WERs for the MFCC and PLP front-ends are still
relatively high, reaching ∼25–39 % based on the speaker sce-
nario, but they establish a baseline which, especially if fur-
ther improved upon, may start to be appealing for realistic
applications.

For a reference, an experiment was conducted where the
TIMIT models were adapted to the whole closed-speakers whis-
per adaptation set (a total of 34 min) in a supervised fashion,
yielding whisper WERs of 18.2% and 22.0% for MFCC and
PLP, respectively. This confirms the observations made in the
past studies [12], [13], [16] that supervised model adaptation
to whisper is effective in reducing ASR errors. This being said,
our goal in this study is to establish effective compensation and
adaptation strategies when only a limited amount of untran-
scribed whisper samples are available.

C. Modified Front-Ends

Our preliminary studies [1], [2] investigated front-end mod-
ifications that would help alleviate neutral–whispered speech
mismatch in the feature space. Considerable whisper WER
reduction was achieved with MFCC and PLP front-ends where
the original Mel triangular and bark trapezoid filter banks were
substituted with a triangular filter bank distributed uniformly

over a linear frequency axis. These front-ends, utilizing a filter
bank with 20 uniform triangular subbands, are denoted MFCC–
20Uni and PLP–20Uni in Table V. It can be seen that both mod-
ified front-ends significantly outperform the traditional MFCC
and PLP on whisper and also slightly reduce neutral WERs. In
addition, [1] introduced a redistributed version of the ‘20Uni’
filterbank (PLP–20Uni–Redist), and [2] observed, as a result
of an analysis of the information content distribution in neutral
versus whisper spectra, future benefits from limiting the high
filterbank cutoff to 5800 Hz. The PLP–20Uni and PLP–20Uni–
Redist front-ends with high cutoffs at 5800 Hz are denoted
PLP–20Uni–5800 and PLP–20Uni–Redist–5800 and as can be
seen in Table V, they further reduce whisper errors of their full-
band predecessors while maintaining comparable performance
for neutral speech. Based on these results, PLP–20Uni–Redist–
5800 is used in the following experiments, unless stated other-
wise.

It is noted that the setups with modified front-ends and acous-
tic models adapted only to the neutral VEII adaptation set sur-
pass the reference systems with conventional MFCC and PLP
front-ends where the models were adapted to the full, tran-
scribed whisper adaptation set. This may serve as a proof of
concept pursued in this study—ASR robustness to whisper can
be notably improved without necessarily acquiring excessive
amounts of transcribed whisper adaptation samples.

To get a better understanding of the sources of recogni-
tion errors due to the phone-level acoustic mismatch between
neutral-trained acoustic models and processed whisper utter-
ances, a phone recognition experiment is carried out. Here, the
original word-level LM is replaced by a trigram phone-level
LM. The phone LM is constructed by expanding orthographic
transcriptions into phonetic transcriptions (using the pronunci-
ation lexicon) and subsequently, calculating the phone trigram
statistics. Comparing phone recognition error distributions for
the closed and open speaker scenarios suggests that deletions
are the main source of the increased errors in open speakers.
Speaker mismatch between the acoustic models and the pro-
cessed speech results in reduced likelihoods of the decoded
utterances, effectively pulling some of the correct word hy-
potheses out of the search beam of the Viterbi algorithm.

D. SAN and Shift Frequency Transforms

As discussed in Section IV-A, SAN has been successfully
used to address inter-speaker variability due to differences in
vocal tract lengths and Shift for reverting formant shifts in Lom-
bard effect. In this sense, SAN and Shift seem to be good can-
didates to address formant shifts in whisper as well (see Fig. 2).

To distinguish the differences in the training procedure, the
two setups are denoted ‘Feature Domain’ and ‘Model Domain’
in Table V. The results in the table show that besides the feature-
domain SAN setup on the open speakers task, both SAN and
Shift are successful in reducing whisper WERs of the baseline
PLP–20Uni–Redist–5800 and that the model-domain training
is in overall more effective.

Fig. 14 presents the SAN choices of α during decoding of
neutral and whispered test sets. For the plot purposes, the counts
of the 9 α candidates were accumulated into a 5-bar histogram.
As the figure shows, the maximum for the neutral samples is
at 1. The variance of the distribution reflects the SAN effort
to compensate for the vocal tract differences in the test set
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TABLE V
COMPARISON OF TRADITIONAL FRONT-ENDS, WHISPER-ORIENTED FRONT-ENDS FROM [1], [2], FREQUENCY TRANSFORMS SAN

AND Shift, AND PSEUDO-WHISPER ADAPTATION STRATEGIES VTS AND DAE; WER (%)

Front-Ends Frequency Transforms Pseudo-Whisper Adaptation

SAN Shift

PLP- PLP- PLP-20Uni- VTS Stat.DAE Stat.DAE
Speaker Test MFCC- PLP- 20 Uni- 20 Uni- Redist- Feature Model Feature Model + Shift (Unsuper- + Shift
Scenario Set MFCC PLP 20 Uni 20 Uni Redist 5800 5800 Domain Domain Domain Domain VTS (M.D.) vised) (M.D.)

Closed Ne 5.2 5.4 3.8 4.0 4.1 4.5 3.9 3.6 3.2 3.5 3.4 4.0 3.6 3.7 3.2
Wh 27.0 24.6 19.5 18.2 17.3 14.0 13.7 11.4 10.7 12.1 11.5 9.6 9.0 10.3 8.9

Open Ne 6.3 7.1 5.8 5.2 5.6 5.5 5.0 5.0 5.3 5.6 4.3 4.7 3.9 5.2 4.1
Wh 38.5 35.4 30.2 27.6 27.7 22.9 23.4 27.1 22.1 22.8 22.0 18.3 17.4 18.2 18.2

Fig. 14. Distribution of α’s in neutral and whisper SAN decoding; connected
line—neutral samples; dashed line—whispered samples; SAN with model-
domain training/feature-domain decoding.

Fig. 15. Vowel distributions in F1 –F2 formant space; neutral, whisper, and
SAN-transformed whisper samples from closed speakers set.

individuals. The α distribution maximum for whisper is at 0.9,
where the corresponding high cutoff frequency of the extraction
filter bank is increased by a factor of ∼1.11—resulting in the
filter bank being stretched. This confirms that SAN is trying
to compensate for the upward formant shifts in whisper by
compressing the spectrum in frequency.

Fig. 15 shows estimated mean vowel locations in the F1–
F2 space for neutral, whisper, and SAN-transformed whisper
samples. For the analysis, phone boundaries are estimated by
forced alignment and combined with formant tracks extracted
using Praat [62].

The SAN-transformed whisper formant locations are calcu-
lated by applying the maximum likelihood SAN factors to the
original whisper formant frequencies. It can be observed that
the vowel placement in the F1–F2 plane is quite different for
neutral and whispered samples, with the phones /eh/ and /uh/
even switching place. SAN is successfully shifting the whisper
formants back toward neutral and switching the relative place-
ment of /eh/ and /uh/ back, however, the transformed formants
are still quite distant from the neutral ones.

E. Adaptation to VTS Pseudo-Whisper

In this section, we study side-by-side the effects of a tradi-
tional supervised model adaptation to transcribed real whisper
and an adaptation to pseudo-whisper samples produced by the
VTS algorithm introduced in Section IV-B (see also Figs. 6,
7). A special attention is given to the effect of the number of
available real whisper samples on the performance of the two
strategies. For a fair comparison, both setups are given access
to the same neutral and whispered adaptation samples. In all
instances of the experiment, the full neutral adaptation set (see
Table I) is available to the setups, while the amount of available
real whisper samples is altered.

The first, traditional setup utilizing direct adaptation to tran-
scribed real whisper samples is, for simplicity, denoted MLLR.
Here, as discussed in Section V-A, the TIMIT-trained acoustic
models are adapted to the pooled complete neutral adaptation
set and a portion of the transcribed whisper adaptation set. The
second setup, denoted VTS, uses the available portion of the real
whisper samples to train a Gaussian mixture model of whisper
WhAdapt GMM (see Fig. 7). Whisper word-level transcriptions
are not utilized by this setup. The WhAdapt GMM is then ap-
plied in the VTS scheme to transform all available neutral adap-
tation samples to pseudo-whisper. In the last step, the generated
pseudo-whisper samples are combined together with the neutral
adaptation samples for MLLR adaptation of the neutral acoustic
models (see Fig. 6).

While both the MLLR and the VTS setup have access to
the same full neutral and reduced whisper adaptation sets, VTS
will always generate a pseudo-whisper set of a size of the full
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Fig. 16. Comparison of model adaptation on whisper (MLLR) and on VTS-
generated pseudo-whisper samples; closed speakers set.

Fig. 17. Comparison of model adaptation on whisper (MLLR) and on VTS-
generated pseudo-whisper samples; open speakers set.

neutral adaptation set. This means that the acoustic models in the
VTS setup are always adapted to a ‘full’ sized pseudo-whisper
set while the MLLR setup utilizes only the available reduced
whisper set. This being said, the VTS setup is clearly affected by
the whisper set reduction as well, as the quality of the WhAdapt
GMM in VTS is likely to deteriorate when trained on only a very
limited amount of real whisper samples, and so is the accuracy
of the transforms derived from WhAdapt GMM.

Figs. 16 and 17 show performance of the MLLR and VTS
setups for the closed and open speakers tasks, with respect to
the size of the available real whisper adaptation set. Intuitively,
the performance is identical for both setups when no whis-
per adaptation samples are available. For all non-empty whisper
adaptation sets, VTS displays a superior performance to MLLR.
It is noted that the smallest non-empty whisper adaptation set
considered captures only 15 samples, which means that for the
closed speakers scenario, it covers only a subset of the test set
speakers. Interestingly, the acoustic model seems to adapt very
well even in this scenario (note that even in this case, the mod-
els still see 577 pseudo-whisper adaptation samples; however,
those samples are VTS-generated using a GMM trained only
on 15 real whisper utterances). When increasing the whisper
adaptation set, MLLR slowly approaches VTS. Somewhat sur-

prisingly, the performance on the neutral test set is only slightly
deteriorated for the MLLR system adapted to the pooled neutral
and whisper samples, and even slightly improved for the VTS
system. A ‘point’ measurement of the VTS performance for the
real whisper adaptation set size of 290 samples is presented also
in Table V—column VTS.

Finally, we analyze the potential benefits of combining VTS
with the Shift frequency transformation. Shift is chosen over
SAN for its more balanced performance on the open speakers
set (see Section V-D). The results in Table V, column VTS +
Shift (M.D.), where M.D. stands for model-domain Shift, show
further whisper WER reduction from the original VTS setup,
suggesting that the pseudo-whisper adaptation and frequency
warping strategies can provide complementary benefits.

F. Adaptation to DAE Pseudo-Whisper

The DAE-based approach to pseudo-whisper generation
(Section IV-C) is evaluated in this section. Feature- and
statistics-based DAE strategies are used to transform neutral
adaptation sets to pseudo-whisper. The pseudo-whisper sam-
ples are then used, together with the available neutral VEII
adaptation samples, to adapt the neutral-trained TIMIT acoustic
models (see Fig. 6) in the same fashion as in the VTS approach
in the previous section.

The DAE implementation utilizes 300 neurons with a tanh
activation function in the hidden layer, while the output
layer uses linear activations. For the statistics-based approach
(Section IV-C), the input and output layers have identical sizes
of 26 neurons as the processed features represent means and
variances of static 13-dimensional cepstral vectors extracted
from whole phone segments. In the case of the feature-based
approach, the size of the input layer reflects the number of
context frames captured by the processing window. The output
layer, which produces frame-level pseudo-whispered static cep-
stral vectors, contains 13 neurons. The experiments follow the
same adaptation data partitioning as in Section V-E; the setups
are provided with the full transcribed neutral adaptation set and
a portion of the whisper adaptation set of a variable length.

Two scenarios are considered for the DAE-based pseudo-
whisper generation: (i) supervised—it is assumed that
word-level transcriptions for the real whisper adaptation set are
available; here, forced alignment using the neutral ASR system
and the available transcriptions is carried out to estimate phone
boundaries in the whisper adapt set; (ii) unsupervised—whisper
transcriptions are not available. The latter configuration either
disregards phone boundaries in the whisper adaptation samples
(denoted Random in Table VI) or relies on the neutral ASR
engine to estimate the phonetic content and its boundaries in
the whisper adaptation set (denoted Neutral ASR Alignment), as
discussed in Section IV-C.

Table VI summarizes ‘point’ measurement results (290 real
whisper adaptation samples available) for all DAE setups. The
first two result rows compare supervised feature-based (Feat.)
and statistics-based (Stat.) systems that utilize forced alignment
(F.A.) on the whisper adaptation set. The feature-based DAE
takes one feature frame at a time as an input and simultaneously
produces one output feature frame, while for the statistics-based
DAE, phone-segment statistics represent the training inputs and
targets. It can be seen that the ASR systems adapted on pseudo-
whisper produced by the two supervised DAE approaches reach
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TABLE VI
PERFORMANCE OF SUPERVISED AND UNSUPERVISED DAE

STRATEGIES; WER (%)

Frequency
Phone-To-Phone Mapping DAE Transform Closed Open

Input Output Ne Wh Ne Wh

Supervised F.A.; Feat. DAE 1 1 3.4 9.8 4.9 18.0
F.A.; Stat. DAE PhoneSeg PhoneSeg 4.1 9.4 5.0 18.9

1 1 3.4 10.3 5.1 20.5
Unsupervised Random 1 Avg5Frames None 3.2 10.7 5.3 20.2

(Feat. DAE) 1 Avg11Frames 3.3 10.4 5.2 20.1
11 Avg11Frames 3.5 10.2 5.4 19.3

Neutral ASR 1 1 3.0 8.4 4.0 19.2
Alignment 11 AvgPhoneSeg 3.7 10.3 5.2 18.2

(Feat. DAE) 11 AvgPhoneSeg Shift 3.2 8.9 4.1 18.2
(M.D.)

comparable performance, with the feature-based DAE being
more successful in all conditions—with an exception of the
closed speakers whisper scenario. For this reason, and to limit
the amount of experiments, only feature-based DAE is consid-
ered for the unsupervised scenarios.

In the unsupervised section of Table VI, several configura-
tions of the Random and Neutral ASR Alignment setups are
considered. In the Random scenario, the neutral adaptation set
is still labeled by means of forced alignment as discussed in
Section IV-C. Instead of labeling also the whispered adaptation
samples and splitting them into phone-specific target streams,
they are concatenated into a single, phone-independent whisper
stream. When training the unvoiced and voiced DAEs, the
network inputs are presented with the neutral samples from the
respective broad phone categories while the samples from the
concatenated whisper stream form the DAE targets. Besides
training the DAE to perform a frame-to-frame mapping during
its training (first row of the Random DAE results), also cases
where a mean cepstral vector extracted from a 5- or 11-frames
long sliding window from the concatenated whisper stream
was provided as a target (Avg5Frames and Avg11Frames rows)
are considered. The assumption here is that averaging the
neighboring whisper segments may provide more stable targets
for the DAE training. Lastly, a Random DAE setup, where
11 neighboring frames from the neutral stream are provided
simultaneously at the DAE input, is considered to investigate
the effects of the temporal context. As can be seen in Table VI,
the Random DAE WERs on whispered test sets are in general
higher than those of the supervised DAEs, which suggests
that the partitioning of whisper into two rather than one broad
phonetic classes is beneficial. Averaging the adjacent frames
in the target stream had a positive impact on DAE training
as it converged faster compared to using per-frame targets.
Providing broader temporal context resulted in slight whisper
WER reduction compared to all other Random DAE setups.

In the Neutral ASR Alignment scenario, similar experiments
with extending the input temporal context and smoothing the
output targets are carried out with the difference that the target
averaging here is performed on the level of the whole phone
segment estimated from the ASR alignment (AvgPhoneSeg). As
shown in the penultimate results row, this setup reaches open
speakers WERs that are comparable to those of the supervised

Fig. 18. Comparison of model adaptation on whisper (Baseline MLLR) and
on VTS (upper) and DAE (bottom) generated pseudo-whisper samples; closed
speakers test sets; DAEs with 300 hidden neurons.

feature-based system. The final row of the table shows additional
benefits of incorporating model-domain Shift (Shift M.D.) in the
unsupervised scheme. Given the number of test samples, the
unsupervised DAE results do not reach statistically significant
improvements over the supervised DAE method, however, the
WERs are in most cases reduced while at the same time, the
system does not rely on whisper labels.

Figs. 18 and 19 compare performance of ASR systems
adapted to pseudo-whisper from the two unsupervised DAE
setups (last two rows of Table VI) to the baseline MLLR system
and the system adapted to VTS pseudo-whisper. The notation
Ne/Wh in the trend captions denotes the neutral or whispered
test set, and MShift refers to the model domain Shift transforma-
tion. It can be seen that the proposed VTS and DAE adaptation
schemes provide considerable WER reduction over the tradi-
tional adaptation on the available whisper samples. In addition,
both VTS and DAE benefit from being combined with the Shift
transform in most of the evaluation conditions. In the open
speakers whisper task, VTS with Shift slightly outperforms the
DAE setups and Shift somewhat reduces DAE’s performance
for bigger adaptation set sizes. Given the number of available
test samples, the differences between the VTS and DAE WERs
are not statistically significant. The main conceptual difference
between VTS and DAE is that DAE learns global transforma-
tions for the two broad phone classes while VTS re-estimates
those transformations on the utterance level.
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Fig. 19. Comparison of model adaptation on whisper (Baseline MLLR) and
on VTS (upper) and DAE (bottom) generated pseudo-whisper samples; open
speakers test sets; DAEs with 300 hidden neurons.

G. Summary of Experimental Results

Table V summarizes WERs of the baseline systems, modified
front-ends from [1], [2], frequency transformations, and the best
VTS and DAE setups. It can be seen that the modified front-
ends notably reduce the errors of the baseline MFCC and PLP
setups, and further benefit from being combined with the SAN
and Shift transformations. The best DAE configuration (Stat.
DAE + Shift M.D.) outperforms the PLP baseline by 63.8 %
relative WER on the closed speakers and by 48.6 % relative
WER on the open speakers whisper task. In addition, the best
DAE outperforms a system sharing the same front-end (PLP–
20Uni–Redist–5800), but whose acoustic models were adapted
in a supervised way to the transcribed real whisper, by 23.3 %
relative WER on closed speakers (Fig. 18) and 17.1 % relative
WER on the open speakers whisper task (Fig. 19). The best
VTS setup (VTS + Shift M.D.) outperforms PLP by 63.4 % rel-
ative WER on the closed speakers and 50.9 % relative WER on
the open speakers whisper task, and a PLP–20Uni–Redist–5800
system adapted to transcribed real whisper by 22.4 % relative
WER and 21.3 %, relative WER, respectively. All adapted sys-
tem results are reported for the case where 290 samples from the
whisper adaptation set are available. It is observed that in spite
of their conceptual differences, VTS and DAE provide mutually
competitive performance improvements across all tasks. More-
over, it is interesting to note that neutral speech WER reduces
by applying the compensation methods, as well. It can be seen

that in the closed speaker scenario, the baseline performance
improves from 5.4% to 3.0% WER, and in the open speaker
scenario from 7.1% to 3.9% WER. These improvements are a
result of incorporating compensation strategies that are, in their
original form, intended to equalize speaker, noise, and channel
variability.

VI. CONCLUSION

The focus of this study was on the design of afford-
able strategies that would help reduce the mismatch between
neutral-trained acoustic models of a speech recognizer and the
input whispered speech. An effective way of handling acoustic
mismatch in ASR is to adapt its acoustic models toward the
target domain. However, in the case of whisper, only limited
amounts of samples are typically available. This study explored
two approaches that enable production of large quantities of
pseudo-whisper samples from easily accessible transcribed neu-
tral speech recordings. Both approaches require only a small
amount of untranscribed whisper samples to learn the target
whisper domain characteristics. The generated pseudo-whisper
samples are used to adapt the neutral ASR models to whis-
per. The two proposed methods are based on a VTS algorithm
and DAE. The methods estimate feature space transformations
from neutral to whispered speech for two broad classes – voiced
and unvoiced phones. In the VTS approach, the transformations
are re-estimated for every input utterance while the DAE seeks
global class-specific transformations. Two generative models
were proposed in the context of DAE—one produces pseudo-
whisper cepstral features on a frame basis and another generates
pseudo-whisper statistics for whole phone segments. In spite of
the inherent differences between the two methods, VTS and
DAE were shown to reach mutually competitive performance
and considerably reduce recognition errors over an ASR system
directly adapted to available transcribed whispered samples.
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[3] S. Ghaffarzadegan, H. Bořil, and J. H. L. Hansen, “Generative modeling of
pseudo-target domain adaptation samples for whispered speech recogni-
tion,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal Process., Brisbane,
QLD, Australia, Apr. 2015.

[4] R. W. Morris and M. A. Clements, “Reconstruction of speech from whis-
pers,” Med. Eng. Phys., vol. 24, no. 7, pp. 515–520, Sep. 2002.

[5] W. F. L. Heeren and C. Lorenzi, “Perception of prosody in normal and
whispered French,” J. Acoust. Soc. Amer., vol. 135, no. 4, pp. 2026–2040,
2014.

[6] P. X. Lee, D. Wee, H. S. Y. Toh, B. P. Lim, N. Chen, and B. Ma, “A
whispered Mandarin corpus for speech technology applications,” in Proc.
Annu. Conf. Int. Speech Commun. Assoc., Singapore, Sep. 2014, pp. 1598–
1602.

[7] C. Zhang, T. Yu, and J. H. L. Hansen, “Microphone array processing for
distance speech capture: A probe study on whisper speech detection,” in
Proc. Asilomar Conf. Signals, Syst. Comput., 2010, pp. 1707–1710.

[8] X. Fan and J. H. L. Hansen, “Acoustic analysis for speaker identification
of whispered speech,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal
Process., 2010, pp. 5046–5049.

[9] X. Fan and J. H. L. Hansen, “Speaker identification within whispered
speech audio streams,” IEEE Trans. Audio, Speech, Lang. Process., vol. 19,
no. 5, pp. 1408–1421, Jul. 2011.



GHAFFARZADEGAN et al.: GENERATIVE MODELING OF PSEUDO-WHISPER FOR ROBUST WHISPERED SPEECH RECOGNITION 1719

[10] T. Ito, K. Takeda, and F. Itakura, “Acoustic analysis and recognition of
whispered speech,” in Proc. IEEE Workshop Autom. Speech Recog. Un-
derstanding, 2001, pp. 429–432.

[11] I. Eklund and H. Traunmuller, “Comparative study of male and female
whispered and phonated versions of the long vowels of Swedish,” Pho-
netica, vol. 37, pp. 131–134, 1996.

[12] T. Ito, K. Takeda, and F. Itakura, “Analysis and recognition of whispered
speech,” Speech Commun., vol. 45, no. 2, pp. 139–152, 2005.

[13] B. P. Lim, “Computational differences between whispered and non-
whispered speech,” Ph.D. dissertation, Elect. Comput. Eng., Univ. Illinois
at Urbana-Champaign, Champaign, IL, USA, 2011.

[14] M. Matsuda and H. Kasuya, “Acoustic nature of the whisper,” in Proc.
6th Eur. Conf. Speech Commun. Technol., 1999, pp. 133–136.

[15] H. R. Sharifzadeh, I. V. McLoughlin, and M. J. Russell, “A comprehensive
vowel space for whispered speech,” J. Voice, vol. 26, no. 2, pp. e49–e56,
2012.

[16] A. Mathur, S. M. Reddy, and R. M. Hegde, “Significance of parametric
spectral ratio methods in detection and recognition of whispered speech,”
EURASIP J. Adv. Signal Process., vol. 2012, no. 1, pp. 1–20, 2012.

[17] S.-C. Jou, T. Schultz, and A. Waibel, “Whispery speech recognition using
adapted articulatory features,” in Proc. IEEE Int. Conf. Acoust. Speech
Signal Process., 2005, vol. 1, pp. 1009–1012.

[18] C.-Y. Yang, G. Brown, L. Lu, J. Yamagishi, and S. King, “Noise-robust
whispered speech recognition using a non-audible-murmur microphone
with VTS compensation,” in Proc. 8th Int. Symp. Chinese Spoken Lang.
Process., 2012, pp. 220–223.

[19] F. Tao and C. Busso, “Lipreading approach for isolated digits recogni-
tion under whisper and neutral speech,” in Proc. Annu. Conf. Int. Speech
Commun. Assoc., Singapore, Sep. 2014, pp. 1154–1158.

[20] J. Galic, S. T. Jovicic, D. Grozdic, and B. Markovic, “Constrained lexicon
speaker dependent recognition of whispered speech,” in Proc. Int. Symp.
Ind. Electron., Nov. 2014, pp. 180–184.

[21] D. T. Grozdic, S. T. Jovicic, J. Galic, and B. Markovic, “Application of
inverse filtering in enhancement of whisper recognition,” in Proc. 12th
Symp. Neural Netw. Appl. Electr. Eng., Nov. 2014, pp. 157–162.

[22] X. Fan and J. H. L. Hansen, “Acoustic analysis and feature transformation
from neutral to whisper for speaker identification within whispered speech
audio streams,” Speech Commun., vol. 55, no. 1, pp. 119–134, 2013.

[23] C. Zhang and J. H. L. Hansen, “Advancement in whisper-island detection
with normally phonated audio streams,” in Proc. Annu. Conf. Int. Speech
Commun. Assoc., 2009, pp. 860–863.

[24] V. Zue, S. Seneff, and J. Glass, “Speech database development at MIT:
TIMIT and beyond,” Speech Comm., vol. 9, no. 4, pp. 351–356, 1990.

[25] J. H. L. Hansen, “Analysis and compensation of speech under stress and
noise for environmental robustness in speech recognition,” Speech Comm.,
vol. 20, nos. 1–2, pp. 151–173, 1996.
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