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Abstract—The integration of smart grid technologies has
brought significant advancements to power systems, yet it has also
increased its vulnerability to cyber threats. False data injection
attacks (FDIAs) pose a substantial risk to grid data integrity,
particularly in critical areas like voltage control and state esti-
mation. This study centers on leveraging the latest advancement
in topological data analysis (TDA), specifically multi-parameter
persistent homology, which has shown remarkable effectiveness
in graph representation learning in recent years. Our objective
is to utilize this approach to bolster the detection of FDIA using
data collected from voltage sensors. By integrating topological
methods, our approach aims to fortify the resilience of power
systems against cyber threats, thereby ensuring the reliability
and security of smart grid operations.

Index Terms—Distribution networks, cyber attacks, anomaly
detection, topological data analysis, multiparameter persistence

I. INTRODUCTION

The emergence of smart grid technologies has brought about

a significant transformation in the power grid, providing av-

enues to enhance the efficiency and reliability in power supply.

This evolution has been facilitated by the increased adoption

of distributed energy resources, remote-controlled devices,

and advanced monitoring and communication infrastructure

within the power network. However, despite these benefits, the

integration of smart grid technologies has also increased the

vulnerability of the power network to cyber-physical attacks

and threats.

The key security requirements for a well-functioning grid as

per the National Institute of Standards and Technology (NIST)

interoperability panel include data availability, integrity and

confidentiality [1]. Transmitting the sensitive power data over

public or private networks creates opportunities for the at-

tackers to access this information, thereby exposing sensitive

grid data. Specific areas of the power system often targeted

during cyber attacks include automatic generation control,

state estimation, load redistribution, voltage control, etc. The

attacks can range from denial of service (DoS) attacks, which

aim to delay or block the availability of critical operational

data (through methods such as channel jamming or spoofing),

to data integrity attacks which involve malicious modification

of transmitted data to compromise the stability of the grid.

In this paper, we focus on false data injection attacks

(FDIA), a type of data integrity attack known to circumvent
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traditional algorithms for bad measurement detection [2]. The

attacker exploits the vulnerablilities in the communication

system to inject false data into the voltage sensors within

the power distribution system, thus providing incorrect system

state information at the control centers. This could lead to

unwarranted voltage control actions being implemented in the

network, potentially resulting in either under or over voltage

conditions.

In recent years, there has been considerable research on

FDIA detection algorithms. The FDIA detection methods

primarily fall into two categories: traditional state estimation-

based and machine learning-based approaches [3]. The state

estimation methods employed for FDIA detection utilize vari-

ations of the conventional least-squared methods [4]. In [5],

the authors proposed a distributed state estimation method

for detecting bad data, where the power network was divided

into subsystems to perform state estimation. In such methods,

the residual error exceeding the predefined thresholds indicate

anomalies or bad data. However, manually setting the thresh-

olds can result in false FDIA alarms. It is imperative to strike a

balance between sensitivity to attacks and reliability in system

operation. Hence, adopting machine learning or data driven

methods may be suitable to minimize errors and false alarms.

The other class of methods for FDIA detection, employing

machine learning techniques, range from unsupervised learn-

ing to different variations of deep learning [6]–[8]. However,

these data-driven approaches have not considered the interde-

pendence among node variables (such as voltages, power de-

mand/generation, etc.) resulting from the underlying network

connectivity. For instance, a surge in load demand at a specific

bus (node) within the network may lead to voltage drops,

affecting neighboring network buses. However, an attack on

the voltage sensors would not yield the same behavior on

network variables, since the cause of undervoltage is external

and not intrinsic to the network. To effectively identify these

patterns, learning techniques must integrate network topology

into the detection model. This is evident in [9] where the

use of Gated Graph Neural Networks significantly improved

FDIA detection accuracy compared to alternative Euclidean

data-driven methods.

We aim to advance this by employing topological data

analytics-aided learning models that will capture the temporal

evolution of the topological signature and extract meaningful
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latent features for learning. The contributions of our paper are

as follows:

• We generate a distribution network cyber attack dataset

that is composed of FDIA scenarios for voltage magni-

tudes.

• We present a novel model to detect anomalies stemming

from FDIA on voltage sensors.

• Our approach combines the latest tools in TDA, namely

multipersistence, and various machine learning methods

to achieve enhanced detection promptly.

II. METHODOLOGY

A. Problem Formulation

In this paper, our focus is on FDIAs targeting voltage mea-

surements within distribution networks. These attacks manip-

ulate voltage magnitudes, deceiving control centers by falsely

indicating under- or over-load conditions at the buses. Table I

is formulated from [10] and it presents the different FDIAs

considered in this paper. The voltage magnitude, denoted by

V , is represented in per unit (p.u.).

TABLE I
ANOMALIES IN VOLTAGE MAGNITUDE

Anomaly Type Expression
Interruption V < 0.1

Undervoltage 0.1 ≤ V ≤ 0.9

Overvoltage 1.1 ≤ V ≤ 1.8

B. Dataset Generation

The test networks used in this paper are the IEEE 37-

and 123-bus networks. We started the data generation process

by first extracting the network’s graph structure, with the

buses represented by the graph nodes, and the branches (i.e.,

lines/transformers) represented by the edges. A scenario gen-

eration method is employed to compose the dataset, which is

summarized in Fig. 1. Varying load shapes are simulated by the

addition of a random noise signal to generate different loading

conditions for each scenario. The dataset is composed of

scenarios representing both normal operation and anomalous

conditions. The scenarios are randomly selected to represent

anomalies by inducing attacks on voltage measurements. In

each attack scenario, buses are randomly chosen within the

network, then FDIAs are added to the voltage signals acquired

from the network model simulation.

The scaling attacks are constructed following the random-

ized attack template discussed in [11]. Building on this, we

obtained:

Vt =

{
Vt for t /∈ Γa

(1 + S)× Vt for t ∈ Γa

(1)

where Vt represents the voltage magnitude in per unit at time

t, S is the scaling factor used to inject the anomaly, and

Γa includes the time steps that fall within the duration when

anomaly occurs. The start time and length of Γa are drawn

from a uniform random distribution. Also, the scaling factor

S is selected from a uniform distribution ranging from -1.0 to

0.5. The range for the scaling factor is appropriately selected to

encompass the three different anomalies stated in Section II-A.
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Fig. 1. Flow chart representing the scenario generation process used to
construct the dataset. The dataset generated considers the variations in load
patterns, attack site, type and the duration of attacks. Both normal operation
and anomalous conditions are present in the dataset.

C. Persistent Homology

Persistent Homology (PH) acts as a mathematical frame-

work for extracting hidden topological patterns within data,

utilizing techniques from algebraic topology [12].

The main idea behind PH is to extract a meaningful se-

quence of topological spaces, and record the evolution of

topological features on this sequence. In particular, for a

given graph G, we construct a nested sequence of subgraphs

G1 ⊆ . . . ⊆ GN = G. For each Gi, we define an abstract

simplicial complex Ĝi, 1 ≤ i ≤ N , resulting in a nested

sequence of simplicial complexes Ĝ1 ⊆ . . . ⊆ ĜN , which

is known as filtration. One of the most common choices for

simplicial complex is the clique complex. This filtration step

is a crucial aspect of PH as it allows for the incorporation of

domain-specific information into the PH process.

In the context of an unweighted graph G = (V, E), a

common approach involves the use of a filtering function

f : V → R alongside a set of thresholds I = {αi} where

α1 = minv∈V f(v) < α2 < . . . < αN = maxv∈V f(v). For

each αi ∈ I, let Vi = {vr ∈ V | f(vr) ≤ αi}. Define Gi

as the induced subgraph of G by Vi, i.e. Gi = (Vi, Ei) where

Ei = {ers ∈ E | vr, vs ∈ Vi}. This procedure results in a

nested sequence of subgraphs G1 ⊂ G2 ⊂ . . . ⊂ GN = G,



called the sublevel filtration induced by the filtering function

f , as shown in Fig. 2. The selection of the function f is

pivotal in this context, and often, f is derived from a significant

characteristic within the domain. In power networks, typically

the voltages measured at the different buses and the powerflow

through the branches represent the system state. Therefore,

these are considered as the filtering functions in the context of

power grids as they aid in assessing the health of the network.

Fig. 2. Single Persistence. A simplified illustration of sublevel filtration,
where node attributes determine threshold values of 5, 10, and 15. In this
context, G5 denotes the sub-simplicial complex of the graph G, consisting
of nodes with values less than 5 and the corresponding edges between them.
Similarly, G10 and G15 represent similar complexes based on nodes below
their respective threshold values.

During this construction of sub-simplicial complexes, vari-

ous topological features may arise and disappear over time. A

k-dimensional topological feature, also known as a k-hole (σ),

can represent different structures such as connected compo-

nents (0-hole), loops (1-hole), or cavities (2-hole). Persistent

homology systematically tracks the evolution of these topo-

logical patterns. When a topological feature emerges initially

in Ĝbσ and vanishes in Ĝdσ , we attribute a persistence value

of bσ − dσ to this feature. Alternatively, we can express this

feature as a tuple (bσ, dσ), which we compile in a persistence

diagram (PD), as seen in Fig. 3. Then the kth persistence
diagram is defined as

PDk(G) = {(bσ, dσ) | σ ∈ Hk(Ĝi) for bσ ≤ i < dσ}
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Fig. 3. An example of a persistence diagram (PD): in this diagram, red dots
represent the tuple (birth, death) for connected components (0 holes), while
blue dots represent the tuple (birth, death) for loops (1 holes).

Here, Hk(Ĝi) is the kth homology group of Ĝi which

keeps the information of the k-holes in the simplicial complex

Ĝi. We can also keep track of the evaluation of topological

tensor by persistent barcode. Each bar in a persistent barcode

represents a topological feature (e.g., a connected component,

loop, or void) and its persistence - how long it lasts as the

parameter changes.

The final step of PH is the vectorization process. While PH

uncovers hidden shape patterns from data in the form of PDs,

which consist of collections of points (birth times and death

times) in R2, these diagrams are not inherently suitable for

statistical and machine learning purposes. Instead, common

techniques involve faithfully representing these PDs as ker-

nels [13] or vectorizations [14]. Among the common single

persistence (SP) vectorization methods are Persistence Images,

Persistence Landscapes, Silhouettes, and various Persistence

Curves (e.g., Betti number) [14]. The betti number is focused

in this study, which describes the number of ‘holes’ of various

dimensions in the space, as seen in Fig. 4. These vectorization

methods typically transform PDs into single-variable functions

or fixed-size vectors for use in various applications.
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Fig. 4. Betti numbers represent the number of topological holes (connected
components, loops, etc.) at each threshold value.

In this work, our objective is to expand the scope of SP

vectorizations by extending them into their multidimensional

counterparts. This expansion allows us to capture changes in

the temporal dimension by treating power grids as dynamic

networks and thereby gain deeper insights through the utiliza-

tion of multipersistence approaches.

D. Multiparameter Persistence for Power Grids

Up to this point, our discussion has been focused solely

on single-parameter persistence theory. The term “single”

arises because we filter the data using only one function

or parameter. The construction of the filtration method is

crucial for detailed data analysis and capturing concealed

patterns. However, in many applications, there are multiple

natural domain functions available for analyzing the data.

Utilizing these functions simultaneously would provide a more

comprehensive understanding of the hidden patterns. With

this insight in mind, multiparameter persistence (MP) theory

emerges as a natural extension of single persistence (SP). So,

if we utilize two or more functions, we gain the ability to

examine the data in much finer detail. For instance, if we have

two functions f : V → R and g : V → R with complementary

information about the network, MP allows us to combine

the insights from both functions into a unique topological

fingerprint. These functions f and g induce a multivariate

filtering function F : V �→ R2 defined as F (v) = (f(v), g(v)).
We then define non-decreasing thresholds {αi}m1 and {βj}n1



Fig. 5. Multiparameter Persistence. For a given power network, employing MultiPersistence allows us to extract substructures (subgraphs) dictated by both
bus voltages and branch flows. The signature (e.g., β0 and β1) on each substructure induces an m × n tensor, which effectively captures the topological
changes in the bifiltration, and helps to detect the anomalies in the network.

for f and g, respectively. Using these thresholds, we define

sets Vij = {vr ∈ V | f(vr) ≤ αi, g(vr) ≤ βj}. Each Gij

represents the induced subgraph of G by Vij , capturing the

hidden patterns in the data revealed by multipersistence (See

Fig. 5). Note that the top row (or rightmost column) in the

multipersistence grid represents single persistence with respect

to the corresponding parameter. By constructing simplicial

complexes from these subgraphs, we obtain a bifiltration of

complexes {Ĝij | 1 ≤ i ≤ m, 1 ≤ j ≤ n}. Next, by computing

the homology groups of these complexes, {Hk(Gij)}, we

obtain the induced bigraded persistence module, representing

a rectangular grid of size m × n. For more details on multi-

persistence, see [15].

The core principle guiding the multipersistence method is to

extract vital descriptors from the meaningful substructures of

the graph generated by employing multiple functions simul-

taneously. In simpler terms, functions f and g facilitate the

organized decomposition of the entire graph into subgraphs,

where the topological changes in specific subgraphs provide

key signatures relevant to the downstream task. Over the

recent years, multipersistence has demonstrated considerable

efficacy in graph representation learning, surpassing numerous

conventional methods and graph neural networks (GNNs) in

various tasks [16]–[19].

Power grids, represented as the weighted (branch flow)

directed network G = (V, E ,W), offer a diverse array of

filtration functions for effectively applying TDA models. These

functions can be divided into two main categories. The first

category encompasses general functions applicable to any

graph, such as degree, betweenness, and closeness. These

functions capture fundamental graph properties and prove

particularly valuable for tasks related to graph classification.

The second category consists of domain functions, directly

derived from the dataset’s domain, in this case, power grids.

These functions, e.g., bus voltages, residual capacity, and

branch flow, offer insights tailored to the unique characteristics

and behavior of power grids.

In this study, we have employed two types of filtration

functions. The first type is filtration based on node features,

where we utilize bus voltage as the node filtration parameter.

Each observable node encompasses three voltage measure-

ments for the three phases, and thus, we considered their

average. Another filtration function we used is based on the

edge weight, (wij) as the filtration parameter. In this approach,

for sublevel filtration Gn = (Vn, En) is the subgraph generated

by the edge set En = {eij ∈ E | ωij ≤ αn}, where Gn

is the smallest subgraph in G containing the edges in En.

Consequently, Vn automatically comprises the set of endpoints

of the edges in En. Using these two filtration approaches,

we constructed an m × n nested sequence of subgraphs, as

mentioned earlier. Subsequently, we derived m×n topological

features from the power grid network.

III. SIMULATION AND RESULT ANALYSIS

A. Distribution Network Simulation

We use the open source distribution system simulator

(OpenDSS) [20] to simulate the power distribution network

state. A time-series power flow is run using the daily simula-

tion mode with a 1-hour resolution load-shape in OpenDSS. A

representative sample from the dataset demonstrating an attack

on the bus ‘799’ in the 37-bus network is shown in Figs. 7 and

8. Specifically, Fig. 7 represents the time series voltage signals

for the three phases at bus ‘799’ during normal operation for a

particular load shape. Natural voltage drops below the desired

limit of 0.9 per unit is observed on phases 2 and 3 of bus

‘799’. This is attributed to the loading condition on the 37-bus

network. Fig. 8, on the other hand, represents the three phase

voltage signals at bus ‘799’ for the same loading conditions

with FDIA. In this scenario, the scaling factor is -0.407 (Eq. 1),
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Fig. 6. Our model pipeline involves the following steps: Within a dynamic network, we generate an m× n multi-persistence tensor at each time step. Next,
we extract a topological tensor from this substructure and input it into the recurrent neural network for classification purposes.

thereby introducing an under-voltage attack for 5 hours from

the 7th to the 12th hour of operation.

Fig. 7. Voltage plot for bus ‘799’ in the 37-bus network during normal
operation for specific loading conditions. Regular non-anomalous under-
voltage values (< 0.90 p.u.) that could occur with normal system operations
are observed.

Fig. 8. Voltage plot for bus ‘799’ in the 37-bus network for the same loading
conditions as in Fig. 7 with FDIA. An under-voltage attack has been injected
for 5 hours starting from the 7th hour of the operation.

B. Experimental Setup

We conducted our experiments on a machine equipped with

the Apple M2 chip, which includes an 8-core CPU, a 10-core

GPU, and a 6-core Neural Engine, along with 16GB of RAM.

Our code is implemented in Python version 3.11.4. We present

the outcomes derived from single persistence, employing bus

voltage data, alongside multi-persistence, integrating node

voltage and branch flow information. For single persistence,

we employed 18 threshold values for voltage to construct sub-

graph complexes. Additionally, for multi-persistence analysis,

we incorporated 8 dimension thresholds for branch flow. For

computing the number of kth homology groups for each sub-

simplicial complex, we utilized the Pyflagser package.

Given the network’s nature, we concentrated solely on

the 0th homology group, denoted as β0, which signifies

the number of connected components in the sub-simplicial

complexes. Each time series is labeled as either 1 (indicating

an anomaly at some time step) or 0 (indicating no anomaly).

Therefore, we treat the anomaly detection as a binary time

series classification task. We use the extracted topological

features as input for machine learning classifiers, specifi-

cally XGBoost, RandomForest (RF), Multi-Layer Perceptron

(MLP), and Long Short-Term Memory (LSTM) based Recur-

rent Neural Networks (RNNs). For each sample, we possess

24 sets of data spanning 24 time steps, resulting in 24 18-

dimensional topological tensor for single persistence and 24

18×8 dimensional tensor in multi-persistence. In our machine

learning model, we perform element-wise addition of all these

24 vectors to serve as input. In the case of the LSTM model,

the vector corresponding to each time step is utilized as input.

Both XGBoost and RF classifier are trained with 100 boost-

ing strategies, a learning rate set to 0.1, and a maximum tree

depth of 10 to avoid overfitting. For the MLP, we optimize it

using the ‘adam’ optimizer with a sigmoid activation function

and set a maximum of 1000 iterations. We optimize the LSTM

model using the ‘adam’ optimizer, employing a tanh activation

function for the main layer and a sigmoid activation function

for the recurrent connections. The pipeline of our model is

shown in Fig. 6.

To evaluate performance and address overfitting concerns,

we report the average score and standard deviation from a

10-fold cross-validation. In the 10-fold cross-validation, the

dataset is divided into 10 equal parts or folds. The model is

trained and evaluated 10 times, each time using a different fold

as the validation set and the remaining 9 folds as the training

set. This allows us to assess the effectiveness and versatility

of these topological features with different machine learning

models. Our code is accessible here1.

C. Results

The results presented in Table II demonstrate that our TDA

augmented learning model achieves good performance on

both the IEEE 37-bus and IEEE 123-bus datasets. A major

1https://anonymous.4open.science/r/Cyber Attack-1735/README.md



TABLE II
PERFORMANCE EVALUATION: CLASSIFICATION ACCURACY (%) AND

STANDARD DEVIATION OF DIFFERENT METHODS

Dataset ML Model Single Persistence MultiPersistence

IEEE 37-bus

XGBoost 84.00±6.67 86.67±6.08
MLP 83.20±4.73 86.67±3.51

RandomForest 84.10±4.18 86.00±4.66
LSTM 79.39±8.11 88.66±5.02

IEEE 123-bus

XGBoost 84.80±5.18 91.00±5.68
MLP 83.00±4.02 92.00±4.76

RandomForest 84.40±3.62 89.66±4.57
LSTM 80.39±4.97 91.66±5.40

challenge here is to consider the time evolution of the voltage

signal and convert the anomaly indicator attributed to a time

series signal to a label at each time step. By extracting the

topological tensor of the network at each time step, we can

create a suitable input vector for each time series for a machine

learning model. This approach proves the effectiveness of

topological features in the context of power grid analysis.

In our model, we employed both the traditional method in

TDA, single persistence, and the latest and improved version

of it, multipersistence, to extract the topological signatures

for cyber attack detection in power grids. We observe that

multi-persistence approach is able to extract finer topological

features from the network, leading to significantly superior

performance compared to using single persistence.

In particular, our model employing multi-persistence

demonstrates substantial improvements, achieving an average

gain of 4% for the IEEE 37-bus network, and 8% for the IEEE

123-bus network, using various machine learning classifiers.

This highlights the effectiveness of multi-persistence in the

context of power distribution threat analytics.

IV. CONCLUSION AND FUTURE WORK

In this paper, we introduced a novel approach for detecting

anomalies caused by cyber attacks targeting voltage sensors

within power distribution networks. We focused on false data

injection attacks, where attackers manipulate voltage measure-

ments to deceive operators by fabricating under or overvolt-

age conditions at network buses. A learning-based approach

has been developed for anomaly detection incorporating the

latest topological data analysis methods to extract evolving

topological signatures over time. The proposed model has

been validated on the IEEE 37-bus and 123-bus networks,

where single and multi-parameter persistence using voltage

and branch-flow data yields significant results.

The future scope of this work involves leveraging the de-

veloped framework, which integrates persistent homology and

deep learning frameworks, to detect increasingly sophisticated

attacks, including those targeting distributed energy resources

and voltage regulators.
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