Stable Internet Routing Without Global Coordination Lixin Gao, & Jennifer Rexford,

Computer Networks Dr. Jorge A. Cobb

Problem

- Too much overhead to maintain path histories (dynamic execution solution)
- Difficult to gather all policies and check for cycles in dispute graphs
- Can we select some practical guidelines?
 - If the guidelines are followed, the system is stable (always reaches a steady state)
- Their approach: hierarchies
 - You avoid circular conflicts by introducing hierarchies of nodes
 - Policies are based on the hierarchy

Background

- We need some background before presenting the technique
- In particular, the difference between export, import, and route selection policies.

BGP Import, Export, Path Selection

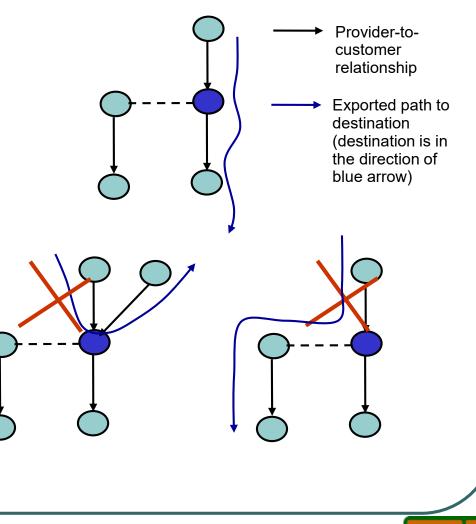
- There are three types of policies:
 - Import Policy: of the paths offered by my neighbors, which ones will I allow? (i.e. "import" the path)
 - Path Selection: given the paths offered by my neighbors which satisfy my import policy, which one do I like the best?
 - Export Policy: given my current path, will I tell my neighbor of this path or tell my neighbor that I have no path? (i.e., "export" the path)
- Note: in the Griffin paper, import/export policy was not explicit, only "list of allowed paths" was given.
 - A path is allowed in an "SPP instance" only if it exists in the export policy of my neighbour and in my import policy

Neighbor Relationships

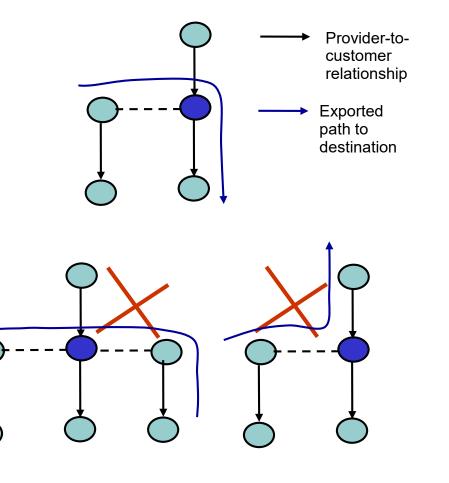
- For each neighbour B of AS A, we have one of the following three relationships:
 - B is the service provider of A: in this case, B is the "access point" (or perhaps one of several) over which A accesses the rest of the Internet
 - B is a customer of A: in this case, A is the service provider or B
 - B is a peer of A: neither is a provider or customer of the other. They are simply "peers" who help each other.

AS relationship graph

Provider-to-customer edges must form a directed acyclic graph (DAG)

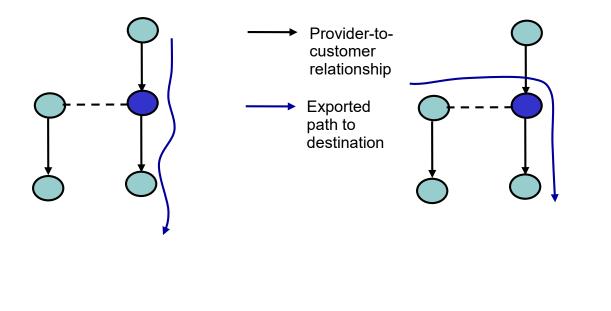

Export policy restrictions

- Convergence is assured (almost) by restricting the export policies
 - i.e., you can't tell everything to everyone

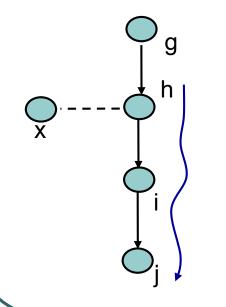

Export policy restrictions - providers

- Exporting to a provider: In exchanging routing information with a provider:
 - An AS can only export its networks and the routes of its customers.
 - However, it can not export routes learned from other providers or peers.
 - That is, an AS does not provide transit services for its provider.

Export policy restrictions - peers

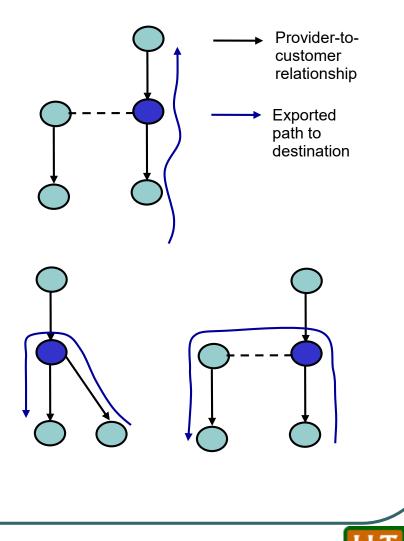

- Exporting to a peer: In exchanging routing information with a peer:
 - An AS can only export its networks and the routes of its customers
 - However, it can not export the routes learned from other providers or peers.
 - That is, an AS does not provide transit services for its peers.

In Summary (previous rules)


• A node can export to its peer and to its provider only paths that it has learned from its customers

Exporting to peers or providers

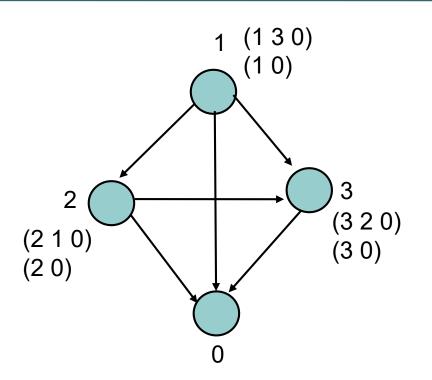
- I say that a route r is a "cust_only" route if for every pair of adjacent nodes (A,B) in the route, A is a service provider of B
- Lemma 0 : a node can only export a "cust_only" path to its peers and service providers



- What can h export to its provider g or its peer x?
 - only what it receives from a customer (i.e. i)
- What can i export to its provider h?
 - only what it receives from its customer (i.e. j)
- What can j export to its provider i?
 - only what it receives from its customer ...

Export policy restrictions - customers

- Exporting to a customer: In exchanging routing information with a customer:
 - An AS can export everything: its customer routes, as well as routes learned from its providers and peers.
 - That is, an AS *does* provide transit services for its customers.


Exporting to customers

- Lemma 1: A path exported by a provider g to a customer h can only be subsequently exported by providers to their customers (exported via provider → customer edges).
 - If g exports the path to h, h cannot export it to y nor to x
 - h can export to y or x only a path via a customer
 - You can repeat the argument between h and i, etc.

Still not good enough

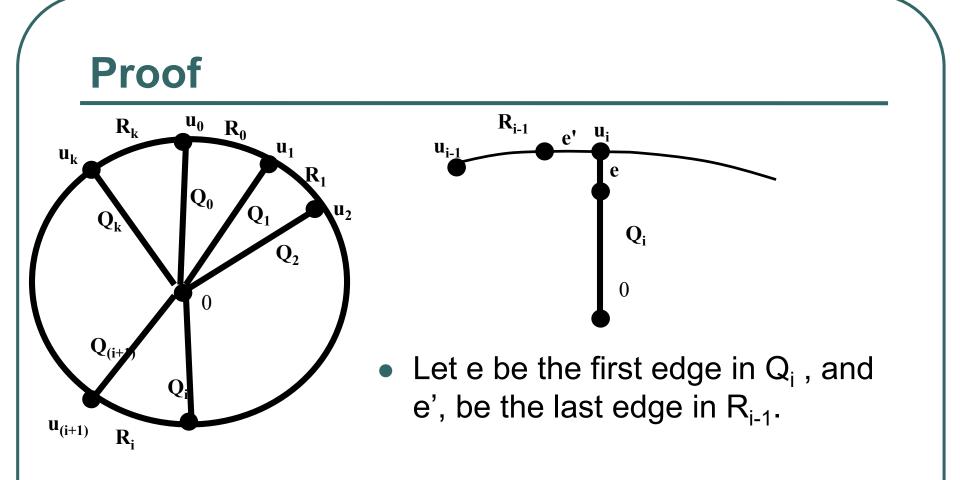
- The following system, even though it satisfies the export policies, is not safe
- Every node starts directly to zero
- Then choose the neighbour clockwise
- Have we seen this one before?

Additional Policy Requirements

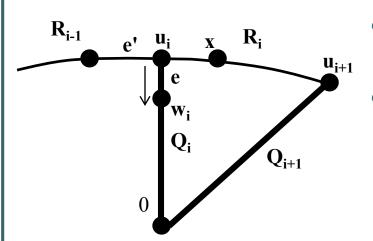
Consider an AS *a*, and this AS has two routes it can choose from, r_1 and r_2 .

Must prefer customer paths over those of peers and providers

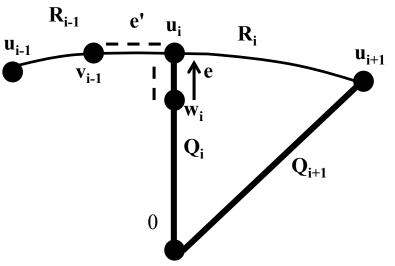
Guideline A


 $\begin{array}{l} \text{if} \left((first(r_1.as_path) \in customer(a)) \text{ and} \\ (first(r_2.as_path) \in peer(a) \cup provider(a)) \right) \\ \text{then} \ r_1.loc_pref > r_2.loc_pref \end{array}$

The end result

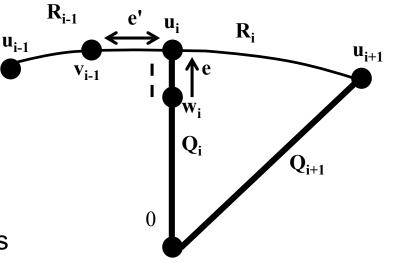

- Theorem 1: For a BGP system that has only customer-provider and peer-to-peer relationships (no backup links), if all ASms follow guideline A, and the provider-customer graph is acyclic, and the export policies are respected, then the BGP system is inherently safe (always converges)
- We will show that the system cannot have a dispute wheel.

Proof (continued)



- Assume e is provider-customer (u_i is provider of w_i).
- Since u_i prefers customer paths, and from the wheel λ(Q_i) < λ(R_iQ_{i+1})
 - This implies the first hop in R_i is via a customer x.
 - From lemma 0, the entire path R_iQ_{i+1} is a cust_only path.
 - In particular, first edge in Q_{i+1} is a provider-customer edge
- Repeat the argument at u_{i+1}, and you have that all edges on the rim of the wheel are provider-customer edges (actually, all edges in the entire wheel ⁽³⁾)
- <u>This is not possible (provider-customer graph is acyclic)</u>

Proof (continued, remaining cases)


- <u>Recall that e CANNOT be</u> provider-customer edge
- Consider now e'
- If e' is peer-to-peer,
 - Because w_i is not a
 <u>customer</u> of of u_i
 (e is not provider-customer),
 it is illegal for u_i to export Q_i
 to its peer v_{i-1}.

Proof (continued, remaining cases)

- If e' is provider-customer edge (v_{i-1} provider, u_i customer)
 - Same thing.
- If e' is a customer-provider edge (v_{i-1} customer, u_i provider)
 - v_{i-1} is customer of provider u_i.
 - From Lemma 1, all of R_{i-1} consists of customer-provider edges
 - We can repeat this argument at all nodes, so all R_i paths are customer-provider, which violates the acyclic provider graph.

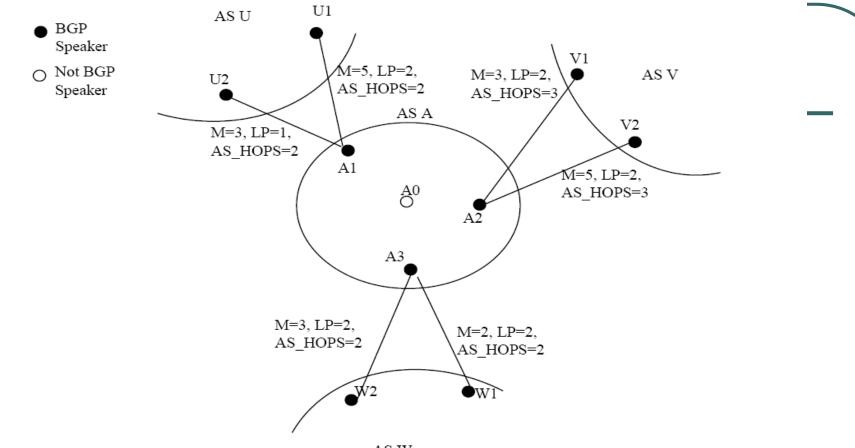
Remarks

 If links and or nodes are added/deleted, or if the policies change, as long as they satisfy the given requirements the system will remain stable.

Multiple BGP speakers

- How does a BGP speaker select a route when there are multiple BGP speakers in its AS?
- Can the paths be different for BGP speakers in the same AS?

Route fields


- Assume an AS A receives a route r from its neighbor B
- Route r has several fields
 - r.as_path: the list of ASms from B to the destination
 - r.MED: if multiple links between A & B, MED determines which one B prefers that A uses (multi-exit discriminator)
 - r.community: you can organize ASms into "communities", and mentioned the community to which this path belongs (irrelevant for us)
 - r.local_pref: how desirable the path is (local preference), and is assigned by A.

Path Selection Policy

- If we have multiple BGP speakers per AS then, path selection is as follows:
 - a) From the paths that satisfy the import policies
 - Choose those with the greatest local_pref (I assume local_pref is consistent among all routers in the same AS)
 - b) Then, out of the remaining paths from above choose the ones with least # of AS hops to the destination
 - c) Then, for each neighboring AS B,
 - Of the paths chosen above, if multiple paths from B (one per BGP border router), choose the one with lowest MED value
 - d) Choose the path whose internal cost to reach the border router is least.
 - e) Choose the path whose peer has the lowest IP address

AS W

Consider the collection of ASms above, with ASms: A, U, V, and W. To reach the destination, A must go through one of the other three ASms. Each BGP router in U, V, and W advertises to its neighbor in A a path to the destination. The attributes of each path are: MED value - the smaller the better local preference value - the larger the better, and number of hops to the destination.

- (a) For each of the three BGP speakers in A (A1, A2, A3), show me what path each will follow, i.e., to which border link it will forward traffic addressed to the destination. Please show your intermediate work.
- (b) For the non-BGP speaker A0, how will it know to whom it should forward messages to the destination?

Answer to previous slide

- Path via (A1, U2) is discarded due to its low local preference value of 1 (all other paths have a local pref value of 2)
- Next, paths via AS V are also discarded because # AS HOPS is larger than the other ASms
- We are left with 3 paths: (A1,U1), (A3,W2) and (A3,W1)
- (A3, W2) is discarded since its MED is greater than (A3,W1)
- We are left with two paths (A1,U1) and (A3,W1).
- Then, A1, A2, and A3 choose their path according to the internal cost to reach the border router
 - A1 chooses to go via U1, since reaching the border costs 0 (cost from A1 to A1 is zero, but from A1 to A3 is > 0)
 - Similarly, A3 chooses to go via W1
 - A2 chooses to go via A1 or A3 depending on which one is closer (in terms of local cost) to A2.

Note: no centralized behavior

- Each router executes independently on its own
 - I.e., it looks at what its neighbors are offering (both internal and external neighbors) and chooses the best path
 - It then advertises its new path to all its neighbors
- What I showed on the previous slide although it is the ultimate result, there are several intermediate steps since, again, each router acts independently.

