
Reinforcement Learning for Intentional Islanding in
Resilient Power Transmission Systems

Sobhan Badakhshan∗, Student Member, IEEE, Roshni Anna Jacob∗, Student Member, IEEE,
Binghui Li†, Member, IEEE, and Jie Zhang∗, Senior Member, IEEE

∗The University of Texas at Dallas, Richardson, TX 75080, USA
†Idaho National Laboratory, Idaho Falls, ID 83415, USA

Email: jiezhang@utdallas.edu

Abstract—Intentional islanding is the process of identifying
and deliberately decomposing the transmission network to
form self-sustained islands from an endangered network during
disruptions to improve resilience and security. Most existing
intentional islanding models are offline resilience decision tools
and hence do not provide outage responses in a timely manner.
In this paper, a reinforcement learning (RL) based model
for intentional islanding is developed, which offers real-time
switching control, online deployability, and adaptability to
varying system conditions. The intentional islanding process is
formulated as a Markov decision process, where the optimal
transmission switching policy is learned using the RL approach.
The control policy is learned over an environment that
encompasses a Power System Simulator for Engineering (PSS/E)
model of the transmission network, facilitated by an interface to
the standard openAI Gym framework. The proposed RL-based
methodology aims to form stable and self-sustainable islands by
ensuring voltage stability while reducing the power mismatch
in the formed islands. A proximal policy optimization algorithm
is designed, which is suitable for controlling the on/off status
of the switches with multi-layer perceptron as value and actor
networks. The effectiveness of the proposed framework in the
self-recovery of the grid by island formation is applied on the
modified IEEE 39-bus test network and validated by dynamic
simulations.

Index Terms—Intentional Islanding, Grid Resilience,
Reinforcement Learning, OpenAI Gym, PSS/E.

I. INTRODUCTION

W ith the latest advances in smart grid technologies
and the grid modernization efforts, autonomous

monitoring, and control of the power system to ensure security
and stability during both normal operations and emergency
response are gaining traction. One of the drivers for this trend
can be attributed to the deployment of artificial intelligence in
control and energy management tools in power systems [1].
On the other hand, the smart grid initiative has led to the
increase of remote-controlled switches in the power network,
thus facilitating smart control of the transmission line switches
[2]. Intentional islanding is a widely used control strategy to
prevent blackouts during disruptions caused by damages in
the transmission grid under extreme weather conditions or
cyber-physical attacks [3]. The goal of intentional islanding
is to isolate the damaged part of the grid and ensure the
continued operation of the rest of the network through a series
of switching operations, thereby improving the grid resilience
[4].

Intentional islanding is the process of altering the topology
of the power network by switching a minimal set of
transmission lines out of service and consequently dividing the
grid into several partitions. The islands formed are optimally
determined with the objective of minimizing power imbalance
and maintaining the voltage, and frequency stability in each
island [5]. Given the non-linearity in power flow equations,
the class of controlled islanding problems is computationally
intensive, which is categorized as NP-hard. On the other hand,
these intentional islanding techniques are expected to exhibit
real-time control capability to prevent further cascading events.

Several intentional islanding algorithms have been
developed over the years to split a large interconnected power
grid into islands, to mitigate outages and prevent large-scale
blackouts and cascading failures. These are optimal cutset
determination problems where the minimum number of lines
required to partition the network is determined. Approaches
such as mixed-integer programming [6], heuristic methods
[7], and graph theoretic techniques [8] have been studied
in the intentional islanding literature. For instance, Wu
et al. [8], [9] adopted a graph theoretic approach where
the transmission network is represented as a graph with a
hierarchical spectral clustering scheme and a dendrogram
interpretation is used to form clusters. Demetriou et al. [10]
presented a real-time islanding algorithm based on the output
of a real-time state estimator that monitors the performance
of the system while checking sufficient generation capacity.
A comparison between transmission switching and intentional
islanding based on the DC and AC optimal power flow to
maximize load recovery in power systems was performed
by Hussain et al. in [11]. Meanwhile, Mishra et al. [12]
proposed a ranking-based method for islanding zones based
on the information on power generation availability, load
demands, and the priority of loads, while checking their
bus voltage and frequency stability of microgrids by the
small-signal analysis. However, these existing methods are
computationally intensive considering the NP-hard nature of
optimal switching in transmission systems which are complex
interconnected systems spanning a wide area. Therefore,
these methods may not be suitable for real-time decision
support. Additionally, these methods are model specific and
not adaptable to varying system conditions, and hence, cannot
be deployed for online control.

Machine learning frameworks have predominantly been
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explored for distribution network reliability and resilience
in tasks such as reconfiguration or intentional islanding
as in [13]–[18]. In [14], the authors have developed
a reinforcement learning model over graphs to perform
reconfiguration in distribution networks to minimize network
loss during normal operations. Alternatively, Kumar et
al. [16] presented a supervised learning model to form
intentional islands in low-voltage DC distribution systems in
post-disasters conditions. As opposed to traditional distribution
networks, transmission networks have a meshed structure
with bidirectional power flow from multiple generators.
Additionally, transmission networks are critical systems where
the security and stability of the system are of utmost
importance. Transmission networks are also significantly
impacted by cascading effect of failures and therefore require
quick isolation and mitigation of outages to prevent blackouts.
It has been observed that little attention has been paid to
resilience support in transmission networks using intelligent
topology control. To bridge this research gap, in this paper,
we propose a reinforcement learning (RL) framework for the
intentional islanding of transmission networks.

The intentional islanding of transmission networks during
outages is modeled as a Markov decision process and is solved
using an RL approach. A proximal policy optimization (PPO)
algorithm with multilayer perceptrons for both policy and
value networks is used to learn the switching control policy to
prevent disruption during outages. The agent is trained with
the objective of minimizing power mismatch and maintaining
stability. The proposed RL method provides switching
decisions in real-time for varying system conditions and
hence is suitable for online topology control in transmission
networks.

The rest of the paper is organized as follows. In section
II, the intentional islanding problem and the modeling of
the environment are discussed. Section III presents the RL
framework with the formulation of the Markov decision
process. The simulation results from the learning process are
presented and discussed in Section IV. The conclusion and
future research directions are discussed in Section V.

II. INTENTIONAL ISLANDING OF TRANSMISSION

NETWORKS

The power network is a set of N nodes (or buses)
connected by a set of L branches or edges as transmission
lines, with dispatchable demand and generation at buses.
Intentional islanding splits the power grid into j ∈ J sets of
islands (i.e., smaller self-sufficient independent subsystems),
by removing a set of edges or selecting the cut set of
transmission lines Es ⊂ L. To prevent the collapsing of
the islands formed in this process, it is necessary to ensure
that the power system parameters are within safe operating
limits and the mismatch between generation and demand is
minimized. Therefore, for the voltage stability in each island
formation, it is critical to take into account factors such
as sufficient availability of generating resources functioning
as slack (reference) units, adequate generation capacity to
achieve balance with load demand, and necessary voltage

control capabilities. Accordingly, intentional islanding is a
security-constrained optimization problem with the objective
of finding optimal cut sets to divide the network into
multiple self-sufficient islands. Es is, therefore, a set of arcs
representing the transmission lines to be disconnected to create
the islands and the value of the cut corresponds to the power
imbalance in the resulting island. In this study, we also
impose constraints on the voltage deviations (to be within
an acceptable range) while minimizing the mismatch between
generation and demand.

min f(Vi, θi, Pj , Qj); ∀i ∈ N, j ∈ J (1)

The function f represents the AC power balance constraints
for all possible j within the island set J , which is a function
of the nodal voltage magnitudes V and angles θ, as well as
the nodal injections of active P and reactive power Q.

The total active and reactive power demands are constrained
by the power supplied by generators on each island, which are
given as follows.
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where PG
i,j and PD

i,j are the generation and demand
consumption in the bus i of island j, respectively. The
parameters of SG

i , PG
i , QG

i and SD
i , PD

i , QD
i are apparent,

active, and reactive power for generation and demand,
respectively. The operator ()∗ represents a complex conjugate.
Eqs. (5) and (6) ensure that there is sufficient generation
capacity to meet the power demand in the formed islands.
The parameter Ybus represents the AC bus admittance matrix.

The voltage security check of the islands is modeled in Eqs.
(7) and (8), where the magnitude and angle of the bus voltage
for all nodes are constrained as follows.

Vi,min ≤ |Vi| ≤ Vi,max ∀i ∈ N (7)

θi,min ≤ θi ≤ θi,max ∀i ∈ N (8)

The voltage constraints reduce the possibility of voltage
collapse of buses and further improve the stability of the
formed islands.



III. REINFORCEMENT LEARNING FRAMEWORK

Reinforcement learning (RL) is a class of machine learning
techniques that are well suited for optimal control problems
where the control policies are inferred from sample trajectories
learned by interacting with the real or simulated systems.
In comparison with traditional models, RL methods exhibit
real-time control capability and are particularly useful for
resilience enhancement where time is critical. Additionally,
RL methods are also scalable and suitable for online control
as it learns to adapt to variations in system behavior. Fig. 1
illustrates the key components of the RL framework, namely,
the environment, observation, action, and reward.

In this work, we use the Power System Simulator for
Engineering (PSS/E) software to model the power transmission
networks and perform power flow simulations for varying line
outages and switching actions. A python interface is developed
to integrate the PSS/E software with the standard openAI
Gym framework. The environment, therefore, encompasses
the PSS/E power system simulator along with subroutines
to implement the switching control and to evaluate the
network state which includes voltage measurements and power
mismatch.

A. Intentional Islanding as Markov Decision Process

The intentional islanding problem can be defined as a
Markov Decision Process (MDP) and is expressed as M =
(S,A,Ptr,R). The state S , action A, transition probability
Ptr, and reward R are described as follows.

• State: The state describes the current operating condition
of the transmission network which is represented by the
system variables. This is expressed as S = {s|st =
{ Smis, Vn, θn}}. Smis is the mismatch in apparent power in
the network resulting from different switching actions. Other
state-defining parameters are obtained from the power flow
simulator, such as Vn and θn which are the magnitude and
angle of the voltage at all buses in the network, respectively.

• Action: The action is defined as a binary vector
corresponding to the number of elements in l ⊂ L, where
l is the set of switchable lines. Each switching action is
encoded as 0 or 1 to represent a switch opening or closing
action. The action vector for l lines is thus expressed as
A = [a1, a2, ..., al]. The line-opening actions are responsible
for forming islands in the grid.

• Transition: The transition refers to the change of state St−1

at time t − 1 to a new state St at time t. The transition
probability Ptr can be expressed as Ptr = Prob(St =
s′|St−1 = s).

• Reward Function: The role of the reward function in
RL is to guide the agent by evaluating the quality of
the selected action with respect to the updated state, i.e.,
awarding or penalizing the agent for the action taken at
a given state. Here the reward assigned to the agent will
guide the intentional islanding or switching process toward
minimizing the total power mismatch in all the islands
created. Additionally, it is also necessary to ensure that the
islanding action will avoid network infeasibilities due to the

absence of adequate generating resources in islands. The
reward function is subsequently formulated as:

r(s, a) = −Cs (9)

Cs =

{
0.01× Smis if power flow converged

Smis otherwise
(10)

Smin =
√
P 2
total +Q2

total (11)

Environment

Agent: Island Formation
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Proximal policy 
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Derive network stateApply action 
to PSS/E  
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Fig. 1: Block diagram representation of the reinforcement learning algorithm
used for intentional islanding during outages in transmission networks

The reward function in Eq. (11) is acquired from the power
flow simulator. As seen in (10), the term Cs encompasses the
MVA mismatch in the network Smis, which is close to zero
if the power flow converges or a large number otherwise.

B. Implementation Details

The proposed RL-based intentional islanding strategy is
validated on the IEEE 39-bus test network. Details about
the test network can be found in [19]. The transmission
network is built in PSS/E, which is used for power flow
simulations. The openAI Gym framework is utilized to develop
the RL-based topology control model. Additionally, the RL
algorithm from the stablebaselines3 library in Python 3.7
is used for learning the intentional islanding problem. The
proximal policy optimization (PPO) has been used for training
the model. The different parameters set after an empirical
tuning process are presented in Table I.

C. Training of The Intentional Islanding Agent

The intentional islanding agent is trained using outage
scenarios which include the generation of random line failures
in the network. Therefore, for each episode with a specific
outage event in the transmission network, the agent learns
the optimal switching policy using the RL algorithm, by
observing the state and estimating the reward. The goal of
the islanding scheme is to continue network operation while
ensuring security and generation adequacy. This is reflected
in the observation (bus voltages and angles) acquired from
power flow simulations and the reward assigned in Eq. (11).
The action is designed as a multi-binary vector to represent
the switching action.



The PPO algorithm [20] which is suitable for discrete action
spaces is adopted for training the intentional islanding agent.
PPO belongs to the class of policy gradient methods with
an on-policy approach. The policy network is responsible
for the observation-action mapping, while the value network
determines the expected reward for the agent given a particular
state of the network. The policy and value networks are
updated continually using stochastic gradient ascent and
gradient descent optimizers until the last epoch where the
agent is assumed to be trained. The training procedure is
described in Algorithm 1. The settings for the parameters in
the training process are summarized in Table I.

TABLE I
PARAMETER SETTINGS

PARAMETERS VALUES
ALGORITHM PPO
TOTAL STEPS 60,000
OPTIMIZER ADAM

LEARNING STEP SIZE 0.00001
ROLLOUT BUFFER SIZE 200

BATCH SIZE 100
EPOCHS 100

VALUE FUNCTION COEFFICIENT 0.5
ENTROPY COEFFICIENT 0.1

Algorithm 1 RL-based Intentional Islanding Algorithm

Require:
Import OpenAI Gym, Stable Baselines3 and psspy
Load the original test network modeled in PSS/E

1: for n = 1 to Number of buses do
2: Initialize the voltage magnitude, angle and add to

observation space
Initialize action space with a binary vector of size l

3: for i = 1 to Max Episodes do
4: Generate random line outage
5: Simulate line outage in PSS/E network and

perform powerflow
6: Obtain observation (Vn, θn, ΔP , ΔQ) ∀n ∈ buses
7: return observation to learning agent
8: Acquire the action predicted by the policy network
9: Implement the action in the PSS/E network by

changing status of lines as per ai ∀i ∈ l
10: Determine the islands in the network with status

of swing buses defined as generator mode
11: if Number of islands >= 2 then
12: Change the type of selected buses to swing
13: Perform powerflow and obtain observation
14: return observation after islanding to agent
15: reward = 0.01×Smis

16: else
17: reward = Cs

18: end if
19: return reward to learning agent

IV. NUMERICAL RESULTS

The developed intentional islanding strategy is validated on
a modified IEEE 39-bus system. The training of the intentional
islanding agent aims to maximize the mean rewards obtained
per episode and is suitable for deployment after convergence.
The learning curve in Fig. 2 exhibits the desirable increasing
trend with convergence to near-zero for power mismatch,
indicating that the agent is able to learn the optimal policy.
The mean loss of the value network update is high during the
initial learning and decreases to zero once the agent achieves
a stable reward, showing the capability of the learning model
to predict the value of each state-action pair.
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Fig. 2: Mean reward and value loss per step during RL training of intentional
islanding on the modified 39-bus test system

To test the developed intentional islanding agent, an outage
at the transmission line (13, 14) is simulated as shown in
Fig. 3. The policy network returns a suitable action for
the outage scenario, resulting in opening lines (14, 15) and
(16, 17) after the disruption, thereby forming two operating
islands, as depicted in Fig. 3.

Bus39, bus32, and bus33 on each island are considered
as swing buses. In PSS/E, the maximum number of possible
islands in the grid would be fewer than the number of swing
buses. Because the island detection is performed based on the
swing bus in each zone, if there is an isolated part with no
swing bus, PSS/E considers the zone as one island. Therefore
in the proposed algorithm, all swing buses are first changed
to non-swing mode, and then after counting the number of
islands in the whole grid for each action, the status of all
swing buses will return back to their original modes before
calculating the power flow disruption.

The bus voltage magnitudes and angles obtained
consequently by the islanding are shown in Fig. 4, and
both of them fall within safe operating limits. The total power
mismatch, in this case, is found to be 0.012 MVA.

Intentional islanding could enhance the flexibility in outage
mitigation of large-scale grids and provide fast response
control with high damping factors for severe disruptions,
thereby avoiding potential instabilities that could ultimately
push parameters outside of system tolerances. During network
disruption events, intentional islanding could help improve
network resilience by stabilizing the grid. Various line outages
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Fig. 3: IEEE 39-bus test system with an optimal islanding solution.
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Fig. 4: (a) Voltage magnitude, and (b) bus angle of the grid with islanding.

are considered random events for the training of the agent by
RL, to find an overall response for any event in the whole
grid. It is important to note that many types of faults, such as
a three-phase-to-ground short circuit, could potentially cause
a blackout, even with fault removal. Hence it is important
to consider splitting the system into self-sustained islands to
prevent cascading failures.

To validate the effectiveness of the intentional islanding
results on stabilizing of an unstable network after a fault, the
dynamic simulation of the system has been performed with one
of the worst faults in the grid, i.e., a three-phase-to-ground
short circuit that remains in the grid for a while. If the
island formation could mitigate the impacts of the selected
three-phase-o-ground short circuit scenario, it is expected that
the island formation could also work effectively under other
transient faults in the grid. To this end, a three-phase-to-ground
short circuit is induced at second 2 at bus 38, which is removed
after 0.4 second. The intentional islanding strategy is applied at
second 3. After the implementation of the intentional islanding

strategy, the system dynamic response is analyzed, and Fig. 5
illustrates the transient voltage magnitude measurements for
the test network. It is observed that by comparing the scenario
without intentional islanding, the voltage with islanding could
be quickly stabilized after the disruptive event. The voltage
measurements of all buses oscillate with significantly smaller
frequencies compared to those without islanding and are
stabilized at new steady states around second 8.
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Fig. 5: The voltage profile of the modified IEEE 39-bus network: (a) without
intentional islanding, and (b) with intentional islanding.
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The smooth transient response of the voltage profile will
prevent it from deteriorating from the nominal state to irregular
cyclical patterns, because the highly frequent oscillations may
lead to inevitable cascading failures across the entire grid.
Fig. 6 compares the frequency response of the grid with
and without the intentional islanding scheme. The frequency
deviation in both cases is within the desired range ±0.5%. In
the case without intentional islanding, when all of the buses are
connected together, any change in frequency could lead to the
failure of the entire grid. However, in the case of intentional
islanding, the frequency could be controlled on each island
separately.

V. CONCLUSION

This study developed a reinforcement learning (RL)
framework for intentional islanding as a real-time network
recovery and outage mitigation method during disruptions
in power transmission networks. The real-time, automated
and online control capability lacking in traditional methods
necessitates an RL-based approach for resilience improvement



in transmission networks. To this end, a switching control
agent was designed to provide optimal cutset (lines out of
service) to form islands based on the observations and reward
acquired by interacting with a PSS/E based environment. The
agent is trained to form optimal islands while minimizing
the power mismatch in the network. The PSS/E simulation
tool is also used to validate the operational security of the
network following the switching actions obtained from the
RL model. We have adopted the proximal policy optimization
with multilayer perceptrons as the policy network. Case study
results showed that the RL-based islanding method could
form stable islands with minimum power disruption and stable
transient responses during disruptive events.

Potential future work will further: (i) evaluate the scalability
of the proposed RL method to large-scale power grid networks,
(ii) evaluate the dynamic performance of the power system
in the RL environment for calculating the strength of the
formed islands by the dynamic stability analysis of the formed
sub-systems, and (iii) leverage integrated energy systems (e.g.,
nuclear, renewable, and hydrogen) in conjunction with the
islanding strategy to improve the grid resilience.
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