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Abstract—Local electricity markets (LEM) envision energy
sectors to satisfy the ever-increasing distributed energy resources
(DERs), especially residential photovoltaics (PV), in modern
communities over past years. However, local energy trading
faces some obstacles in practical applications. Although massive
datasets are desired to train machine/deep learning models
for grid operations, forecasting, load monitoring, and decision-
marking, these applications raise privacy concerns. One the one
hand, some clients might not be willing to endorse sharing data to
others due to privacy concerns. On the other hand, the transfer
of large datasets is costly. These two obstacles would become
more critical in the case of a large energy sharing platform
consisting of thousands of peer-to-peer clients. This paper seeks to
design a privacy-preserving LEM that consists of an LEM agent,
centralized energy storage (ES), prosumers, and consumers. A
future global forecasting model is jointly trained using federated
learning (FL), and the clients’ individual forecasts and decision-
making are determined at the edge of the network without
compromising privacy. Numerical results of case studies show
the leakage of historical load data is detrimental for the LEM
clients, with 2% to 17% increase in costs, if their datasets are fully
obtained by the agent. The LEM agent could earn a maximum of
17% profit increase by obtaining full access to clients’ datasets.

Index Terms—Local electricity market, federated learning,
forecasting, privacy.

I. INTRODUCTION

With the increasing penetration of distributed energy re-

sources (DERs) over the past decade, especially behind-the-

meter (BTM) roof-top photovoltaic (PV) panels, electricity

markets are undergoing a significant transition, from tradi-

tional centralized management to a decentralized, bottom-up,

and localized framework. Besides, innovation in the infor-

mation and communications sector has enabled the extensive

interactions among energy stakeholders. This advancement

is mainly driven based on the energy management systems

(EMS) that are able to monitor, collect, process, and take

advantage of various types of data resources. One of the most

advanced solutions to encourage prosumers and consumers to

rely on this particular type of interaction is local electricity

market (LEM). This local trading platform allows energy

prosumers to act as strategic energy providers and allows

energy consumers to act as active buyers. Prosumers can

supply electricity generated from DERs to satisfy their energy

demand and to sell the excess energy to consumers or the

grid. Localized energy trading platforms create several social,

economical, and environmental advantages, which lead to a

win-win-win solution to prosumers, consumers, and the utility

grid.

However, local energy sharing faces some obstacles in

practical applications. In the LEM, there will be continual and

recurring exchange of data on the energy consumption among

market participants. The data exchanged between different

stakeholders during the energy trading process raise several

privacy concerns that need to be addressed due to the sensitiv-

ity of the data that needs to be shared. It’s possible to use this

data to learn about certain households’ electricity consumption

habits and possibly even users’ sensitive information that some

households may want to keep private, such as BTM PV capac-

ity [1], [2], appliances activities [3], consumption elasticity [4],

aggressiveness in bidding [5], and occupancy status [6], [7].

All these sensitive information could potentially be leveraged

to design hostile bids by adversary in the market, and even

worse, to launch physical thefts or attacks by malicious people

in real world. To this end, in an LEM, clients are always

reluctant to engage in new technologies that require private

data such as load, generation, daily routines, and consumption

preferences. As a result, an effective communication solution

is desired to address these concerns to comprehensively ensure

the efficiency, robustness, security, and privacy-preserving.

Although centralized data processing and machine learning

can be helpful for calculating the global scheduling in energy

scheduling, the clients’ willingness, ability, and flexibility

of sharing should be considered comprehensively. Federated

learning (FL) is a machine learning technique that trains

models across multiple decentralized edge devices or servers

holding local data samples without exchanging data [8], [9].

As a distributed machine learning approach, FL is an effective

approach to deal with sensitive data or massive data with simi-

lar patterns. It allows local learning while maintaining privacy

and trust among the various participants without sharing data

to the central platform or peers. Local energy sharing platforms

with the support of FL have attracted attentions in recent years.

It can play a key role in P2P agents’ decision-making by

providing estimations of the future supply and demand in the

market [10], [11]. In addition, occupancy status, consumption

preference, and load elasticity of peers could also be inferred

without requiring the ground-truth data samples. In FL-based

P2P community sharing, the platform requires the forecasts

of aggregated demand and individual energy demand [12].

The forecasts are necessary to optimally determine the internal
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sharing prices with multiple agents’ participation in the energy

sharing. For example, the agent will expect an aggregated

price hike for an upcoming over-demanded market or a price

drop for an upcoming over-supplied market. Besides, the agent

will also explore to send extra incentives to the clients with

higher predicted consumption flexibility to encourage them to

participate in the energy sharing.

This work is an extension of our previous works [13], [14].

In this work, an FL model is leveraged to predict both the

aggregated and individual netload of prosumers. Using FL,

the entities only transmit forecasting model parameters to

others without sharing the ground-truth data in order to protect

privacy. Besides, the effectiveness of additional data sharing

in improving forecasting accuracy, or in other words, the

concerns for data leakage, is also investigated. The consequent

performance in an LEM is also examined in the case studies.

II. FEDERATED LEARNING

A. Preliminary

In conventional machine/deep learning (ML/DL), all train-

ing data needs to be shared and aggregated with the central

agent to inform decision-making, which causes a huge burden

on the network communication. In conventional ML/DL-based

time-series forecasting, the forecaster trains a global model,

which is only applicable when all the data is shareable and

accessible to the centralized agent. Long short-term memory

(LSTM) is an artificial recurrent neural network architecture

with feedback connections with capability of processing single

data points as well as entire data sequences, which is leveraged

to generate forecasts in this paper.

However, privacy is often the driving force behind the need

for security in LEM. The agent must adhere to mandated

privacy regulations to protect clients’ data. FL supports an

LEM scheme illustrated in Fig. 1 at the aim of reducing

the amount of data transmission and protecting privacy. The

direct access to clients’ local datasets is not available, as

an alternative, only training models (e.g., parameters) are

transmitted among different entities and aggregated by the

central agent.

Fig. 1. The overall structure of the FL-based LEM.

Suppose an FL-based LEM consists of a retailing agent and

N clients. Based on the PV generation and load consumption,

the roles of clients can be dynamically changed between

buyers (Nb) and sellers (Ns), and N = Nb +Ns. Each client

(i ∈ N ) has its own netload dataset collected from their energy

management systems NLi (NL is a combination of load

data minus PV generation, and chronological time-series). The

main goal of FL is to find the optimal parameters to minimize

the forecasting mean-square-error loss function Lω (ω denotes

the forecasting parameters set in the LSTM model). The model

training process in forecasting is defined in a distributed form:

argmin
ω

Lω =
1

N
N∑
i=1

Li,ω (1)

where Liω is the loss function of the ith client.

The general flow of FL-based energy sharing includes:

1) Agent publishes the latest global model ω and clients

synchronize the local model ωi accordingly.

2) Clients retrain their local model based on the private

dataset NLi and then transmit the updated parameters

ω′
i to the agent.

3) Agent updates the global model ω′ by incorporating all

updates from local clients.

4) Repeat (1) - (3) until convergence or predefined com-

munication rounds.

At a high level, FL is a multi-round interaction between an

aggregator and a set of clients, where the machine learning

model is jointly trained to minimize the average of the loss

function. There are two prevailing averaging strategies in the

literature: Model Averaging (MA) and Gradient Averaging

(GA). In this work, only MA is leveraged to update the

parameters. Each local client i updates its local parameters

with the learning rate ηi, which is expressed as:

ωr
i,l+1 ← ωr

i,l − ηig
r
i,l (2)

where r is the communication round; l is the current iteration

round with a maximum value L; ωr
i,l and ωr

i,l+1 denote the

current and future parameters of client i, respectively; and g
denotes the corresponding gradients. Then clients send back

their updated parameters to the agent for aggregation:

ωr+1 ← 1

N
N∑
i=1

ωr
i,L (3)

where ωr+1 is the new global parameter after averaging; ωr
i,L

is the ith parameter after the maximum L iteration in the rth

communication round.

B. Optional Customized Training with Additional Data

Generally, FL models trained via MA have worse per-

formance than those trained in the conventional centralized

learning mode, especially when the training data are not

independent and identically distributed (Non-IID) on the local

dataset. In other words, FL does not perform well for users

whose characteristics are different from the aggregation. The



common solution to address this challenge is updating a well-

trained model using a small amount of specific data, and

selecting a specific group of users who have similar patterns

with the aggregation to build the FL model.

In our proposed FL-based energy sharing, the global model

may not fit all the clients’ distribution. An practical solu-

tion to address this challenge is customized training, which

aims to identify clients’ diverse consumption behaviour and

design customized prices for all clients. It relies on the

parameters transmission during the model averaging process

and then improves the customized training using additional

data provided by clients. Since the FL framework is partially

distributed, the central agent only processes the transmitted

parameters without accessing clients’ data. As a result, the

privacy of consumers could be partially protected. FL has

fewer privacy risks than centralized learning, however, the

parameters sharing could still lead to some potential privacy

leakage. Even when data are anonymized and only parameters

are shared, the clients’ identities are still at risk and can be

discovered through reverse engineering.

Although in a realistic energy market, some data necessary

for billing might be transmitted. This could be implemented in

blockchain and smart contracts to meet the trustful transaction

requirements. In our proposed FL-based energy sharing, we

will investigate how the additional data access, or data leakage,

could affect the forecasting accuracy and consequent market

performance.

III. FL-BASED ENERGY SHARING

The overall structure of the proposed LEM is shown in Fig.

1. The market works in an agent-based trading mode: the LEM

agent trades with all clients with internal customized prices;

besides, the LEM agent is also responsible for balancing the

supply and demand in the LEM with the utility price, i.e.,

time-of-use (ToU) and feed-in-tariff (FiT) prices in this work.

The LEM decision-making consists of two major steps: look-

ahead ES scheduling and real-time prices design. The clients’

consumption is modeled as a utility-maximization problem.

A. Capacity Scheduling
The primary goal of the LEM agent’s ES scheduling is

to maximize its benefit and promote renewable consumption
in the LEM. The objective function of the agent is modeled
as minimizing the trading cost with the utility grid C, since
the energy sharing within the LEM (i.e., from prosumers to
buyers) does not impact the aggregated netload NL of the
LEM. It is noted that the aggregated netload NL forecasting
is generated using FL in this work.

C =

H∑
t=h

[
πt
s

(NLt + xt, 0
)+

+πt
f

(NLt + xt, 0
)−

+ c|xt|
]

(4)

−Λ/Crate ≤ xt ≤ Λ/Crate (5)

SoCmin ≤ SoCt ≤ SoCmax (6)

SoCt =

{
SoCt−1 + xt · η, xt

i > 0

SoCt−1 + xt/η, xt
i < 0

(7)

where we define (·)+ = max(·, 0), and (·)− = min(·, 0).
The parameter H is the optimization window (i.e., 24 h), and

h is the current time slot. The parameter C is the trading

cost with the utility grid from the current time h to future H .

The parameter xt represents the battery charging/discharging

schedule, and η is the (dis-)charging efficiency. The parameter

Λ is an integer number, which denotes the nominal capacity

of the ES. The terms of −Λ/Crate and Λ/Crate are the lower

and upper bounds of the (dis-)charging energy in each time

slot, respectively, and Crate is the maximum (dis-)charge rate

of the ES. The parameter SoCt is the SoC of the ES at the

end of time slot t; SoCmin and SoCmax are the lower and

upper limits of the ES, respectively.

B. Customized Prices Design

To make the customized prices inside the LEM incentive

compatible for all clients, the LEM agent should ensure that

the clients gain more benefits compared with the previous

pricing scheme. In this work, the following constraint is

implemented to maintain incentive compatible:

πf ≤ λb ≤ λs ≤ πs (8)

The buying prices λb refer to the energy trade-in offer for

sellers Ns, while the selling prices λs refer to the energy

charge for buyers Nb, and λb < λs is to ensure the agent’s

profit. Besides, λb and λs prices are constrained by the utility

price, i.e., the FiT (πf ) and ToU (πs).
Based on the discussion above, the profit maximization of

the customized prices design is formulated as:

P =

{ ∑
λs �Eb −

∑
λb �Es − πsΔE − c · |x|, ΔE ≥ 0∑

λs �Eb −
∑

λb �Es − πfΔE − c · |x|, ΔE < 0
(9)

where Eb and Es denote the total demand set from buy-

ers {[li − pvi], i = 1 : Nb} and supply set from sellers

{[pvi − li], i = 1 : Ns} inside the community, respectively.

The parameters λs and λb denote customized prices set for

buyers and sellers, respectively. The parameter ΔE denotes the

imbalance between supply and demand, and ΔE =
∑

Eb −∑
Es − x, which needs to be balanced with the utility grid,

and x is a known number which is already obtained from Eq.

(4). A positive ΔE denotes that the agent has to purchase

power, and a negative value denotes feeding negawatt back to

the grid.

C. Clients’ Consumption Model

In this work, the clients’ consumption model from Ref.

[15] is adopted, which describes the clients’ consumption

preferences as two parts: the satisfaction from consuming

energy and the cost of trading energy.

Ui =

{
ki ln(1 + li)− λs(li − pvi), li ≥ pvi
ki ln(1 + li)− λb(li − pvi), li < pvi

(10)

In (10), ki ln(1 + li) is the utility achieved by the client i
through consuming energy li. The logarithm ln(·) function has

been widely used in economics for modeling the preference

of users due to its close relation to fair demand response.



And (1 + x) is a typical modified form to avoid −∞. Note

that ki is the combination of the utility weight coefficient

and consumption preference parameter. In this work, the k
is calculated based on the individual forecasting of all clients,

and the PV and gross load disaggregation is following Ref.

[2].

IV. CASE STUDIES

We first examine the FL-based forecasting performance,

which covers the Sections IV-A, IV-B, and IV-C. Then we

explore how the FL could affect the LEM performance, which

is concluded in IV-D. It is important to note that the focus

of this work is not to develop the most accurate forecast-

ing method. Other cost functions, ToU/FiT prices, load/PV

datasets, forecasting models, FL frameworks, and ES param-

eters are also compatible with this work. The detailed dataset

information, model parameters tuning, and prices information

could be found in Ref. [13].

A. Members Selection

As we discussed earlier, the FL model suffers from the

non-IID characteristics of different clients with diverse netload

patterns. However, the performance could be improved with

optional member selections, e.g., select clients who have a

similar pattern with the aggregated netload as forecasting

members. As such, the model is more like a jointly-trained

for certain groups with similar netload distributions.

First, we investigate the correlation coefficient between the

aggregated (Agg) and individual netload of clients (c1-c10),

and the result is summarized in Table I. It is found that

clients c6, c2, c1, and c7 have stronger correlation with the

aggregated netload. Then we examine the MA of different

combination of clients, from the highest to the lowest in terms

of correlation coefficient, and Mx indicates that x members are

selected. The results are shown in Table II. For example, M1

indicates only one member is used to predict the aggregated

netload, thus c6 yields the best performance, since it has the

highest similarity with the aggregated netload. M2 indicates

two members, including c6 and another member, so the cell

M2×c6 is colored in gray since it has no value. Similarly,

M3 contains three members, c6, c2, and another member,

etc. It is found that the combination of M3×c8 has the best

accuracy, which includes three members, c6, c2, and c8. This

combination is used to generate the global forecast, which will

be discussed in the next section.

B. Global Forecasting Performance

In this section, we examine the forecasting performance of

two different methods, i.e., FL model and single model. Each

model considers two different updating strategies separately.

To this end, four scenarios are examined, including: (a) FL

without updates, (b) FL with updates, (c) Single model without

updates, and (d) Single model with updates. The term ‘update’

means the agent has access to the clients’ response in the

following market transactions. The nRMSE is leverage as the
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Fig. 2. The performance of different forecasting scenarios. (a) FL without
updates, RMSE=6.4189 kW, (b) FL with updates, RMSE=2.6962 kW, (c)
Single model without updates, RMSE=7.8635 kW, and (d) Single model with
updates, RMSE=1.8263 kW.

forecasting accuracy metric. The time-series visualization and

corresponding RMSE are illustrated in Fig. 2.

In the FL-based scenarios (a) and (b), the global model

for the community is jointly trained by selected members and

the networks are updated differently using only the available

aggregated data at the real-time (RT) resolution. It should be

noted that in order to protect privacy, the aggregated data

doesn’t contain any identifiable information of clients, and the

aggregated data is not challenging to obtain by recording data

from point of common coupling. In scenario (a), only one-time

RT aggregated netload data point will be used as the initial

forecasting input, and it will be deleted from the memory

immediately afterwards, so there is still no historical data

available to update the global model. However, in scenario (b),

the future RT aggregated netload data point will be leveraged

to update the network and generate future time-series output.

Therefore the performance of (b) is expected to be better

compared with scenario (a). As seen from the results, the FL

model performance is satisfactory in terms of catching the

aggregated netload trend.

In the single model based scenarios (c) and (d), the global

model is trained using the historical aggregated netload data,

which is assumed to be available to the forecaster. Similarly,

the aggregated data doesn’t contain any identifiable informa-

tion of clients. However, it is found that scenario (c) under-

performs scenario (a), although the historical dataset is acces-

sible. Since there is no data to update the model in scenarios

(a) and (c), the forecasting results could be biased. To this end,

it is reasonable that the jointly trained model, i.e., FL model

in scenario (a), has a better performance compared with the

single model in scenario (c), under the prerequisite that we

don’t have enough data to update the model. With enough



TABLE I
CORRELATION COEFFICIENT BETWEEN THE AGGREGATED AND INDIVIDUAL NETLOAD

Agg c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

1 0.9189 0.9230 0.8521 0.8803 0.5067 0.9491 0.9159 0.1029 0.8609 0.2947

TABLE II
GLOBAL FORECASTING PERFORMANCE (NRMSE) UNDER DIFFERENT MEMBERS SELECTION

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

M1 47.21% 47.07% 62.71% 45.08% 63.77% 24.09% 35.97% 37.59% 41.60% 30.27%

M2 22.59% 20.66% 19.93% 39.67% 16.03% 28.54% 24.00% 23.89% 44.95%

M3 24.81% 22.02% 31.86% 23.29% 26.05% 15.80% 27.75% 51.44%

M4 22.49% 19.92% 24.95% 23.90% 20.15% 25.29% 36.14%

M5 22.68% 21.36% 25.20% 20.36% 24.82% 29.31%

data, we expect to achieve a better forecasting accuracy, while

it might raise privacy concerns.

Overall, the FL model shows a satisfactory improvement

in terms of aggregated forecasting if we have limited data

availability, since the model is jointly trained and the bias of

single model could be mitigated. If additional data is available,

the single model trained using target dataset has the best

performance, however, privacy concerns rise. Thus in future

smart grids, the market operator will potentially face a similar

conflict between the desire of better forecasting accuracy and

clients’ awareness of higher confidentiality.

C. Optional Individual Forecasting Performance

The goal of optional customized training is that the clients

could decide how much data they want to share with the central

agent. Providing more information to the agent is helpful

for the energy retailer to design better customized rates for

the client’s cost savings. Sometimes it could be a win-win

interaction for some participants if there is potential profit

through cooperation. If so, sharing more information might be

helpful for better cost savings. However, it could also be zero-

sum interaction for some participants if there exist conflicts

between their selfish behaviors. In this case, choosing to not

share data is definitely a better option.

The performance of optional customized training is shown

in Fig. 3. Although the accuracy for different clients is

different, some general conclusions could be obtained.

1) Cases D1 and D3 have the worst performance. For

D1, there is no data to improve the model; For D3,

the lack of recent consumption data leads to inaccurate

forecasting. This also yields another interesting topic

which is worthy of being explored, i.e., misleading the

agent using false data injection attack [16].

2) Cases D2 and D3 have very similar performance. Al-

though D2 provides full data access, only the most

valuable data (i.e., recent data) is selected to update the

model.

3) Case D5 might have better performance since it contains

the most recent data, i.e., the previous one day’s data,

which could significantly reduce the data required for

training. However, it might not be sufficient if this day

is not representative enough.

4) Case D6 yields the best performance, however, it re-

quires full cooperation and data sharing, which might

be challenging in practical applications.

In the next section, we will only examine the energy market

performance under cases D1 and D5.
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Fig. 3. The performance of optional customized training under different data
sharing cases. (D1) No data sharing, (D2) Full data sharing, (D3) 1st half
data sharing, (D4) 2nd half data sharing, (D5) One day-ahead data sharing,
and (D6) Full data sharing with future updating.

D. Energy Market Performance

As presented in the previous section, forecasting models

trained from different levels of data leakage will generate

different accuracies. In this section the consequent energy

market performance will be discussed.

First, the clients’ concern of data leakage is discussed. The

result of prosumers’ cost saving (%) in energy sharing market

is summarized in Table III. Since the consumers without

PV installations act as price-takers in this market, their cost

savings are very limited (from 0.39% to 1.93%), which are

not listed in the Table. In case D1, the agent only receives

local models from clients, while no additional information

is available. Because of inaccurate forecasting results, the

agent could not determine the best energy storage arbitraging

schedules and optimal retailing prices. As a result, the clients,

especially prosumers, start taking advantage of energy sharing.

Benchmark cases D5 and D6 show potential drawbacks of

privacy leakage in FL. In cases D5 and D6, the agent can



take (partially) full advantage of the data (i.e., day-ahead and

actual data) as well as the training model from clients. With

the models and training data both available to the agent, the

clients’ BTM PV installation and consumption preferences

could be inferred from the data. Thus the clients’ cost savings

are significantly lower if their information is obtained by the

agent in cases D5/D6, compared with the privacy-preserving

case D1. To this end, it is extremely important to protect local

dataset, especially in the proposed competitive market without

potential cooperation opportunities. However, it is also worthy

of exploring how the data sharing could improve the market

performance with possible cooperative behaviours.

TABLE III
COST SAVINGS OF PV PROSUMERS [%] UNDER FL MODEL (A)

Cases c1 c2 c3 c4 c6 c7 c9

D1 17.04 11.39 2.13 11.02 15.13 4.54 4.49

D5 4.71 4.87 2.11 1.34 8.01 4.53 4.45

D6 0.04 0.12 0.03 0.05 0.06 0.12 0.02

Table IV shows different forecasting scenarios’ impacts on

the agent’s profits. The decrease [%] indicates how much the

current model could be improved with ground-truth data com-

pared with the actual case (i.e., a full privacy-leakage case).

We notice that a higher forecasting accuracy leads to better

benefits of energy retailing. Although FL scenarios (a) and (b)

don’t earn higher profit compared with centralized learning or

ground-truth data, the benefits are still acceptable. Overall the

FL-based energy market demonstrated an enhancement in the

privacy protection, and the customers’ cost savings could be

preserved.

TABLE IV
PROFITS OF THE AGENT UNDER DIFFERENT FORECASTING SCENARIOS ON

JAN 11, 2018.

Scenarios (a) (b) (c) (d) Actual

Profits ($) 10.48 11.13 10.05 11.41 11.75

Decrease [%] 12.19 5.57 16.92 2.98 -

V. CONCLUSION

Protecting the privacy of clients is important for future

energy markets. As shown in the existing literature, the leakage

of residential information, e.g., occupancy status, electric load,

consumption flexibility, and preference, will lead to potential

economic loss for clients. More attention is desired in terms

of privacy awareness in the future with more and more

data sensors and monitoring in smart energy systems. This

work presents an FL-based energy trading platform with a

collaborative environment with an agent, multiple PV pro-

sumers and consumers. The netload forecasting is generated

under different levels of data availability. Federated learning is

leveraged to enable forecasting future netload of the system in

both aggregated and individual levels, and the results showed

that more information exchange will promote the forecasting

accuracy and improve the agent’s profit. However, the potential

improvement could be irrealizable without clients’ permis-

sion of data exchanging. With foreseeable advancements in

distributed learning, edge computing, blockchains, and smart

grids, it is promising that the future energy trading could

be completed without accessing users’ personal data to fully

protect their privacy.
Potential future work will further explore: (i) dynamic

member selection to improve accuracy considering potential

communication failures, (ii) adaptive model averaging consid-

ering different weights of members, and (iii) incorporating FL-

based forecasting and edge computing into longer-term LEM

design and evaluation.
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