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Abstract—In this paper, we present an innovative reinforce-
ment learning approach for short-term solar forecasting, leverag-
ing data from the European Centre for Medium-Range Weather
Forecasts (ECMWF). The methodology begins with the applica-
tion of the System Advisor Model (SAM) to transform various
ECMWF numerical weather prediction members into predictive
photovoltaic power generation. To enhance the precision of
deterministic forecasting, we introduce a dynamic model selection
algorithm based on Q-learning. This algorithm dynamically
identifies and utilizes the most accurate ensemble member for
forecasting purposes. Furthermore, we employ a support vector
regression surrogate model with a Gaussian distribution to
generate probabilistic forecasts, providing a holistic view of solar
energy generation uncertainty. To expedite the training process
and make it more practical for real-world applications, we
integrate a rolling update workflow. This innovative workflow
reduces the training period from months to a mere 19 days,
making our method highly efficient. Numerical results of the case
study show that in comparison to benchmark models, the pro-
posed method improves the deterministic and probabilistic solar
forecasting accuracy by up to 40.84% and 48.42%, respectively.

Index Terms—solar forecasting, ensemble forecasting, rein-
forcement learning, probabilistic forecasting

I. INTRODUCTION

The increasing awareness of environmental conservation
and the simultaneous reduction in the cost of solar photovoltaic
(PV) technology have led to accelerated penetration of solar
energy into electricity market. However, the inherent variabil-
ity of solar energy poses new challenges for stakeholders in
the electricity industry. This situation underscores the critical
need for improved accuracy in solar forecasting to facilitate
optimal planning and decision-making.

As statistically validated in [1] and [2], it’s evident that
no single forecasting model consistently outperforms others
at every timestamp. Ensemble learning has emerged as an
effective and adaptable approach for enhancing the accuracy
of a suite of forecasting methods, as highlighted by [3]. For
example, Carneiro et al. [4] applied Ridge regression ensemble
machine learning to reduce forecast errors in intermittent solar
and wind resources. Their ensemble model outperformed all
machine learning (ML) techniques.

While combining results from diverse forecasting models is
one method for constructing an ensemble system, an alterna-
tive approach involves consolidating outcomes from various
numerical weather predictions (NWP), often referred to as
ensemble weather predictions (EWP). However, few studies

have delved into the post-processing of EWP disseminated by
major operational weather prediction facilities for PV power
prediction. Sperati et al. [5] first employed a neural network to
generate 51 PV power predictions from 51 ensemble weather
sets, provided by the Ensemble Prediction System (EPS)
of European Centre for Medium-Range Weather Forecasts
(ECMWF). Their study evaluated two statistical calibration
methods, estimation of variance deficit (VD) and Ensemble
Model Output Statistics (EMOS), which demonstrated com-
parable probabilistic forecasting performance across various
evaluation metrics.

In this paper, the EPS from ECMWF is utilized to generate
solar ensemble forecasts. To enhance deterministic ensemble
forecasting, we employ a Q-learning-based dynamic model
selection (QMS) method, as initially introduced in [2] and
[6] for short-term load forecasting. Additionally, we adapt the
two-step probabilistic forecasting approach originally outlined
in [7] to create short-term probabilistic solar forecasts, utilizing
a recursive training process. The main contributions of this
paper can be summarized as follows:

• Leveraging EWP for ensemble solar power forecasting.
• Achieving substantial enhancements in both deterministic

and probabilistic accuracy, by leveraging Q-learning-
based dynamic model selection.

• Introducing a novel rolling update workflow that dramat-
ically reduces the training period to a mere 19 days.

The remaining part of the paper is organized as follows: the
proposed methodologies are elaborated in Section II; Section
III describes data processing and experiment setup for the case
study; discussions of the experiment results are presented in
section IV and conclusion follows in Section V.

II. METHODOLOGY

The complete forecasting workflow is illustrated in Fig. 1.
The overall methodology can be divided into three parts: 1)
the construction of ensemble system, 2) the application of
QMS to perform deterministic forecasting, and 3) conversion
from deterministic forecasts to probabilistic forecasts using a
surrogate model.

A. Construction of ensemble system

Within ECMWF, the NWP capabilities encompass two key
components: high-resolution forecasts (HRES) and EPS. No-
tably, HRES delivers a single forecast, whereas EPS comprises
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Fig. 1. The overall solar forecasting workflow

one control forecast (CNTL) and 50 forecasts generated with
slightly perturbed initial conditions and model physics.

To facilitate ensemble solar PV forecasting, we employ the
PVWatts model from the System Advisor Model (SAM), a
tool developed by the National Renewable Energy Laboratory
(NREL). Specifically, PVWatts, one of SAM’s modules, is
tailored for modeling grid-connected PV systems and offer-
ing irradiance-to-power calculations. For accurate PV power
generation predictions, specific NWP data is fed into SAM,
encompassing parameters such as global horizontal irradiance
(GHI), diffuse horizontal irradiance (DHI), direct normal ir-
radiance (DNI), wind speed, temperature, and solar zenith
angle. Among these parameters, GHI, which exhibits a strong
correlation with PV energy generation, is singled out as a
crucial element within EWP [8], [9].

It’s important to note that the primary differentiator among
each set of NWP lies in GHI (from both EPS and HRES) and
corresponding DHI values. As a result, inputting the N+1 sets
of NWP data into SAM generates N +1 distinct forecasts for
PV power generations, which comprises the ensemble system
in Fig. 1. Throughout the remainder of this paper, we use
Ei, i = 1, 2, 3, ..., N to denote the ith PV forecasting power
generation based on the specific NWP set with EPS “Member
i”. Furthermore, we will use Ehres or EN+1 to denote the PV
power generation forecast based on all HRES weather data.

B. QMS for deterministic solar forecasting

Once an ensemble system is established, QMS, serving
as an ensemble algorithm, is employed to select the best
ensemble member as the ultimate deterministic forecast. Since
the QMS training and processing procedures are described
comprehensively in [2], only the QMS algorithm is shown

in Algorithm 1 here, and hyperparameter decisions will be
discussed in Section III-B.

Algorithm 1 Q-learning based Dynamic Model Selection
(QMS)
Require:

Q-learning training dataset TQ

QMS processing dataset PQ

learning rate α, discount factor γ, number of episodes Ne

Result:
At each time stamp, select the best ensemble member a∗t
from current state st in QMS processing period

1: Training Procedure:
2: Initialize Q = 0⃗(N+1)×(N+1), ϵ = 1
3: for e = 1 to Ne do
4: With the probability of ϵ select a random action

ae from {a}, otherwise, select ae = argmax
a∈A

Qe(se, a)

5: Calculate R by

Rt(si, aj) = rank(Ei,t)− rank(Ej,t+1) (1)

6: Update Q by

Qe+1(se, ae) =(1− α)Qe(se, ae)+

α[Re(se, ae) + γmax
a∈A

Qe(se+1, a)]
(2)

7: ϵ← ϵ− 1
Ne

8: end for
9: Processing Procedure:

10: Take action a∗t = argmax
a∈A

Q∗(st, a)

C. Probabilistic forecasting based on CRPS optimization

To effectively account for the inherent high uncertainty in
solar forecasting, we employ a two-step probabilistic forecast-
ing method. This approach involves conducting probabilistic
forecasts on top of deterministic forecasts.

To gauge the accuracy of these probabilistic forecasts,
we utilize the Continuous Ranked Probability Score (CRPS).
CRPS is a mathematical function that quantifies the dis-
similarity between the predicted and observed cumulative
distributions [10]. For specific timestamp t, the mathematical
expression of CRPS is presented as follows:

CRPSt =

∫
(F (xt)−O(xt, yt))

2dxt (3)

where F (xt) is the cumulative distribution function (CDF) of
the forecast quantity xt at time stamp t, and O(xt, yt) is the
observed CDF, which is also a Heaviside function associated
with the forecast quantity xt and the observed value yt,

O(xt, yt) =
{ 0, xt < yt

1, xt > yt
(4)

To implement the CRPS optimization based probabilistic
solar forecasting [7], we consider four different predictive
distribution types, namely Gaussian, Gamma, Laplace, and
logistic distributions, all characterized by probability density



functions that depend on two parameters: the mean (µ) and
the standard deviation (σ), expressed as f(q|µ, σ), with ‘q’
representing the forecast quantile.

During the training process, all deterministic forecasts ob-
tained from the QMS serve as the means of the forecast
distribution. To optimize the CRPS, we employ a genetic
algorithm (GA) to find the optimal sigma, σ∗, within pre-
defined boundaries, specifically, σl ≤ σ∗ ≤ σu. After all pair
of (µ, σ∗) are generated by GA, a support vector regression
(SVR) surrogate model is utilized to learn the relationship
between these parameters. In the forecasting phase, this sur-
rogate model can estimate the predictive standard deviations
of the probabilistic forecasts based on the means, which are
essentially the deterministic forecasts provided by the QMS.

For a more in-depth exploration of the two-step forecasting
method, please refer to [7]. However, it’s important to note
that, in contrast to pre-training the probabilistic forecasting
model, this paper implements a recursive training process. In
this approach, the forecasting model continuously adapts and
fine-tunes itself as new observed data becomes available.

III. CASE STUDY

A. Data summary

In order to protect business privacy and facilitate experiment
replication, the proposed short-term solar forecasting method
is applied within a scenario that uses an alternative source for
weather data and power conversion. Specifically, we’ve uti-
lized weather data from the National Solar Radiation Database
(NSRDB). A hypothetical PV power plant located in Austin,
TX, is constructed. The hypothetical system configurations are
listed in Table I. The actual power generation data from the
years 2018 and 2019 serve as the training and testing datasets.

To construct the NWP set for our ensemble system, 20
members of surface solar radiation downwards (SSRD) pre-
dictions, which have been converted to represent GHI, are
obtained from the EPS system. Direct solar radiation (DSRP,
converted to represent DNI), wind speed at 10 meters in the
U and V directions, temperature and another set of SSRD are
from the HRES system. It’s important to note that all of these
parameters are measured at the surface level. However, the
daily issuing time of the data from EPS is 6:00 UTC, whereas
HRES data become available at 0:00 UTC, due to their distinct
operational schedules.

After converting EWP into power generation, two-year
data are available for QMS and probabilistic forecasting. The
first two months of data, ranging from 01-01-2018 to 02-
28-2018, are designated for training and fine-tuning model
hyperparameters. Subsequently, the complete two-year dataset
is employed for testing purposes. Due to the diurnal varia-
tions in solar power generation, our analysis focuses on data
recorded from 6:00 am to 8:00 pm local time. Aligning with
the mechanism of QMS, which performs forecast selection
based on the performance of the previous hour’s forecasts,
our solar forecasting methodology provides hourly forecasts.

TABLE I
HYPOTHETICAL PV SYSTEM CONFIGURATIONS

Attributes Value Unit
Longitude, latitude (30.25,-97.75) degrees
Timezone -6 hours offset from GMT
Site elevation 199 meters above see level
System capacity 1 MW
DC to AC ratio 1.1 \
Tilt angle 28 degrees
Inverter efficiency 96 %
Azimuth angle 180 degrees from the north
System losses 14 %
Array type fixed \
Ground coverage ratio 0.4 \
Constant loss adjustment 0 %

B. Hyperparameters

Following the hyperparameter tuning process, the optimal
hyperparameters for both the QMS model and the probabilistic
forecasting model are determined. It’s important to note that
both models feature a moving window, encompassing both
training and forecasting components. These training sets are
refreshed daily, with the training set length for the QMS
spanning 10 days and for the probabilistic model, it spans
9 days. Additionally, the Q-table within the QMS is updated
every 5 hours during the processing period.

Furthermore, 12 best ensemble members with the lowest
normalized Mean Absolute Error (nMAE) are selected from
the training set before enabling the QMS for each day, which
reduces the computation complexity. Other crucial hyperpa-
rameters for Q-learning are decided as follows: Ne = 300,
α = 0.5, and γ = 0.6. Following a comparative analysis of
the results during the tuning period, the Gaussian distribution
is selected as the predictive distribution for our probabilistic
forecasting model.

IV. RESULTS

To demonstrate the effectiveness of the ensemble algorithm,
we consider all results generated within the ensemble system
as a basis for deterministic forecasting comparisons. Moreover,
two essential ensemble forecasting methods are used for
comparison in the case study, i.e., the model averaging method
and the persistence ensemble method, labeled as AveEn and
PerEn, respectively. The former one outputs the average
results from the ensemble system as the ensemble forecasts,
whilst the later selects the best model, based on absolute
percentage error performance, to perform deterministic fore-
casting in the upcoming step. Besides the direct quantifying
predictive PV generation based on the complete dataset of
50 EPS ensemble members and the HRES forecasts, another
daily updated quantile regression (QR) method based on the
same 9-day training set for the proposed model is treated as
a probabilistic benchmark.

A. Deterministic solar forecasting results

Four different evaluation metrics are used to evaluate the
deterministic forecasting performance, which are nMAE, mean



absolute percentage error (MAPE), mean bias error (MBE),
and mean square error (MSE). The overall performance of
QMS and other deterministic forecasts are compared in Table
II. To maintain brevity, we showcase only the benchmark
ensemble members that exhibit the lowest or highest absolute
values of evaluation metrics. Among ensemble members, the
lowest absolute errors are highlighted in green, while the
largest in pink.

Notably, the proposed QMS forecasts excel in terms of
nMAE, MAPE, and MSE, achieving the smallest values
among the comparisons. And the HRES system in ECMWF
does prove itself with the least values in three out of four
metrics compared to other forecasting members from EPS. The
MBE value, which accumulates bias error, reflects an overall
negative bias in the ensemble system, indicating a tendency
toward overestimation. The QMS alleviates this overestimation
as decreasing the absolute MBE value. Surprisingly, none
of the comparative ensemble methods demonstrated superior
performance compared to deterministic forecasting based on
HRES weather data, except in the case of the MAPE crite-
rion, underscoring the significance of the ensemble algorithm.
It highlights that an ineffective ensemble method has the
potential to compromise the performance of an otherwise
distinguished model within the ensemble system.

The maximum improvement of the QMS deterministic
forecasts over the ensemble system is achieved under MAPE
with a value of 40.84%. The average improvements of nMAE,
MAPE, MBE, and MSE are 16.89%, 30.28%, 16.63%, and
30.04%, respectively.

Fig. 2 illustrates the deterministic PV generation forecasting
of proposed and comparative methods. Specifically, we have
selected forecasts for the periods from 2018-07-01 to 2018-07-
02 and from 2019-10-01 to 2019-10-02 to illustrate the fore-
casting performance under low and high uncertainty scenarios.
It’s important to emphasize that we use the same calculator,
SAM, for both generating forecasts and calculating the target
PV generation from the weather data. Consequently, any
disparities between the target and prediction curves primarily
arise from the weather forecasts obtained from ECMWF,
reflecting the inherent unpredictability of meteorological con-
ditions. However, even in the face of these meteorological un-
certainties, the QMS model substantially improves the overall
deterministic forecasting accuracy, as the QMS curves closely
align with the target curves, outperforming other forecasting
methods, particularly under high uncertainty situations. In Fig.
2(c), QMS model performs the best among all comparative
models from 6 am to 12 pm. After two hours missing the best
forecasting models under chaotic weather, the QMS quickly
selects the high-accuracy model back in the third hour.

B. Probabilistic solar forecasting results

Fig. 3 illustrates the probabilistic forecasts of the proposed
method, QR method, and quantified ensemble method, labeled
as Prob, QR, and ENS, respectively. For each method, two
solid lines circle out the central 90% probabilistic prediction
interval, and the darker ribbon covers the 30% prediction

TABLE II
EVALUATION METRICS OF DETERMINISTIC FORECASTS

Models nMAE MAPE[%] MBE MSE
E3 0.0925 2.04 -0.0175 0.0143
E7 0.0926 2.97 -0.0168 0.0144
E10 0.0932 2.44 -0.0182 0.0147
E12 0.0938 2.58 -0.0173 0.0149
Ehres 0.0886 2.61 -0.0143 0.0129
AveEn 0.0891 2.43 -0.0149 0.0131
PerEn 0.0923 2.20 -0.0161 0.0144

QMS 0.0770 1.76 -0.0139 0.0101
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Fig. 2. Time series of deterministic solar forecasts under low (a-b) and high (c-
d) uncertainty weather conditions. The superior performance of the proposed
method is evidenced by the enhanced alignment between QMS prediction
(depicted by red curves) and target values (illustrated by yellow curves),
surpassing that of other benchmark methods.

interval. From both Fig. 3(a) and 3(b), it becomes evident
that the benchmark forecasting, which is based on quantified
predictive PV generation from the EPS and HRES systems,
lacks the appropriate level of spread. This observation is also
observed in [5] and [11]. While the QR probabilistic fore-
casting excels in providing widespread prediction intervals, its
performance diminishes under conditions of high uncertainty,
such as during the time period between 8 - 10 am on 2019-10-
01. The proposed probabilistic method shrinks it’s prediction
interval under less uncertainty weather, while enlarges enough
interval confronting high uncertainty weather.

The probabilistic forecasting performance is validated with
the average pinball loss and CRPS metrics, as summarized in
Table III. Both criteria are evaluated across a range of quan-
tiles, spanning from 5% to 95%. While the pinball loss focuses
on the deviation of a specific quantile q within probabilistic
forecast, the CRPS takes into account the whole distribution
in a continuous manner. In both cases, superior performance
is indicated by smaller values. As demonstrated in Table III,
our proposed probabilistic forecasting method outperforms the
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Fig. 3. Time series of probabilistic solar forecasts under low (a) and high
(b) uncertainty weather conditions. For each probabilistic forecasting method,
two solid lines circle out the central 90% probabilistic prediction interval, and
the darker ribbon covers the 30% prediction interval. The blue ribbon (90%
probabilistic forecasts of the proposed method) better covers the target curve
considering the uncertainty nature of meteorology.

benchmarks under both criteria. The maximum improvement
of the proposed method over the benchmarks in terms of
pinball loss and CRPS are 47.42% and 48.42%, respectively.

A probabilistic forecasting model is deemed reliable if, and
only if, for any forecast interval between the upper and lower
quantiles, the distribution of target values falling within that
interval across the entire testing dataset precisely matches the
length of the forecast interval [12], [13]. The correlations
between the nominal proportion and the estimated coverage
are presented in Fig. 4. The reliability criterion is met when
the estimated coverage aligns with the nominal proportion,
as indicated by the dashed line in Fig. 4. The better overall
convergence of the green curve with the black dashed curve
illustrates the better reliability of the proposed method.

TABLE III
EVALUATION METRICS OF PROBABILISTIC FORECASTS

Average Pinball Loss Average CRPS
Prob 0.0227 0.0464
QR 0.0432 0.0899

ENS 0.0330 0.0528
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Fig. 4. Reliability comparison of probabilistic solar forecasts

V. CONCLUSIONS

This paper developed a method of reinforced learning
based short-term deterministic and probabilistic solar ensem-
ble forecasts. To enhance deterministic forecasts obtained from

ECMWF, a Q-learning Model Selection (QMS) method was
employed. Subsequently, a surrogate model was employed to
conduct probabilistic forecasting, optimized based on CRPS.
Numerical simulations confirm that the proposed method out-
performs the benchmark approaches. The QMS improves the
deterministic forecasting accuracy, reducing the absolute errors
of ensemble members by an average of 16.89%, 30.28%,
16.63%, and 30.04% for nMAE, MAPE, MBE, and MSE,
respectively. The success of the probabilistic forecasting is
underscored by up to 47.42% improvement in pinball loss and
48.42% improvement in CRPS compared to the benchmarks.

Future research will focus on (1) evaluating forecasting
accuracy, the length of the training set, and computational
load with different numbers of EPS members for ensemble
system construction; (2) conducting comparisons with EWP
from other operational weather prediction facilities, exploring
variations both vertically with different ensemble member
counts and horizontally with data from diverse facilities.
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