IoT Course Project 1

IoT system development

- **Project**
 - Develop a small IoT system (1)
 - Connecting IoT sensors and actuators to Raspberry Pi
 - Write a program to read sensors and control the actuators according to the sensor output
 - C: http://wiringpi.com/
 - Python: https://sourceforge.net/p/raspberry-gpio-python/wiki/Inputs/
 - Use MQTT to publish and subscribe data (2)
 - Install a local MQTT broker: https://mosquitto.org/
 - Write a publisher program on Raspberry Pi, which reads data from some sensors and publishes the data using MQTT
 - Use your own laptop to deploy an MQTT subscriber to get the published data
 - MQTT programming support: https://pypi.org/project/paho-mqtt/
 - Develop a voice command interface for the IoT system (3)
 - Install Node-RED on your own laptop
 - Put together a Node-RED flow
 - https://nodered.org/docs/user-guide/
 - The flow includes a node to capture voice from the mic of the laptop
 - Python code sample for capturing audio: https://gist.github.com/mabdrabo/8678538
 - Node-RED: https://flows.nodered.org/node/node-red-contrib-dynamorse-audio-io
 - You should have a speech-to-text node in the flow to process voice commands
 - Google Cloud stt service: https://cloud.google.com/speech-to-text/docs/reference/rest/
 - Node-RED: https://flows.nodered.org/node/node-red-contrib-viseo-google-speech
 - The flow should include an MQTT node to perform the subscription and use the data in your flow
 - https://cookbook.nodered.org/mqtt/
 - You need a node to communicate with Raspberry Pi
 - https://flows.nodered.org/node/node-red-contrib-socketio

- **Objective**
 - Learn about various IoT platforms and tools and how to use them for constructing IoT systems

- **An example IoT system for your project (1)**
 - **Devices**
 - Sensors: PIR, sound, luminance, etc. sensors
 - Actuators: light bulbs
 - **Automated lighting control**
 - Get sensor inputs
 - Get sound sensor input event
 - Get PIR sensor input event
 - Read light sensor input
 - Activities
 - Upon PIR event, read light sensor, switch on one of the lights if the luminance is lower than a user pre-specified level
- E.g., if it is day time, the room is anyway luminated, no need to switch the light on (use lab lights to simulate daylights)
- Depending on the required lighting level, switch on the appropriate bulb(s)
 - After a pre-specified duration without PIR event
 - Turn off the lights

- Extend the project with voice commands (3)
 - Specifically command the lighting system to turn on lights
 - Use voice commands to setup the system parameters

- Extend the project with MQTT data flow (2)
 - When sound is detected, pass the event to the MQTT broker
 - Subscribe the sound event data
 - Feed the sound event signal to the Node-RED flow, and trigger the voice recognition node when sound is detected

Design of a more complex IoT system
- When designing your IoT system, first consider a large-scale system that is useful in real life
 - Try to pay more attention to multi-tenant IoT systems
 - Try to consider more interesting policies that requires more complex analysis
- For example
 - UTD campus management
 - Entry control using facial recognition
 - Track the individuals, providing on-demand transportation services, lighting control and AC control of individualized zones in buildings, customized information resources to be displayed on the available screens, …
 - Energy conservation policies for the buildings
 - Safety and security policies for the campus
 - User access control to rooms, facilities, equipment, information resources, …
- After designing a large-scale IoT system, scale it down to implement a small part of the system
- If you construct the large-scale IoT system you have designed, what features are needed but do not exist in some of the IoT platforms

Submission
- Report
 - Your system design and implementation
 - Efforts of the members
 - Discuss which member worked on which part of the project
 - Vision
 - Based on the project, assume that you can scale the small project up, what would be the large-scale IoT system you would like to construct
 - Try to pay more attention to multi-tenant IoT systems
 - Try to consider more interesting policies that requires more complex analysis
 - If you construct such an IoT system, what features are needed but not exist in some of the IoT platforms
- Demo
 - Discuss the system you designed and show it actually works
 - Goal of the system, middleware used, workflow realized in the middleware
 - Discuss the contributions of each group member
 - Discuss your vision of an extension to a large-scale IoT system