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mento di Ingegneria Elettronica e delle Telecomunicazioni - Università di Napoli, Italy; and Francesco Palmieri,
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ABSTRACT 
A new algorithm of direct time domain fundamental 
frequency estimation (DFE) and voiced/unvoiced (V/UV) 
classification of speech signal is presented in this paper. 
The DFE algorithm consists of spectral shaping, detection of 
significant extremes based on adaptive thresholding, and 
actual frequency estimation under several truth criteria. We 
propose a majority criterion for V/UV classification based 
on the detected frequencies consistency evaluation. 
Performance of the algorithm is tested on the Speecon 
database and compared to the Praat modified autocorrelation 
algorithm. In comparison to the Praat, the results indicate 
better properties of the DFE for clean speech and speech 
corrupted by additive noise to SNR about 10 dB. For lower 
SNR, sensitivity of the DFE to the speech component 
decreases rapidly while Praat fails to differentiate noise and 
unvoiced parts of speech from voiced parts. 

1. INTRODUCTION 

Fast and reliable estimation of fundamental frequency (f0) is 
an essential task in the speech signal processing. Due to the 
large range of dynamic and voice color variations of speech 
produced in diverse noisy environments, robust frequency 
and voicing detection represents a complex problem.  
Various algorithms based on different approaches have been 
developed recently. Generally, analyses are performed in the 
time domain, frequency domain or combine both domains. 
Time domain estimators are mostly based on autocorrelation 
function [1] and its modifications, e. g. autocorrelation 
analysis of the LPC residual signal [2]. In the frequency 
domain, modifications of short-time Fourier transform 
(STFT) [3, 4], cepstral analysis [5] and wavelet transform [6] 
are frequently used. The disadvantage of methods derived 
from STFT is problematic time/frequency resolution. Third 
group of algorithms utilizes advantages of both time and 
frequency domain analyses [7].  
In despite of continual development, algorithms based on 
modified autocorrelation fuction still prove to be very robust 
and able to compete the other approaches. In consequence, 
the Direct Time Domain Fundamental Frequency Estimation  
algorithm (DFE) proposed in this paper was compared to the 
Praat modified autocorrelation function detection algorithm 
[8], which is respected and used widely in works involved in 

speech analysis and synthesis as referential, e. g. [9, 10]. 
Tests were performed on the Czech Speecon database [11]. 
The DFE was originally developed for monophonic pitch 
detector unit of the guitar MIDI converter [12]. The goal is to 
find an algorithm allowing real-time tone detection with 
relatively high time and frequency resolution and low 
detection delay. Since autocorrelation methods require signal 
segmentation and high number of variable by variable 
multiplications, it appears reasonable to examine the 
possibility of frequency detection directly from the shape of 
the signal in the time domain. Considering typical harmonic 
structure of speech signal, amplitude of the spectral 
component related to f0 can be found significantly lower then 
amplitudes of the higher harmonics. Hence, conventional 
zero-crossing or peak-to-peak period measurement detection 
algorithms cannot be successfully used. However, once the f0 
component is emphasized to certain level by spectral 
preshaping, adaptive peak-to-peak detection followed by 
appropriate classification criteria can bring good detection 
results – and that is the idea of the DFE.  

2. THE DFE ALGORITHM 

Complete DFE chain, shown in Fig. 1, consists of envelope 
detector, pitch detector and evaluation part. 
 
 
 
 
 
 
 
 
Figure 1: The DFE chain. 
 
The envelope is determined as a short-time moving average 
of the signal energy, realized by low-pass FIR filtering of the 
squared signal. The filter order is chosen as a compromise 
between envelope smoothing and ability to follow fast 
energy changes on the boundaries of voiced/unvoiced parts 
of the speech signal. 
The actual detected frequency from the pitch detector and 
corresponding value of the energy envelope are processed in 
the evaluation part by applying truth criteria and the most 
probable value of f0 is estimated. 
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2.1 Pitch Detector 
Actual f0 candidate is evaluated from the distance between 
neighboring significant peaks – such local extremes that 
there is only one peak representing the absolute maximum 
and one the absolute minimum in the quasi-period of the 
signal. Structure of the pitch detector is shown in Fig. 2.  
 
 
 
 
Figure 2: Pitch detector chain 

2.1.1 Spectral Shaping 
From the standpoint of f0 quasi-period, strong higher 
harmonic components of the speech signal produce 
additional “false” peaks and zero-crossings in the time 
domain. To reduce them, spectral shaping by appropriate 
filter is used. It proved to work well to use a low-pass filter 
with significant tilt of the transfer function modulus over 
frequency range of f0 typical occurence (60 – 600 Hz) to 
assure sufficient suppression of  higher harmonics. To 
minimize transient distortion on fast amplitude changes of 
the filtered signal, low order IIR filter was chosen. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3: Spectral shaping by low-pass IIR. 
 
An example of spectral shaping by low-pass filter is shown 
in Fig. 3, thin lines represent a spectrum of the original signal 
and transfer function of the filter (scaled 150x) and solid bold 
line a spectrum of the signal after spectral shaping.  

2.1.2 Adaptive Significant Peak Estimation 
After spectral shaping, all local extremes are detected. Due to 
the low order of the filter, some “false” peaks and 
zero-crossings still may remain in the signal. To identify 
locations of singificant extremes, the adaptive significant 
peak estimation based on neighboring peaks thresholding 
is performed, see Fig. 4.  
 
 
 
 
 
 
Figure 4: Adaptive significant peak thresholding. 

P1 is not significant peak related to the maximum if: 
 

  
 (1) 
 
 

where ZC(X, Y) = 1 if there is at least one zero-crossing 
between peaks X and Y, else 0; Plast represents last detected 
significant peak. In other cases P1 is significant peak related 
to the maximum. Afterward, P2 is shifted to P1, new peak 
becomes P2 and the test is repeated. Significant peak related 
to the minimum is obtained by reversing the signs of 
inequality in (1). Finally, the frequency is determined from 
the distance between neighboring significant peaks related to 
maxima or minima. 
As shown in Fig. 5, the peak estimation is robust to quasi-
stationary additive noise in case the amplitude of additive 
noise is significantly lower than the amplitude of the speech 
signal. 
 
 
 
 
 
 
 
 
 
 
 
Figure 5: Significant peak estimation in harmonic additive 
noise.  

2.2 Evaluation Part 
Since the pitch detector returns all detected frequencies – 
even for speech silence and unvoiced parts of speech – and 
there still may appear some wrong f0 estimations usually 
corresponding to frequency halving and doubling, several 
criteria are used to select voiced parts only and eliminate 
estimation errors. First criterion is related to the level of the 
signal – no frequency estimations are performed for levels of 
signal lower than the threshold Eth.  
 

  
 
The actual level of energy E(k) is evaluated by the envelope 
detector. 
Second criterion – expected frequency range of f0 – accepts 
no frequency out of specified range (60 – 600 Hz) as a valid 
estimation. 
 

  
 
Third – M-order majority criterion – says that more than 
a half of M consecutive detected frequencies must lie in the 
same frequency band of chosen width. Let {fm} are M 
sequently detected frequencies, countfk({fm}) – number of f  
that 
 
 (2) 
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The interval in (2) equals to the frequency bandwith 
of 1 halftone – centered to fk.  
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braces    represent round down. If more than one fk 
satisfies (3) and (4), .)min(kest ff =  If majority criterion is 
satisfied, actual signal is evaluated as voiced. An example 
is shown in Fig. 6. 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6: Majority criterion, M = 5. 

3. THE DFE AND PRAAT TESTS 

The DFE and Praat were tested on a selected part of 
the Speecon Database of Czech language [11]. Testing data 
consist of 366 sentences read by adult men and women in the 
office environment. Speech was recorded by 4 microphones 
placed in different distances from the speaker, hence 
4 signals with different SNR are available. The nonstationary 
environmental noise consists of outside traffic noise and 
usual office sounds produced by computer fans, chair 
creaking, corridor door opening etc. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6: Example of detected frequencies by DFE and Praat. 

Narrow band components that appear in the noise can often 
corrupt the f0 detection more than white noise of the same 
SNR level artifically added  to clean speech. The SNR is 
determined as a mean value and does not bring information 
about short-time noises of relatively high energy that often  
appear in the signal. Moreover, in the distant microphone 
channels a strong room echo component appears. This 
convolutional noise causes phase shifted signals sum and 
also increases the f0 detection errors. 

3.1 An example of DFE and Praat f0 estimation results 
An example of estimated frequencies by DFE and Praat is 
shown in Fig. 6. Since there is no explicit information about 
boundaries of voiced parts in the Praat output, Praat 
frequencies are connected by continuous dash line, 
frequencies detected by the DFE are plotted by solid line. In 
the time interval 4.4 – 4.5 s a typical Praat detection error 
is shown. In this case, unvoiced part of the speech signal 
is considered to be voiced, even though the detection is 
performed on the channel of SNR 28.1 dB and thus not much 
affected by additive noise. 

3.2 Test evaluation criteria 
During the test, following criteria were evaluated. Compared 
frequencies – number of detected frequencies in the channel 
compared to the refferential. First, detected frequencies 
in channel of SNR 28.1 dB by DFE and Praat were 
compared, Praat was understood to be refferential in this 
case. Consequently, mentioned channels became refferential 
for channels of lower SNR. 
Average difference is defined: 
 

   
 
 
 
Tone frequencies in the musical scale are distributed 
exponentially. Difference 100 % represents a halftone 
distance, e. g. for 120 Hz and 300 Hz, halftones one step 
higher are 127.14 Hz and 317.84 Hz respectively.    
Octave errors – number of differences equal or greater than 
one octave. 
Standard deviation is defined:  
 
 
 
 
where *∆ is an average error with octave errors excluded. 
Voiced error is defined: 
 

 
 
 
 
where Tref and T are total voiced times in the referential and 
compared channel. Since there is no explicit information 
about position of the voiced parts of speech in the Praat 
program, the voiced/unvoiced performace was not evaluated 
and could not have been compared to DFE. 
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SNR/SNRref (dB) compared freqs ∆  (%) octave err. (%) σ (%) voiced err. (%) 
D/P              28.1/28.1 188734 39.69 1.11 64.31 N/A 
D/D                   17.9/28.1  147545 33.14 0.25 60.06 0.47 
P/P             17.9/28.1  76957 80.44 3.16 66.50 N/A 
D/D                      9.6/28.1 94516 103.47 4.98 102.66 21.53 
P/P               9.6/28.1 72742 133.64 5.48 92.12 N/A 
D/D                      4.9/28.1 5100 246.43 15.01 141.48 92.24 
P/P               4.9/28.1 48096 1157.76 51.36 206.76 N/A 

 
Table 1: The DFE (D) and Praat (P) comparison results. 

3.3 Test results 
Results of the DFE and Praat comparison are shown 
in Tab. 1. Symbols D and P represent frequencies detected by 
DFE and Praat, following numbers are SNR’s of evaluated 
and refferential channel. In the first row of the results DFE 
and Praat (D/P) are compared on the channel of SNR 
28.1 dB. In the next rows, channels of lower SNR are 
compared to the refferential channels.  
As shown in the table, for SNR higher or equal to 9.6 dB, 
more information about frequency (compared freqs) 
is available in case of DFE due to detection both for 
significant maxima and minima of the signal. An average 
difference is lower in case of DFE for all SNR channels. 
In case of Praat, with lower SNR than 9.6 dB the difference 
grows rapidly, algorithm fails to differentiate noise and 
unvoiced parts of speech from voiced parts. The voiced error 
of the DFE is still less than 22% for SNR 9.6 dB. For lower 
SNR, the DFE sensitivity to voiced speech decreases rapidly 
in consequence of rising inability to locate the voiced parts 
of speech in the noise. For SNR 4.9 dB becomes DFE almost 
insensitive to the voiced speech and Praat returns values with 
average difference close to one octave.  
  
4. Conclusions 
 
New methods of direct fundamental frequency estimation 
(DFE) and voiced/unvoiced classification were proposed in 
this paper. The DFE algorithm is based on f0 detection in the 
time domain and consists of spectral shaping, significant 
extremes detection realized by adaptive thresholding, and 
actual frequency estimation under truth criteria. For V/UV 
classification, a majority criterion based on the detected 
frequencies consistency evaluation is used. 
In comparison to autocorrelation methods, DFE requires 
no signal segmentation, performs sample by sample f0 
estimation and preserves its phase, while the computation 
costs are significantly lower. 
DFE was tested and compared to widely used Praat 
modified autocorrelation algorithm on selected part of 
Czech Speecon database. Test results approved that DFE 
brings better detection results (better time-frequency 
resolution, lower error ratios) for SNR to 9.6 dB 
(considering real environmental additive and convolutional 
noise ). For lower SNR, sensitivity of the DFE to the speech 
component decreases rapidly while Praat fails to 
differentiate noise and unvoiced parts of speech from voiced 
parts.  
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