IoT Course Project 1

IoT system development

- **Project**
 - Develop a small IoT system from IoT sensors and actuators using an IoT platform

- **Objective**
 - Learn about IoT platforms and how to use them for constructing IoT systems
 - Learn how to program on Raspberry Pi
 - Consider the design of more complex IoT systems

- **IoT system design and implementation**
 - Define the goal of the system you would like to construct
 - Design an IoT system using available sensors, actuators, and Raspberry Pi
 - You can add your own devices if desirable
 - Design the workflow to realize the goal
 - What will be the input events?
 - Define the actions to be performed for each input event
 - Define the overall system policies to ensure the proper operation of the system
 - Implement the workflow under the IoT platform
 - Understand how to use the hardware
 - Program Raspberry Pi to control the hardware
 - Use an IoT platform to implement the workflow of your system
 - Implement the policies under the IoT platform, if possible

- **IoT Platforms for constructing an IoT system**
 - Study a few IoT middleware
 - Open source middleware: OpenIoT, Kaa, Node-RED, ThingsBoard
 - Cloud and Edge based commercial IoT middleware: AWS IoT, AWS Greengrass, Microsoft’s Azure IoT Hub, Samsung’s SmartThings, ThingWorx
 - Choose one IoT platform and use it for constructing your project

- **An example IoT system for your project**
 - **System objective**
 - Home lighting management
 - **Devices**
 - Sensors: PIR, sound, luminance, etc. sensors
 - Actuators: light bulbs
 - **Automated lighting control**
 - Get sensor inputs
 - Get sound sensor input event
 - Get PIR sensor input event
 - Read light sensor input
 - Activities
 - Upon PIR event, read light sensor, switch on one of the lights if the luminance is lower than a user pre-specified level
 - E.g., if it is day time, the room is anyway luminated, no need to switch the light on (use lab lights to simulate daylights)
 - Depending on the required lighting level, switch on the appropriate bulb(s)
 - After a duration without PIR event
 - Turn off the lights
Voice command based lighting control
- Upon sound event:
 - Use Google speech recognition to determine which case the speech is about
 - A. not relevant, B. light 1 on, C. light 2 on, D. all lights on, E. all lights off
 - Voice response regarding the status of lighting

Policy
- Energy conservation policy: When there is sufficient lighting (user specified level based on the system design or the user voice commands), no lights will be turned on
- Further design the project to make it more interesting

Design of a more complex IoT system
- When designing your IoT system, first consider a large-scale system that is useful in real life
 - Try to pay more attention to multi-tenant IoT systems
 - Try to consider more interesting policies that requires more complex analysis
- For example
 - UTD campus management
 - Entry control using facial recognition
 - Track the individuals, providing on-demand transportation services, lighting control and AC control of individualized zones in buildings, customized information resources to be displayed on the available screens, …
 - Energy conservation policies for the buildings
 - Safety and security policies for the campus
 - Access control to rooms, facilities, equipment, information resources, …
- After designing a large-scale IoT system, scale it down to implement a small part of the system
- If you construct the large-scale IoT system you have designed, what features are needed but not exist in some of the IoT platforms

Submission
- Report
 - Survey different IoT platforms
 - Discuss compare common features in all platforms
 - Discuss special features in some of the platforms you have explored and why they are good to have in what types of IoT applications
 - Your system design and implementation
 - Efforts of the members
 - Discuss which member worked on which part of the project
 - Vision
 - Based on the project, assume that you can scale the small project up, what would be the large-scale IoT system you would like to construct
 - Try to pay more attention to multi-tenant IoT systems
 - Try to consider more interesting policies that requires more complex analysis
 - If you construct such an IoT system, what features are needed but not exist in some of the IoT platforms
 - Demo
 - Discuss the system you designed and show it actually works
 - Goal of the system, middleware used, workflow realized in the middleware
 - Discuss the contributions of each group member
 - Discuss your vision of an extension to a large-scale IoT system