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Abstract—This paper proposes a data-driven method to esti-
mate real-time regulation reserve requirements in the California
Independent System Operator (CAISO) balancing authority area
(BAA). The approach is based on the statistical analysis of actual
historical area control error (ACE) and regulation procurement
in the CAISO system. The CAISO baseline method uses day-
ahead (DA) information and does not statistically relate require-
ments in real time. In this work, we examine the benefit of setting
requirements in real time, and the proposed method presents
advantages rather than the present DA approach by using
additional 1-hour-ahead (1HA) independent variables to estimate
requirements. By adopting a time series forecasting technique, the
approach estimates regulation reserve requirements on an hourly
basis. More specifically, a neural network based upon a nonlinear
autoregressive exogenous model (NARX), which accounts for tem-
poral continuity and autocorrelation, is leveraged for regulation
requirements estimation. The proposed approach incorporates
multiple time-series variables that might affect the system balance
(e.g., solar, wind, and load). Two metrics are adopted to evaluate
method performance: 1) frequency of shortage, and 2) oversupply
of the regulation reserve requirement. By dynamically tuning
the parameters of the procurement strategies, system regulation
reserve requirements were reduced without compromising system
reliability, improving both system reliability and economics.

Index Terms—Time-series forecasting, regulation reserve re-
quirements, system reliability and economics.

I. INTRODUCTION

The California energy system experiences significant chal-
lenges caused by the dramatic growth of renewable generation
in recent years. As a result, the California Independent System
Operator (CAISO) is facing multiple critical and interrelated
issues that are challenging to be resolved. The ever-increasing
penetration of grid-scale and distributed solar resources has
caused frequent negative prices, increasing demand for ancil-
lary services, and spikes in reserve procurement prices [1],
[2], [3]. Recent studies on the integration of renewable energy
resources indicated that the system requires a significant
revolution in reserve procurement, because of the variability
and forecast uncertainty associated with the high penetration
levels of renewable resources.

Regulation is the process of providing real-time balance to
the system by adjusting the energy output of generating units
connected to the automatic generation control (AGC) system.
The CAISO procures these regulation-up and -down in both
day-ahead (DA) and real-time (RT) markets to provide the
system balance every 4 seconds by adjusting the power output.

Before 2016 regulation-up and regulation-down requirements
in the DA market were approximately 300 MW. However, in
order to comply with control performance requirements with
higher renewable penetrations, regulation procurement is more
dynamic than that in past years and could be adjusted daily
or hourly due to operating variances or system conditions [4].
Besides, CAISO has to pay from $90,000 to $500,000 per
day for extra regulation, with the average regulation prices
increasing from $6-7/MW to $15-20/MW [5].

In general, operating reserve requirements depend on the
combination and interaction of multiple considerations. Nowa-
days, the main factor affecting the balancing requirements
is renewable generation and its volatility. However, other
factors such as the grid situation, load conditions, market
fluctuations, weather scenarios, and contingencies, could also
have significant impacts. Our prior works [6], [7], [8] have fo-
cused on translating probabilistic solar forecasts into weather-
conditioned projections of flexible ramp product (FRP) needs
for the CAISO system, and the performance of the methods
we propose is evaluated by measuring both economic and
reliability performance. Other works such as [3], [5], [9]
have attempted to improve regulation procurement by con-
sidering renewable power uncertainty, load forecasting errors,
and control area imbalances in the historical data. However,
these works have not considered information about system
uncertainty available in real time. Besides, their evaluation
of the regulation prediction was purely based on the amount
procured or its cost, while the potential loss in reliability was
not analyzed.

In this paper, a data-driven method is developed to deter-
mine regulation reserve requirements in the CAISO market.
The method forecasts the regulation requirement to meet the
control performance metrics in the system, i.e., area control
errors (ACE), by leveraging a neural network based upon a
non-linear autoregressive exogenous model [10]. Specifically,
the forecasting target is the future time-series regulation re-
serve requirement. The input to the regulation requirement
estimation model includes the previous values of the same
series, as well as the current and past values of the exogenous
series, i.e., the externally determined series that influences the
series of interest, such as renewable generation and volatility.
The effectiveness of different procurement strategies and the
sensitivity of tuning parameters are also discussed.



The rest of the paper is organized as follows. Section II de-
scribes the proposed methodology for regulation procurement.
Results of a case study are discussed and analyzed in Section
III, and Section IV concludes the paper.

II. METHODOLOGY

There are two different approaches to determine the regula-
tion reserve requirements in the existing literature: i) statistical
analysis of ACE, and ii) the balancing authority (BA) ACE
limit (BAAL) standard [11]. It should be noted that this work
only focuses on the former approach. The overall flowchart of
the proposed data-driven regulation reserve estimation method-
ology is illustrated in Fig. 1. Section II-A describes how the
ideal regulation requirement is obtained in the system, Section
II-B introduces the current CASIO baseline method, Section
II-C summarizes the forecasting model, and Section II-D
introduces the adaptive procurement strategy and performance
assessment metrics.
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Fig. 1. Flowchart of the proposed method for estimating regulation reserve
requirements.

A. ACE and Regulation

According to Ref. [3], a minute-by-minute “ideal” regula-
tion (i.e., ACE∗) can be calculated by subtracting the actual
ACE from the actual regulation values, given by:

REG∗ = −ACE∗ = −(ACE −REGactual) (1)

where REGactual is the actual regulation applied to the
system balancing, and ACE is the BA’s control error. As a
result, ACE∗ will be an estimate of the ACE that would occur
without any regulation, and this value also represents the ideal
regulation which ISO wants to procure in the system to achieve
a zero ACE.

In a conventional statistical method, the historical ACE∗

values are analyzed to generate future ACE∗ forecasts. The
CAISO also uses percentiles to eliminate certain percentages
of extreme values on both sides of the distribution, since the
regulation procurement is not designed to cover all possible
deviation of ACE. This also helps to determine different
intervals corresponding to certain level of confidence. For
example, the operator could procure more regulation when
the system is facing higher uncertainty caused by renewable
generation. The detailed setup of the method is described in
Section II-D.

B. CAISO Baseline Method

The CAISO presently sets its regulation reserve target as a
percentage of the system’s demand forecast for the hour, to
meet Western Electricity Coordinating Council (WECC) and

North American Electric Reliability Corporation (NERC) per-
formance standards. The current approach used to determine
regulation requirements in the CAISO has been discussed in
[12], which is briefly summarized as follows:

1) Historical Need: For each hour, the CAISO examines
the 95th percentile of regulation required as calculated by the
control algorithm. The data from the same month last year is
also used to inform procurement for the current month.

2) Anticipated Variability / Forecast Uncertainty: The
CAISO examines the performance from recent days that had
higher forecast uncertainty in order to inform change in
procurement related to weather. For example, a large weather
system moving across California will cause variability in cloud
cover and wind speed/direction.

It is noted that the targets can be different for regulation-
up and regulation-down, and can also vary based on the
operating hour. CAISO’s regulation targets may also change
if its demand forecast changes after running the day-ahead
market. For more details, please refer to [4].

Figure 2 illustrates an example of REG∗ and the base-
line regulation requirements in CAISO for one week (i.e.,
September 1-7, 2019)1. It is observed that the daily baseline
regulation procurement differs significantly within this week.
Generally, the baseline procurement covers the ACE∗ very
well, however, regulation shortages are still observed during
some periods. On the other hand, regulation oversupply occurs
on some days, implying that the system doesn’t need that much
reserve since it experiences less uncertainty and has a lower
ACE. The profile also explains the motivation of dynamic
regulation estimation: i) days with higher uncertainty need
should procure more reserve than normal days to improve the
system reliability, and ii) if similar amounts are procured in all
hours without considering the dynamics in the system, over-
procurement compromises economic efficiency of operations.

Fig. 2. Regulation-up and -down requirements resulted from the CAISO
baseline method in one week (transformed data from CAISO in Sept. 2019)

C. NARX Network-based Forecasting

The NARX neural network is a dynamical neural architec-
ture, which is commonly used for input-output modeling of

1To comply with non-disclosure agreements, in this work all the regulation-
up and -down requirements, ACE, ACE∗, and regulation procurement data
have been subjected to an affine transformation, and so will not correspond
with OASIS data in Section III.



nonlinear dynamical systems. The experimental results in Ref.
[10] showed that NARX networks are better in discovering
chaotic characteristics and behavior of long time series than
conventional recurrent neural networks (RNN). The architec-
ture of the NARX network makes it highly applicable to look-
ahead prediction of univariate time series. In this paper, the
NARX model is represented as:

ŷ(t) = f(y(t− 1), ..., y(t− n), u(t− 1), ..., u(t− n)) (2)

where u(t) represents exogenous input of the model, y(t) is the
dependent output, and n is the lags of the input and output. The
forecasted value of the output ŷ(t) (i.e., ˆACE∗) is obtained
based on previous values of y(t) (i.e., historical ACE∗) and
u(t) (i.e., exogenous factors). It is noted that Eq. (2) only
forms in one-step ahead, but the model is also compatible
with multiple-steps ahead. The mean absolute percentage error
(MAPE) is calculated to evaluate the accuracy of the proposed
netload forecasting.

MAPE =
1

n

n∑
t=1

∣∣∣∣∣ ˆy(t)− y(t)

y(t)

∣∣∣∣∣ (3)

where ŷ and y denote the forecasted and actual values,
respectively, and n denotes the number of datapoints.

Regulation and balancing requirements depend on the com-
bination and interplay of multiple uncertain factors. In addition
to solar, wind, and load, the ramps of these variables are
also considered, because the ACE is known to correspond to
the changes/variations of load and renewables. The ramps are
computed as the first-order derivatives using finite differences
of the variables, and are named solar ramp, wind ramp, and
load ramp. Then a feature selection is performed to screen the
crucial inputs which yield the best forecasting performance,
as documented for our application in Section III-A below.

D. Procurement Strategy and Performance Evaluation

The regulation requirements for the CAISO are the result of
a combination of an analysis of historical regulation needs and
anticipated variability and forecast uncertainty. Although we
attempt to minimize regulation procurement using exogenous
input-informed forecasting methods, it is challenging to predict
the actual ACE in a realistic system. The market operator
has to determine appropriate procurement strategies based
on relative priority assigned to reducing procurement cost
or improving reliability. A risk-averse operator can always
purchase more reserve in the market to avoid greater losses
if a contingency happens, however, this conservative strategy
compromises economic operation. On the other hand, an
aggressive operator might choose to reduce procurement cost,
leaving the system at potentially higher risk.

Our hypothesis in this work is that we can utilize historical
ACE∗ and other exogenous inputs to forecast the future
ACE∗ on a near real-time basis, then use the forecasted
ACE∗ signal to determine regulation procurement. It is ex-
pected that this procurement strategy will perform better than
the ISO baseline method. The forecast is performed on a
rolling basis by using ACE∗ in previous several weeks. We

propose the following approach of defining the regulation
requirement as:

REG∗ = max(Pmin, β × ˆACE∗) + z(t)× Pextra (4)

where Pmin is a lower bound to the regulation requirement,
ˆACE∗ is the forecasted ACE adjusted for the amount of

regulation actually dispatched as defined in Eq. (1), β is a
multiplier, and Pextra is an increase in procurement for t in
day-time hours (6:00 to 20:00, when z(t) =1; otherwise z(t)
=0). Pmin, β, and Pextra are tuned parameters to maximize the
performance. An example of Pmin =491 MW and Pextra = 0
has been shown in Fig. 2.

Hereby the sensitivity of the three tuning parameters is
examined by:

1) Multiplying the forecasted ˆACE∗ value by various
values of the factor β. Higher values provide a greater
safety margin for regulation procurement.

2) Reducing the minimal regulation-up procurement for
all previous Pmin hours to save procurement costs of
the system, so the final requirement is max(Pmin, β ×

ˆACE∗). Please note that the transformed minimal pro-
curement for CAISO’s baseline is 491 MW for hours
with less fluctuations in ACE∗ (i.e., 8 p.m. to 6 a.m. in
Fig. 2).

3) Adding an extra amount of procurement Pextra to
compensate for possible shortages of forecasted ˆACE∗

in hours with more fluctuations, i.e., max(Pmin, β ×
ˆACE∗) + z(t)× Pextra.

A Pareto plot as proposed in Fig. 3 is used to show the
relative performance of the regulation requirement estimation
method, by showing both how often the regulation shortages
occur and amounts of excess regulation (the amount above
what is needed to meet actual ACE) for a given method as a
point on an x-y plot. The figure shows the trade-off between
reliability and oversupply in the form of Pareto frontiers.
The point at the intersection of two dashed lines represents
CAISO’s baseline implementation. The dashed cross divides
the plane into four quadrants (I, II, III, and IV), where points
in Quadrant III indicate an improvement in both dimensions,
yielding a strictly better outcome. Points in Quadrant I indicate
degradation in both metrics, which have strictly worse results.
Quadrants II and IV represent non-inferior solutions with
ambiguous improvement in one objective with a degradation
of the other.

III. CASE STUDY AND RESULTS

The transformed historical ACE∗ data in May 2020 from
CAISO, which was originally averaged from 4-sec to a 1-
min resolution, has been aggregated into a 15-min resolution
(i.e., choosing the maximum value in every 15 minutes) to be
consistent with the CAISO Open Access Same-time Informa-
tion System (OASIS) dataset[2]. The regulation procurement
baseline data is also selected from the same month, and all the
sensitive data are subjected to an affine transformation to be

2http://oasis.caiso.com/mrioasis/logon.do

http://oasis.caiso.com/mrioasis/logon.do


Fig. 3. Conceptual Pareto framework for analysis of regulation procurement.

consistent with non-disclosure agreements. The transformed
historical ACE∗, together with the OASIS data, are used to
calibrate models that estimate ˆACE∗ one-hour ahead of time,
which can then be used to determine the real-time regulation
procurement.

A. Forecasting Performance

Days 1-24 in May 2020 are used for training/validating the
NARX neural network (split 3/1 for training and validation,
respectively) and the remaining 7 days are used for testing.
It should be noted that in this study, only regulation-up is
examined since regulation-down follows the same procedure.
The out-of-sample test forecasting accuracy for the ACE∗

in the last week with different exogenous input combinations
is summarized in Table I. A total of 10 combinations are
examined, which are labeled as Index 2-11 in Table I. Index
1 indicates no exogenous input is added to the network.
As seen from the results in Table I, there exist correlations
between regulation requirements and additional inputs, and
the indexes of additional inputs which could improve the
accuracy are highlighted in bold. The results indicate that solar
generation and solar ramps are potentially the most influential
factors that can be used to improve the accuracy of regulation
requirement estimation at CAISO, which also confirms the
results from our previous work in Ref. [6] that CAISO’s
solar power uncertainty contributes at least half of overall net
load uncertainty. This is likely due to the fact that total grid-
scale and roof-top solar capacity in the state in Year 2022 is
approximately 16 GW, while wind is only approximately 8
GW [13]. Therefore, the ˆACE∗ in our recommended model
is generated using solar and solar ramp as exogenous inputs.

B. Procurement Performance

Prediction of the hourly-specific requirements for the up-
ward regulation is shown in Fig. 4. The current CAISO day-
ahead baseline is illustrated as the purple line, while the
orange line stands for the real-time adjusted Base491 MW
case. The value of 491 is the minimal procurement that the
CAISO actually follows in this week, which is the lowest
value during the selected period as illustrated in Fig. 2. The
Base 491 MW case represents the combination of parameters
Pmin =491, β =1, and Pextra =0 in Eq. (4). As seen
from Fig. 4, although the Base491 case is not able to cover

TABLE I
ACE∗ FORECASTING ACCURACY WITH DIFFERENT EXOGENOUS INPUTS

Index MAPE[%] Exogenous Inputs
1 17.8693 -
2 17.8096 + Solar
3 17.6768 + Solar ramp
4 18.1596 + Wind
5 18.2864 + Wind ramp
6 17.8593 + Load
7 18.3572 + Load ramp
8 18.0886 + Index 2 - 7
9 17.8614 + Index 3, 5, 7

10 18.2682 + Index 3, 5
11 16.4811 + Index 2, 3

all the regulation shortages, it is still able to capture some
extreme values in regulation requirements. By dynamically
tuning parameters Pmin, β, and Pextra, the performance of
the proposed procurement strategy can be further improved.

Fig. 4. Statistical analysis of regulation-up procurement, Base 491 (red,
Pmin =491, β =1, and Pextra =0) vs. Baseline method (purple) vs. ACE∗

(Grey), Data (grey) May 25 - 31, 2020.

Figure 5 shows the Pareto frontiers of regulation-up pro-
curement on the last 7 days of May 2020, along with the
performance analysis of three different procurement param-
eters. The red diamond in Fig. 5 represents the transformed
CAISO baseline procurement, and the yellow star indicates the
ideal regulation procurement (i.e., minimal procurement with
0 shortage).

As observed from Fig. 5(a), a greater β (the arrow indicates
the direction of increasing β) results in more conservative
regulation requirements, which reduces the probability of
regulation shortage while increasing procurement. It is found
that no points fall into Quadrant I (where both reliability
and GWh procured are worse than the baseline). When β =
1.513, we could maintain same level of reliability with about
25% reduction in procurement, while β = 2.205, we could
reduce the chance of shortage by as much as 30% with a
same amount of procurement. When β ≤ 1.513, the curves fall
into Quadrant IV, indicating a higher probability of regulation
shortage than the CAISO baseline method, but less total GWh
of procurement. A greater β results in more conservative
regulation requirements, and the curves when β ≥ 2.205 fall
into Quadrant II, where procurement is greater than the CAISO
baseline and the reliability is improved.

As explained in Ref. [5], the regulation shortage always
occurs during hours with sunshine. To evaluate the perfor-
mance of adaptive procurement in different periods, we divide
a day based on two time points: 6 a.m. and 8 p.m., and
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Fig. 5. Sensitivity analysis of procurement parameters. (a) Multiplying factor β ranging from 0.5 to 3, Pmin = 491 MW, Pextra = 0. (b) Multiplying
factor β ranging from 0.5 to 3, minimal procurement Pmin for hours 8 p.m. to 6 a.m., Pextra = 0. (c) Multiplying factor β ranging from 0.5 to 3, Extra
procurement Pextra for hours 6 a.m. to 8 p.m., Pmin = 491MW.

consider values of the β ranging from 0.5 to 3. As shown
in Fig. 5(b), the regulation requirement could be improved by
reducing procurement in less fluctuating periods. The curve
of Pmin= 491MW refers to the method where the regulation
requirement is MAX(491MW, β×forecast ACE∗), while the
Pmin = 480MW case (i.e., requirement is MAX(480MW,
β×forecast ACE*) shows a very close proximity in Quadrants
III and IV, indicating that slightly reduced procurement will
not harm reliability very much. The results in Fig. 5(c) also
show that adding an extra procurement to the forecasted value
during the 6 a.m. to 8 p.m. period also helps in promoting
reliability, however, with a higher amount of over-supply.

Based on a careful selection of parameters β, Pmin, and
Pextra, we can either reduce procurement by as much as 30%
and maintain the same reliability (X1 on the curve Pmin = 0
in Fig. 5(b)), or reduce the probability of shortage by up to
50% with the same procurement (X2 on the curve Pextra =
75 in Fig. 5(c)).

IV. CONCLUSION

We propose a data-driven method to predict hourly regu-
lation needs in the California Independent System Operator
(CAISO) system. The methodology allows the operator to
estimate the real-time hourly specific regulation reserve re-
quirements by dynamically predicting the optimal regulation
requirement to cover the ideal area control error (ACE∗). The
economic and reliability benefits from using those require-
ments have been analysed by evaluating both the shortage and
oversupply of regulation reserve. Simulation results showed
that the regulation requirement can be improved without
compromising the level of reliability that the CAISO baseline
method targets.

Potential future work will include probabilistic forecast
information provided by renewable and load forecasts into the
regulation requirements prediction. Also, the methodology will
also be updated following the CAISO’s latest procedure for
regulation reserve procurement.
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