
Data-Driven Design of Front-End Filter Ban
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Abstract
Adverse environments not only corrupt speech signal by additive
and convolutional noises, which can be successfully addressed by
a number of suppression algorithms, but also affect the way how
speech is produced. Speech production variations introduced by a
speaker in reaction to a noisy background (Lombard effect) may
result in a severe degradation of automatic speech recognition.
This paper contributes to the solution of Lombard speech recog-
nition issue by providing a robust filter bank for use in front-ends.
It is shown that cepstral features derived from the proposed filter
bank significantly outperform conventional cepstral features.

Index Terms: robust speech recognition, Lombard effect, feature
extraction, filter bank, data-driven design

1. Introduction
Thanks to a huge effort invested in development of speech recog-
nition systems, current ASR deals well with a speech produced
in a quiet environment. Also a vast number of algorithms target-
ing adverse environments have been developed recently, success-
fully addressing additive and convolutional noise. In noisy condi-
tions, humans tend to modify their speech production in an effort
to preserve an intelligibility of communication (Lombard effect,
LE) [1]. LE introduces significant deviations in distribution of
speech parameters crucial for automatic recognition, e.g. shifts of
fundamental frequency (f0), formant frequencies and bandwidths,
resulting in severe degradation in performance of a recognizer
trained on neutral speech. Up to now, several approaches solving
particular topics in LE have been proposed, yet a complex solution
remains unattained.

LE suppression can be addressed from three perspectives:
robust feature extraction, LE equalization, or model adjustment
by multi-style training. The multi-style training performs well
in speaker and environment specific task. However, for varying
speakers and environments the multi-style trained recognizer fails,
since the parameter changes are strongly dependent on the par-
ticular conditions and can hardly be represented completely in a
limited training data [1]. This work focuses on the robust feature
extraction approach.

Majority of current ASR systems employ MFCC [2] or PLP
[3] features for their superior properties to previously used repre-
sentations (LPCC). One of the key processing stages common to
both algorithms is a smoothing of FFT spectrum with a bank of
nonlinearly distributed filters. Their distribution is derived from
auditory models in an effort to emphasize the similar speech com-
ponents that are essential for human speech perception. Some
works have reached an improvement by further modifying audi-
tory based filter banks (FBs), e.g. Human Factor Cepstral Coef-
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Devel Set Open Set
Conditions Neutral LE Neutral LE

MFCC 3.6 63.3 3.7 68.7
PLP 3.8 54.1 3.4 61.3
MR-ANN 4.5 39.8 4.1 42.1

. 1: Word error rates (%) of baseline features on female neutral
Lombard speech, development and open test sets.

nts (HFCC) changing bandwidths of mel filters [4]. Others
osed new auditory models, e.g. Seneff auditory model com-

ing 40 filters matching cat’s basilar membrane response [5] or
emble Interval Histogram (EIH) model employing a bank of
l crossing intervals [6]. Also non-auditory, data-driven con-
s of FB design were studied, e.g. Discriminative Feature Ex-
tion method (DFE), iteratively adapting FB parameters [7] or a
gn of a library of phoneme class-dependent filter banks using
tio [8]. Filter banks introduced in these works were tested in
ulated noisy conditions, yet no extensive research on Lombard
ct has been reported. [9] tested various FBs with a simulated

utterances, though not all properties of real loud speech have
considered (e.g. f0 and formant shifts).

Suitability of various features for recognition of speech cov-
g different talking styles was studied in [1]. Further, the mel
was adjusted to enhance stressed speech recognition (includ-
LE). Inspired by these experiments, a goal of this work is to
gn a novel filter bank which would improve feature robust-
and ASR performance in presence of LE. As comparative ex-

ments show significantly stronger corruption of recognition in
of female than male Lombard speech [10] (see also Sec. 3),

xperiments presented in this work were carried out for female
ch only.

The paper is organized as follows. First, common features
compared on a digits recognition task. In addition, a recently
osed Multi-resolution RASTA features [11] participate in the
. Second, an importance of frequency subbands for recogni-
is explored and further used in the process of designing a new
Third, a relation between the importance of spectral compo-

ts and corresponding FB resolution is examined. Finally, an
tive algorithm of repartitioning bands in FB is proposed and
uated.

2. Development setup
Used corpora

experiments in this paper were carried out on Czech
ECON [12] and CLSD’05 [13] corpora. Czech SPEECON
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comprises recordings in public, office, car and entertainment sce-
narios. CLSD’05 contains speech uttered in various types of simu-
lated noisy background (car and artificial band-noises). Significant
f0 and format frequencies shifts were observed in the database for
simulated LE conditions [13]. Since the noise was reproduced to
speakers through closed headphones, a clean Lombard speech was
captured at high SNR.

For HMM training, office data from SPEECON with neutral
speech in a quiet environment were used. This set contained gen-
eral speech pronounced by females and covered full phonetic con-
tent of Czech language. For the development and open testing,
disjunct sets from SPEECON and CLSD’05 data were used, con-
sisting of female neutral and LE speech, respectively. All data
were downsampled to 8 kHz and filtered by G.712 telephone filter
using FaNT tool [14]. Overview of train and test sets:

Train – 10 hours of signal, 37 female speakers

Devel LE – 3480 words, 8 female speakers,

Devel neutral – 3480 words, 8 female speakers,

Open LE – 1880 words, 4 female speakers,

Open neutral – 1450 words, 4 female speakers.

The recognizer was an HMM system with 43 context-
independent phoneme models + 2 silences, each with 3 emitting
states and 32 Gaussian mixtures per state. The task was to recog-
nize 10 Czech digits in 16 pronunciation variants.

3. Baseline front-ends performance on LE
speech

To get an idea about a performance of various speech representa-
tions on the given corpora, two common feature sets plus a new
posterior-based features obtained from neural network were com-
pared:

• MFCC – 3×13 coeffs, 26 bands, 100 Hz frame rate, preem-
phasis, liftering,

• PLP – 3×13 coeffs, 26 bands, mel scale, 100 Hz frame rate,
preemphasis, liftering,

• MR-ANN – 39 coeffs derived from 43 phoneme posteriors.

Recently proposed Multi-resolution RASTA features (MR-
ANN) [11] are derived in two steps. In the first step, energies of
the speech signal in auditory subbands are computed. One second
long trajectories of these energies surrounding the point of interest
form an auditory spectrogram. This spectrogram is further filtered
with a bank of two-dimensional filters, yielding a set of about 500
numbers at each speech frame. In the second step an artificial neu-
ral network is used to estimate posterior probabilities of phonemes
given the set of 500 numbers, reducing the feature size. These pos-
teriors are finally decorrelated using principal components analysis
to be able to fit the GMM/HMM model.

All features comprising PLP and MFCC baselines and sub-
band energies for MR-ANN were extracted using an open source
speech enhancement and parametrization tool CtuCopy developed
at CTU in Prague [15]. CtuCopy also implemented the newly pro-
posed filter banks.

Performances of the above mentioned systems are summa-
rized in Tab. 1. Clean sets establish a baseline at about 4% WER.
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LE data a huge decrease in accuracy was observed for all fea-
s. MFCC displayed the worst results, MR-ANN significantly
erformed both MFCC and PLP.

For a comparison, similar training and testing sets were de-
ed for a male speech. On this gender the recognizer performed
h better in case of Lombard speech: 29.7 % WER for MFCC,
% WER for PLP.

1: ID curves: impact of one missing band in 20–band FB on
gnition performance (devel set).

4. Designing filter bank
Analyzing importance of subbands

wledge about spectral distribution of linguistic message in the
ch signal may provide a useful guideline for a FB construc-
. In [1], a set of recognizers was trained and tested using indi-
al band outputs, hence the spectral envelope and dependencies
een bands (formant distances and bandwidths) were not con-

red. A new FB was then constructed given the distribution of
es in independent bands and an assumption that the filter den-
should be raised in regions carrying more information.

The work presented here estimated a score-based information
ribution across frequency (ID) by keeping all filters in FB but
examined one. In general, omitting one band can either rise
score compared to the baseline (the baseline is depicted by
ed line in all figures), meaning that the band is dominated by
evant information, or decrease the score proving the band’s
ortance for the recognition.

The initial FB was chosen to consist of 20 linearly spaced rect-
ular filters (each of bandwidth 200 Hz) without overlap. For LE
ch, the baseline score on the development set reached word er-
ate (WER) 29.0 %, which significantly outperformed features
ented in the previous section. As shown in Fig. 1, omitting the
band brings a slight degradation on neutral speech, but greatly

ances LE recognition (see also the first row in Tab. 2).

In case of LE speech, a significant peak in the ID curve can be
rved in the region 600 - 1400 Hz (bands 4 - 7), covering an
of occurence of the first two formants. For neutral speech,
rresponding peak lies in 400 - 1000 Hz (bands 3 - 5), the
of the first formant location. This agrees with the conclusions
n for angry speech by [1], where the highest recognition per-



formance for neutral speech was observed around the first formant
location, while for angry speech the maximum moved rather to the
area of the second formant. Fig. 1 also suggests that Lombard
speech recognition may be improved by avoiding low-frequency
components at the expense of neutral speech recognition accuracy.

A similar experiment was carried out on 43 bands FB but the
ID was noisy as the omitted bands were probably too narrow to
noticeably affect the information content.

4.2. Avoiding low-frequency components

Previous section mentioned an improvement trade-off between
neutral and Lombard speech when avoiding low-frequency com-
ponents. As a number of efficient features are available for neutral
speech, following design steps focused exclusively on LE recogni-
tion improvement. Hence, a dependency between the low cut-off
frequency and recognition score was explored, see Fig. 2. The
minimum of WER on Lombard speech was found at 625 Hz, ris-
ing the score by 13.4 %. The decrease on neutral speech (1.8 %)
was proportional to the cut-off frequency.

Fig. 2: Searching for optimal low cut-off frequency in 19–band
FB: increasing significantly improves Lombard speech recogni-
tion, performance on neutral speech decreases (devel set).

Devel Set

Conditions Neutral LE

LFCC, Full Band 4.8 29.0

LFCC, ≥ 625 Hz 6.6 15.6

Tab. 2: Word error rates (%) of cepstra derived from a bank of lin-
early spaced rectangular filters (LFCC): (1) 20 filters, 0–4000 Hz,
(2) 19 filters, 625–4000 Hz.

4.3. Importance and resolution

To obtain a smoothed ID curve for the FB starting at the optimized
cut-off frequency, the number of bands was lowered to 12. Fig. 3
shows that a higher importance is assigned to low FB bands, which
is in agreement with the reported relevance of the first two for-
mants to the speech recognition [1]. In the following step, the first
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d in FB was split in two and two subsequent bands were re-
ed with three bands in order to increase the resolution at low
uencies. By this modification, the score dropped from 17.2 %
6.9 % WER for LE. It suprisingly suggests that increasing the
lution in bands of higher importance does not necessarily im-
e the system.

Devel Set

Conditions Neutral LE

LFCC, 19 bands 6.6 15.6

LFCC, 12 bands 8.0 17.2

LFCC, 6 bands 9.6 17.9

. 3: Word error rates (%) of cepstra derived from a bank of
arly spaced rectangular filters (LFCC), different resolutions.

Filter bank repartitioning algorithm

experiment with changing the FB resolution at low frequen-
demonstrated that it is not possible to design a LE-robust FB
by modifying the distribution of bands in FB according to the
urve. At the same time, it has been shown that filter band-

ths significantly impact accuracy. This observation motivated
velopment of a FB repartitioning algorithm.

The idea is to search for an optimal bandwidth of each filter
le leaving the rest of FB intact as much as possible. In the
step, the endpoint of the first filter varied around its original
tion and a new position yielding minimal WER was searched
tively. For each endpoint position the rest of FB was resized
reserve equal bandwidths of the remaining filters. Once the
mum for the band was reached, it was fixed. In the subsequent
s, successive bands were processed the same way, keeping the
iously fixed points intact.

For testing purposes, number of FB bands was limited to 6 in
r to reduce the computational costs. FB reduction inherently
cted baseline performance, see Tab. 3. Nevetheless, the repar-
ned FB improved on the baseline by 2.3 % for LE speech, as
n in Tab. 4. The resulting FB started at 625 Hz and the end-

ts of individual bands were 1125, 1719, 2313, 2875, 3438 and
0 Hz.

5. Summary
ely used MFCC and PLP speech features were exposed to
rong presence of Lombard effect in a digit recognition task,

3: Increasing FB resolution in region displaying superior im-
ance. Solid lines denote the former 12-band FB, dashed lines
resulting 14–bands FB (devel set).



Fig. 4: Search of optimal band partitioning for 6–band FB. For
each band sequentially, endpoint yielding best performance is
found, preserving distribution of preceding bands (devel set).

Open Set

Conditions Neutral LE

MFCC 3.7 68.7

PLP 3.4 61.3

MR-ANN 4.1 42.1

LFCC, 20 bands, full band 3.3 49.4

LFCC, 19 bands, ≥625 Hz 6.6 24.6

LFCC, 12 bands, ≥625 Hz 7.4 25.6

LFCC, 6 bands, ≥625 Hz 9.5 31.7

RFCC, 6 bands, ≥625 Hz 8.5 29.4

Tab. 4: Evaluation of all systems on independent open test set,
word error rates (%). Compared systems were: MFCC, PLP,
Multi-RASTA neural network (MR-ANN), cepstra from linearly
spaced rectangular filters (LFCC) and repartitioned filters (RFCC).

which revealed their poor recognition performance. Recently
proposed features based on an artificial neural network (Multi-
resolution RASTA) achieved substantionaly better performance
on LE speech (about 20 %), though still not satisfactory for real
life aplications. Among possible approaches addressing Lombard
speech recognition, this work investigates on robust feature extrac-
tion, particularly a filter bank design. The priority is to improve on
Lombard speech recognition.

The prototype filter bank was formed by non-overlapping rect-
angular filters of equal bandwidths mapped to a linear frequency
scale to ensure initial equality of their contributions. Prelimi-
nary evaluations showed superior performance of the prototype
filter bank based cepstral features when compared to MFCC and
PLP, considering both speech conditions (about 15 % on Lombard
speech).

Prior to modifying the filter bank, an independent contribution
of spectral components of speech to the recognition was evaluated.
Results suggested omitting the low frequency components which
further improved the accuracy by 25 %. It was experimentally
shown that increasing the resolution of filter bank in regions of a
higher importance does not necessarily improve the system, as the
score dropped by 10 %.

An observation that filter bandwidths impact accuracy signifi-
cantly was a motivation for developing a filter bank repartitioning
algorithm. The proposed algorithm was evaluated using a simpli-
fied filter bank, yielding an additional improvement of 2 %.
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/03/H085 “Biological and Speech Signals Modeling”, and re-
ch activity MSM 684077 0014 “Research in the Area of the
pective Information and Navigation Technologies”. Filter

k design takes part in project “Normalisation of Lombard Ef-
” carried out by CTU Prague and Siemens Aktiengesellschaft.

7. References
Bou-Ghazale, S. E., J.H.L. Hansen, “A comparative study
of traditional and newly proposed features for recognition of
speech under stress,” IEEE Trans. on Speech & Audio Pro-
cessing, vol. 8, no. 4, pp. 429-442, July 2000.

Mermelstein, P., S. Davis, “Comparison of parametric rep-
resentations for monosyllabic word recognition in continu-
ously spoken sentences,” IEEE Trans. on Acoustic Speech
and Signal Processing, 28(4), pp. 357–366, August 1980.

Hermansky, H., “Perceptual linear predictive (PLP) analysis
of speech,” JASA, Vol. 87, No. 4, April 1990, p. 1738-1752.

Skowronski, M. D., J. G. Harris, “Exploiting independent fil-
ter bandwidth of human factor cepstral coefficients in auto-
matic speech recognition,” JASA, vol. 116, no. 3, pp. 1774-
1780, Sept. 2004.

Seneff, S., “A computational model for the peripheral au-
ditory system: Application to speech recognition research,”
Proc. of ICSLP’86, Tokyo, pp. 1983–1986.

Ghitza, O., “Auditory nerve representation as a basis for
speech processing,” Advances in Speech Signal Processing,
N.Y., 1992, pp. 453–486.

Biem, A., S. Katagiri, “Cepstrum-based filter-bank design
using discriminative feature extraction training at various
levels,” Proc. of ICASSP’97, p. 1503, Volume 2, 1997.

Kinnunen, T., “Designing a speaker-discriminative adaptive
filter bank for speaker recognition”, Proc. of ICSLP’02, pp.
2325-2328, Denver, Colorado, USA, 2002.

Jankowski Jr., C. R., et al. “A Comparison of signal process-
ing front ends for automatic word recognition,” IEEE Trans.
on Speech an Audio Processing, Vol. 3(4), July 1995, pp.
286–293.

Junqua, J.C., “The Lombard reflex and its role on human lis-
teners and automatic speech recognizers,” JASA, 93(1):637–
642, 1993.

Hermansky, H., P. Fousek, “Multi-resolution RASTA filter-
ing for TANDEM-based ASR,” Proc. of Interspeech’05, Lis-
bon, Portugal, 2005.

SPEECON database, <http://www.speechdat.org/speecon>.
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