
Voltage Regulation in Distribution Networks via
Fleet Electric Vehicles Incentive Service

Jingbo Wang
The University of Texas at Dallas

Richardson, Texas, U.S.

jingbo.wang@utdallas.edu

Roshni Anna Jacob
The University of Texas at Dallas

Richardson, Texas, U.S.

roshni.jacob@utdallas.edu

Jie Zhang
The University of Texas at Dallas

Richardson, Texas, U.S.

jiezhang@utdallas.edu

Abstract—As environmental concerns continue to grow, pro-
moting green sources of transportation has become a priority for
many governments and researchers. Electric vehicles (EVs) have
become increasingly pervasive in recent years, with both personal
and commercial users embracing this mode of transportation. In
the future, EV fleets owned by rental and delivery companies are
expected to play a greater role in routine operations. From a grid
perspective, grid voltage deviation varies depending on the loads
on the distribution network, and the energy capacity of EV fleets
represents a great potential source of support for the grid. When
leveraging EV fleet to provide grid voltage support, it’s important
to optimize the EV fleet locations that can best support voltage
regulation, while avoiding the risk of turning on all EVs for
voltage regulation and potentially losing their mobility for other
services. In this paper, we propose an incentive-based control
strategy to encourage EVs in desired locations to participate
in grid voltage regulation. By identifying the target nodes and
allowing the remaining EVs to be used for other purposes, this
incentive-based strategy aims to strike a balance between the
needs of the grid and the needs of the EV fleet. Our results show
that this strategy can effectively regulate grid voltage deviation
and improve the performance of the grid by leveraging EV fleet.

Index Terms—Electric vehicle fleet, vehicle-to-grid (V2G),
distribution network, voltage regulation, EV management

I. INTRODUCTION

Researchers, policymakers, and corporations are promoting

the transition towards clean energy resources due to the grow-

ing environmental concerns and impact of climate change,

resulting in an increasing presence of renewable resources and

electric vehicles (EVs) in the power grid [1]. The unpredictable

and intermittent nature of renewable generation, along with the

ever increasing and varying energy demand, poses challenges

in stable and reliable operations of the grid. Though EVs

are undeniably beneficial for environmental sustainability, an

insurgence in EVs may change the daily power profile of the

grid. With suitable control and co-ordination strategies, EVs

could be capitalized for ancillary services in the future re-

newable energy-centric grid. The past decade witnessed rapid

adoption of EVs as the public’s new mode of transportation

[2]. Several EV models, including Tesla, BM Bolt, Volt, Nissan

Leaf and BMW I series have achieved success stories. On

the other hand, the popularity of eMobility concept has also

accelerated the adoption of EVs in transportation and rental

companies such as FedEx and Uber [3]. With an eye toward

the future, the ubiquitous EVs owned by these companies

are not only a form of green energy transportation, but also

potential passive income sources which can provide services

via vehicle-to-grid (V2G).

In contrast to individual private owned EVs which are

constrained by user specific requirements (e.g., departure state

of charge, available time frame, etc.), fleet EVs owned by

companies facilitate easy control access via company man-

aged aggregators and provide large scale dispensable energy.

Additionally, companies usually have a higher motivation

to provide profitable services when EVs are idle. There is,

however, limited research on EV fleet control and consequent

grid behavior, and whether such services are indeed profitable.

In this paper, we investigate the economic benefit and the im-

provement in grid stability facilitated by EV fleets operating to

provide voltage regulation services in the distribution network.

In the study, the distribution network with renewable energy

resources and EV fleet integration are modeled in OpenDSS

(open source distribution system simulator) [4] to emulate

realistic energy demand and daily loading patterns. The EV

fleet behavior models with sufficient level of fidelity and the

optimal fleet control strategy for regulation of distribution grid

voltage are developed. The impact of the EV fleet on voltage

stability and the grid performance is compared subsequently

with that of no EV. From the perspective of the EV fleet, the

incentive for providing grid services is investigated by using

price signals in the control framework.

The rest of the paper is organized as follows: Section II

describes the EV fleet and grid modeling, as well as the

proposed incentive-based control strategy that enables the

nearby EV fleet to regulate the grid voltage. In Section III, a

case study is formulated based on a designed scenario, which

takes into account the delivery truck V2G time, and uses the

incentive control to support grid voltage regulation. Finally,

Section IV concludes the paper and discusses potential future

work.

II. MODELING THE INTEGRATION OF ELECTRIC VEHICLES

AND THE GRID

The EV fleet presents a unique benefit to the power grid,

where the parked EV fleet is in idle and can be served as

energy storage to support grid stability and reliability. To

assess the viability of control algorithms for EV fleets, we

have modeled the fleet and constructed a test network using
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openDSS for distribution network simulations. Additionally,

we have designed an incentive algorithm to encourage the EV

fleet to participate in grid network regulation, thus demonstrat-

ing the potential for EV fleets to provide support to the power

grid.

A. Electric Fleet Modeling

To model the EV fleet, we first established a representation

for a single EV. Based on the current range of EV designs

and battery configurations, most EVs have a range of 200 to

400 miles and a voltage of 400 V to 800 V. As the focus

of this paper is on grid voltage regulation and promoting

an efficient and accurate strategy to enable EV service, we

have synthesized the battery performance close to market EVs.

Below is a table of synthesized parameters for EVs:

TABLE I
SYNTHESIZED EV PARAMETERS

Parameter Value
Cell capacity 90 Ah
Cell voltage range 2.7 V to 4.15 V
Cell internal resistance 1.4 mΩ
Cells per module 5
Modules per pack 32
Pack voltage range 432 V to 664 V

We took into account the primary purpose of EVs in

our simulation setup. To achieve this, we defined a single

EV behavior and accounted for critical elements such as

V2G available time, maximum and minimum state of charge

(SOC), and battery power availability to enable optimal grid

management. Our modeling of the single EV’s SOC and power

capabilities relied on synthetic data, including the battery’s

SOC-open circuit voltage (OCV) characteristics [5], maximum

current limit, and internal resistance, which were based on a

typical electric vehicle.

In the simulation setup, sensor inaccuracy is not in the scope

of this study, therefore, we have used the Coulomb counting

method [6] for SOC calculation.

SOCt = SOCt−1 +
1

Q
·
∫ t

t−1

i(τ)dτ (1)

where Q denotes the battery capacity.

The SOC maximum and minimum boundaries shown in

(2) pose a constraint for V2G services that the grid manager

should take into consideration. SOCk,i denotes the kth vehicle

at node i. The SOCV 2Gmax represents the upper limit to

which the V2G can charge. The SOCV 2Gmin, on the other

hand, represents the lower limit beyond which the V2G service

should stop. The SOCV 2Gmin can have different thresholds

based on different scenarios, such as whether the vehicle needs

to reserve capacity for its future drive, or if there is a safe cut-

off limit to avoid over-discharging the battery. It’s important to

note that the battery management system may lock the battery

from operating in the next drive cycle due to violations of

current, voltage, temperature, and/or SOC limits. Therefore,

the V2G service should avoid violating these limits to prevent

the battery from locking.

SOCV 2Gmin ≤ SOCk,i ≤ SOCV 2Gmax (2)

The power prediction model in this work utilizes the power

prediction methods presented in Ref. [5] for a single EV. In

this paper, the charge power is denoted with negative values,

representing grid supplying power to the EV, while discharge

power is denoted with positive values, indicating grid receiving

power from the EV. The power estimation is calculated using

voltage-limited power prediction, as shown in (3) and (4),

and current-limited power prediction, as shown in (5) and

(6). The overall power prediction takes the maximum of both

calculations in the charge direction and the minimum in the

discharge direction, as shown in (7).

P chg
min,v = Vmax · VOCV − Vmax

Rchg
(3)

P dchg
max,v = Vmin · VOCV − Vmin

Rdchg
(4)

P chg
min,I = (VOCV − Imin ·Rchg) · Imin (5)

P dchg
max,I = (VOCV − Imax ·Rdchg) · Imax (6)

P chg
min = min{P chg

min,v, P
chg
min,I}

P dchg
max = max{P dchg

max,v, P
dchg
max,I}

(7)

where Vmax represents the maximum operating voltage of a

cell, while Vmin represents the minimum operating voltage.

VOCV denotes the open circuit voltage of the cell. Imax

and Imin, respectively, represent the maximum current in

the discharge and charge directions. Finally, Rchg and Rdchg

represent the battery’s internal resistance in the charge and

discharge directions, respectively, which vary according to the

corresponding pulse duration.
In the current battery management system, the current and

power prediction supports the vehicle’s driving in a dynamic

environment. However, in the V2G service, minimizing the

battery aging effect is essential and should not deviate from the

EV’s main purpose. Using short-term power prediction is not

an optimal choice, as it potentially adds strong power cycles on

the battery for a longer V2G time period, which generates heat

and increases the chance of operating at higher temperatures.

Limiting the current at a moderate level to minimize aging

is more appropriate in the V2G service. Therefore, we have

reduced Ilim for V2G based on the allowed SOC swing and

the projected V2G service duration as shown in (8).

Imin,max =
Ic−rate · (SOCV 2Gmax − SOCV 2Gmin)

TV 2G
(8)

where Icrate denotes the C-rate current, and TV 2G denotes

the projected V2G support time duration. There are many

incentive programs to promote V2G, and in our case study, it

is assumed that the EV will be available for the entire period

during its V2G time.



B. Grid Modeling of IEEE 34-Bus Distribution Network

The V2G performance and its capability to regulate the

voltage are validated on the IEEE 34-bus distribution test

network [7], [8]. The 34-bus network is the model of a feeder

located in Arizona, which has an operating voltage of 24.9 kV,

and multiple in-line regulators and shunt capacitors. The total

connected load in the network is 2.04 MW and the network

loading is unbalanced in nature.

The test network with the distributed energy resources are

modeled and simulated using OpenDSS. Increasing photo-

voltaic (PV) hosting capacity can alleviate the distribution

network load during daytime, as discussed in [9]. Considering

the trend of increasing renewable penetration, the test network

is modified by adding three phase PV units as in [10].

The PVSystem model built in OpenDSS is utilized where

the combination of PV panel and inverter is described with

sufficient level of fidelity. The power produced by the PV plant

is dependent on a number of factors including the irradiance

and ambient temperature which are provided as inputs. During

periods of high demand with no/low PV generation, the

voltage at extreme buses may fall beyond the desirable limits.

Therefore, in our study we consider the point of common

coupling (PCC) of EV fleet with the grid at the buses farthest

from the substation. In our study, we assume that the EV

charging station exists at Bus 890 as shown in Fig. 1, which is

often observed to suffer from under-voltage due to its distance

from the substation, both with and without PV. The EV fleet

modeled in Section II-A is further defined as a lumped storage

in the distribution network modeling domain. The storage

model available in OpenDSS is used by characterizing the

power rating and storage capacity according to the EV fleet

aggregated at the PCC.
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Fig. 1. IEEE 34-bus distribution network with PV and EV penetration

C. Incentive Based EV Fleet Control

Various load profiles and distribution sources are incorpo-

rated in the grid modeling, including PV and EV fleets at

different locations, to examine grid voltage deviations. Node

voltage deviations can vary depending on the configuration of

the distribution network. To regulate voltage more effectively,

it is better to enable EV fleets close to the nodes that need

voltage regulation, allowing voltage to be directly injected

to support regulation. While other EV fleet locations can

provide support, the further they are from the node, the less

effective their voltage regulation support will be. Even if all

EVs close to that node are available for grid services, it may

not be financially beneficial for the fleet company to engage all

available EVs for grid services due to reasons such as the need

for flexibility or other more financially attractive services. To

address this, an incentive-based control algorithm is proposed

to encourage more EVs close to the node requiring voltage

regulation to participate, as shown in Algorithm 1.

The algorithm uses ΔVi to represent the node voltage

deviation, which is the difference between the voltage at time

t and the reference voltage Vref . The maximum acceptable

deviation from the reference voltage is denoted by ΔVthd and

set to 5% of Vref in our study. The reactive power demand at

node i is denoted by Qdemand,i.

The algorithm considers an incentive factor α that the grid

operator sets to regulate grid voltage. This factor is a function

of the location of EVs with respect to the nodes needing

voltage regulation and the power demand. It can represent

a reward or electricity discount to encourage or discourage

EV fleet participation, similar to the price design in game

theory used in [11]. The grid operator controls the EV fleet

engagement at each node through this incentive factor. At each

node, the grid operator checks the voltage deviation between

the node and reference voltage. If the deviation is greater than

a certain threshold, the incentive-based control will be enabled.

Since node locations, load distribution, and distributed energy

resources locations vary across different distribution networks,

in this study we target all nodes that have voltage deviation

to spread the voltage regulation support across several nodes.

If the power demand is high, the grid operator will check the

closest EV nodes and assess their aggregated power capability

based on available time and predicted power. If the grid

operator deems it is necessary to use all EVs at one node,

the incentive factor will be set to 1. Equation (9) describes

how we assess the incentive factor.

αi =

{
1 if Qdemand,i >

∑n
j=1 Ppred,EV,j

Qdemand,i∑n
j=1 Ppred,EV,j

otherwise

(9)

where the index j denotes one of the n identified EV locations

that support voltage regulation at node i, while Ppred,EV,j

represents the predicted power of the EVs located at node j.

The total predicted power from all identified EV locations is

obtained by summing Ppred,EV,j over all n locations.

Modeling the incentive factor and EV participation will

require some market insight. Our approach will model the in-

centive factor with a linear relationship between EV numbers,

where the number of participating EVs (NEV con,j) close by

node i is calculated by (10).

NEV con,j = αi ·NEV,j (10)

where α represents the ratio of participating EVs to the total

number of EVs (NEV,j).



Algorithm 1 Incentive-based Vehicle-to-Grid Regulation

1: dt ← 1 hr � time step set to 1 hr

2: for each time step do
3: for each node do
4: Compute delta voltage ΔVi = Vt,i − Vref

5: if ΔVi /∈ ΔVthd where ΔVthd = 5%Vref then
6: Enable incentive-based control for node i
7: Compute reactive power demand Qdemand,i

8: Identify nearest EV fleet sites close to node i
9: Check EV discharge power availability

10: Compute α based on linear relationship of (9)

11: Set α for EV fleet at node i
12: else
13: Set αi to 0 for this node location

14: end if
15: end for
16: end for

III. SIMULATION AND RESULTS

The overall framework for model implementation includes

two components: the grid modeling module for evaluating the

network behavior, and the EV fleet modeling and control mod-

ule. In the grid domain, the distribution network is simulated

to identify the buses with voltage violations and determine

the reactive power compensation to alleviate the under voltage.

The second module implements the proposed incentive control

strategy that utilizes nearby EV fleets to regulate the voltage

at the buses in the network.

Fig. 2. A typical load profile for the IEEE 34-bus system

A. EV Fleet Schedule

The voltage regulation support envisions a future where

more EV fleets are available, and the V2G technology can be

used as another source of profit for EV owners. In this study,

delivery trucks were considered as an option of the EV fleet.

By analyzing fixed delivery routes, vehicle metrics like SOC

swing and drive period can be predicted. Previous studies, such

as the work in [12] on repeated commuting driving cycle, can

help determine V2G availability during “off-delivery” time.

Based on the research in [13], package delivery for the

EV fleet primarily occurs in the morning from 6 am to 12

pm and in the early afternoon. To optimize the use of the

EV fleet, two groups were established: package delivery and

idle. During the day, 2/3 of the EVs perform delivery tasks,

with a 50% swing in SOC through driving, leaving them

available for V2G services during the rest of the day. The V2G

operation for the package delivery group starts at an SOC of

40% and stops at 15%. For the idle group, constituting the

remaining 1/3 of the fleet, the V2G operation is available

throughout the day, starting at an SOC of 90% and stopping

at 15%. When connecting to the grid for V2G services, it is

assumed that the EVs have already completed their primary

tasks. The idle group assumes no delivery tasks throughout

the day, while the delivery group starts with a low SOC,

leaving the remaining capacity available for V2G services.

To minimize battery aging, a cut-off SOC of 15% is chosen

for V2G services, as the battery internal resistance increases

significantly at lower SOC.

B. Test Cases

Two case studies are considered in our simulations. The

first case study involves EV penetration in the original 34-bus

network without any solar PVs, while the latter case considers

the integration of both solar PVs and EV fleet into the network.

In both these cases, the EVs are located near bus 890, and a

time varying load profile shown in Fig. 2 is used for model

simulation. The load curve represents the variation of per unit

load multiplier, which is multiplied with the specific load at

different nodes to obtain the time-series load profile for each

node. The EV fleet comprises of 150 EVs, with 100 EVs in the

delivery group as mentioned in Section III-A. The remaining

EVs are assumed to be idle. It is identified in both cases, bus

890 is the worst performing node in terms of voltage. Hence,

the voltage at this bus is represented in Fig. 3 and Fig. 4 for

the two cases to illustrate the voltage regulation provided by

the EV fleet. As seen in Figs. 3 and 4 that, the voltage falls

during the period of heavy loading. This drop in voltage is

less for the case with solar PVs (Fig. 4), since the PVs inject

power into the network during the daytime peak load hours. It

is observed that the EV fleet integration enhances the voltage

profile considerably in both cases.

Figure 5 demonstrates the implementation of incentive

control to address the power demand from the grid in the

load-only scenario. As the grid’s demand for power increases,

more EVs are needed to provide the necessary power. This

prompts an increase in the incentive factor to encourage

further participation, as shown in Fig. 5a. Fig. 5b displays

the SOC of select EVs, with higher power-predicting EVs

being discharged first. The plot shows that all vehicles will be

discharged to their lower SOC limit. The current limit for EVs

for V2G is based on the expected V2G time, and the discharge

rate is mild, which has less impact on battery aging. Later

in the day, the delivery group EVs are utilized to discharge

and provide the required power. Fig. 5c shows the actual

power demand and the power supplied by the participating

EVs, indicating that as more EVs participate, the grid’s power

demand can be fulfilled.



Fig. 3. Voltage regulation by the EV fleet at bus 890 in the network without
solar PVs

Fig. 4. Voltage regulation by the EV fleet at bus 890 in the network with
solar PVs

Figure 6 displays the simulation results of EV power for

grid voltage regulation with the availability of solar PV power

generation. Although the solar PV power injection does not

directly affect the worst node, Fig. 6c shows that the power

demand for EVs decreases slightly during daytime compared

to the scenario without PV. The incentive factor for EV

participation at the end of the 24-hour simulation is 68%,

slightly lower than the 70% observed in the scenario without

PV. Despite the small amount of solar PV generation, it covers

a portion of the grid’s power demand, resulting in fewer EVs

required to participate in V2G services. Therefore, a reduction

in the incentive factor may still guarantee sufficient power

delivery. This test case demonstrates that the integration of

multiple renewable sources can improve voltage regulation.

By coordinating these renewables, a more efficient method

for regulating grid voltage can be achieved.

Fig. 5. EV fleet operating characteristics in the network without solar PV

Fig. 6. EV fleet operating characteristics in the network with solar PV



IV. CONCLUSION

This paper proposes an incentive-based vehicle-to-grid

(V2G) service for regulating grid voltage. The incentive factor

encourages or discourages the EV fleet’s participation in the

V2G service based on the node’s voltage regulation needs and

predicted EV fleet power. An aggregated EV fleet model is

used, and the power prediction is adjusted based on the V2G

service period. The proposed incentive factor can serve as a

signal to stimulate EV participation in voltage regulation, and

can be implemented through dynamic tariffs. The developed

incentive control is compared with a baseline without an EV

fleet, and the results show that it can potentially optimize the

number of EVs for voltage regulation and release unused EVs

for other purposes.

Potential future work will explore (i) a more accurate model

for the relationship between the incentive signal and the

participated EVs, and (ii) the aging influence on the incentive

signal.
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