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Abstract. While preventive maintenance is crucial in wind turbine operation, conventional
condition monitoring systems face limitations in terms of cost and complexity when compared to
innovative signal processing techniques and artificial intelligence. In this paper, a cascading deep
learning framework is proposed for the monitoring of generator winding conditions, specifically
to promptly detect and identify inter-turn short circuit faults and estimate their severity in real
time. This framework encompasses the processing of high-resolution current signal samples,
coupled with the extraction of current signal features in both time and frequency domains,
achieved through discrete wavelet transform. By leveraging long short-term memory recurrent
neural networks, our aim is to establish a cost-efficient and reliable condition monitoring system
for wind turbine generators. Numeral experiments show an over 97% accuracy for fault diagnosis
and severity estimation. More specifically, with the intrinsic feature provided by wavelet
transform, the faults can be 100% identified by the diagnosis model.

1. Introduction
Effective condition monitoring of wind turbines (WTs) is one of the most important tasks
to ensure their reliable operation, energy production optimization, and minimization of
maintenance expenses [1–4]. Traditional methods like direct sensing or periodic inspections,
while valuable, confront limitations in cost and efficacy. Recent advancements in signal
processing and artificial intelligence (AI) offer exciting possibilities for comprehensive fault
detection across all stages of WT systems.

1.1. Literature Review
A comprehensive WT system comprises several mechanical and electrical subsystems, each
playing a crucial role in the power conversion process. The workflow typically involves a rotor
hub, rotor blades, and a yaw system to harness kinetic energy from the wind. This energy is
then transmitted through a low-speed shaft, gearbox, and high-speed shaft, converting kinetic
power to mechanical power, speeding up rotation, and reducing torque [2; 5]. The mechanical
system, illustrated in Fig. 1, encompasses these subsystems. As a key component in both
mechanical and electrical systems, the generator converts mechanical power to electrical power.
The electrical system further includes a power converter and transformer to step up voltage



before integrating into the electrical network. Auxiliary subsystems include a tower providing
support for the overall electrical and mechanical systems, a nacelle housing internal equipment
atop the tower and behind the yaw, a brake for rotor maintenance or curtailment occasions,
and a Supervisory Control and Data Acquisition (SCADA) system for data collection and wind
turbine control [2].
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Figure 1: Overall framework of the proposed machine learning-enabled condition monitoring

Dao et al. [6] have conducted a comprehensive analysis covering more than 18,500 WTs and
approximately 93,000 operating years onshore and offshore across Europe, Asia, and America.
The findings indicate that generators and gearboxes emerge as the most critical subsystems, both
onshore and offshore, in terms of downtime. The report further reveals that generators rank
second for the longest onshore downtime and offshore repair time per failure. Unfortunately,
onshore repair time and offshore downtime data were not collected in the report. Consequently,
effective condition monitoring of generators in wind turbines becomes imperative to mitigate
downtime, reduce operation and maintenance (O&M) costs, and accordingly enhance overall
profitability.

Addressing this need, Jin et al. [7] leverage SCADA data for detecting and identifying
abnormalities in WT generators. The methodology involves constructing a healthy model
in Mahalanobis space (MS) during the training stage. In the online monitoring stage, the
Mahalanobis distance (MD) of new SCADA signals is calculated, and an abnormality alarm
is triggered if it surpasses a threshold value determined through Johnson transformation and
inversion of the healthy system. Abnormalities are then isolated through distribution and
correlation analysis of signal features. The effectiveness of this approach is validated through two
case studies, affirming its efficacy in wind turbine generator fault prognosis and identification.

Attallah et al. [8] identify 11 WT generator operating conditions at no load, including
a healthy mode, a stuck rotor fault, a cooling fan failure, and 8 inter-turn short circuit
faults (ITSCFs) characterized by varying short-circuit percentages and faulty phases in
the stator winding. Leveraging thermal infrared (IR) images, the classification accuracy
experiences improvement through progressive enhancements in the classifier methodology.
Initially employing a single convolutional neural network (CNN), the classifier’s accuracy is
further elevated by combining results from three CNNs with discrete wavelet transform (DWT)
before classification, and introducing principle component analysis (PCA) between DWF and
the classifier.

1.2. Research Objectives
This paper introduces a cascading deep learning framework, grounded in signal processing,
designed for the diagnosis of ITSCFs and the estimation of severity in the context of wind turbine
Double-Fed Induction Generator (DFIG) systems. Such framework is built on top of our prior
studies on complex systems monitoring and fault detection [9–12]. Initially, 16 operating modes



of WT DFIG are identified and simulated using MATLAB. Each stator winding short-circuit
scenario, in addition to a healthy mode, includes five instances with decreasing short circuit
resistance, totaling to 16 scenarios to mimic winding insulation degradation (1 + 3 × 5 = 16).
High-resolution and high-frequency three-phase generator current signals are recorded, and deep
features are extracted through DWT. The cascading approach employs similar Long Short-Term
Memory (LSTM) Recurrent Neural Networks (RNNs) for fault detection and severity estimation,
thereby enhancing the overall diagnostic capability.

Figure 1 provides an overview of our proposed approach. The primary objective is to
continuously monitor the generator stator winding in the WT system for promptly identifying
any anomalies in real time. The key contributions of this paper are summarized as follows:

• The effective definition and simulation of multiple inter-turn insulation degradation
scenarios using MATLAB/Simulink.

• The detection and identification of ITSCFs with high accuracy and robustness using the
proposed cascading deep learning framework.

• Real-time estimation of insulation degradation severity to ensure reliable WT operation
and optimize energy production.

The rest of the paper is organized as follows. The problem formulation and simulation are
described in Section 2. The proposed condition monitoring system with a cascading framework is
introduced in Section 3. Section 4 presents the numerical experiments and their results, followed
by conclusion and future work in Section 5.

2. Problem Formulation
The degradation of winding insulation is the primary trigger for ITSCFs. While incipient ITSCF
remain undetected, it can develop into more severe phase-to-phase and phase-to-ground faults
[13]. In this section, a WT example in MATLAB\Simulink is leveraged to simulate ITSCF under
various scenarios of winding insulation degradation.

2.1. Wind Turbine System
For our investigation, we utilize a 1.5 MW MATLAB/Simulink WT example sourced from The
MathWorks, Inc. [14]. This example encompasses both mechanical and electrical domains,
providing a comprehensive framework to delineate various operating scenarios. The model
comprises rotor blades in 35.25 m radius, a gearbox model featuring a one-stage planetary
and two-stage helical gear arrangement, a lumped star-connected DFIG subsystem, a 1.8 MW
transformer model, and a grid model. The default wind profile is leveraged in this research, and
the wind speed V is defined by Eq. (1), where t is the simulated time in second, and wind speed
in m/s.

V =

 15 t < 45
t− 30 45 ≤ t < 52
22 t ≤ 80

(1)

In the WT model, four operating modes, i.e. startup, generating, pitch brake, and park brake
modes, are determined based on prevailing wind and turbine speed conditions by the controller
module. Rather than the steady working condition, the simulation includes all four modes to
capture the generator’s variant conditions while implemented in WT. The detailed information
about the modeling, operating states, and power generation can be found in [14].



2.2. Inter-turn Short Circuit Fault (ITSCF) Scenarios
The stator winding of the generator is modeled based on the equivalent impedance of the
generator. The ITSCF is simulated through dividing a healthy winding (0.0027 Ω) into both
healthy (80%) and faulty (20%) segments. A short-circuit bypath is incorporated into the faulty
winding. ITSCF severity is ranked on the faulty winding ratio, from 0% (healthy condition) to
40% in [15], and to 62.5% in [16]. In this paper, however, we consider the nature of insulation
material degradation, and define the short circuit resistance as the degradation indicator. Similar
research can be found in [17; 18]. While healthy winding means such bypath has infinite
resistance, a series of decreasing resistance, RS ∈ {1, 0.1, 0.01, 0.001, 0.0001}(Ω), simulate the
insulation degradating evolution. Figure 2 shows the WT generator stator winding with healthy
and faulty winding. The introduction of a short-circuit bypath distinguishes the faulty condition
from normal operation, and the placement of this bypath gives rise to distinct ITSCFs in different
phases.
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ɸb

ɸc
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Wind Turbine Generator Generator Windings

Figure 2: ITSCF condition in the stator of a WT generator

From a simulation point of view, the stator winding insulation degradation can be modeled
by an ITSCF inside the stator. Even though the powerful simulation model can provide us
infinite dataset, the real-world unbalanced healthy and faulty operating data structure available
to train the condition monitoring model is considered at this stage. To achieve so, the faulty
operation duration is kept short in a cycle, mimicking the sparse dataset we can obtain from
wind farm to train the condition monitoring model, which doesn’t mean that we analyze the
short duration short circuit situation. Therefore, all faults are intentionally triggered between
29.5 and 30 seconds within an 80-second simulation in the case study. Such time information
will not input into the condition monitoring system.

Figure 3 shows the generator phase A current with different ITSCFs happen at 29.5-30 seconds
in a cycle of WT operation. The generator is enabled to generate power only in generating and
pitch brake modes. The pitch brakes due to the turbine rotor speed is higher than the limited
speed and the generated current soaring abnormally, that prevents mechanical and electrical
failure. The current variance according to the variant kinetic power obtained by the rotor is kept
while analysing the ITSCF characteristic of the induction generator in WT. Five different short
circuit resistors simulate the severeness of the short circuit, i.e., the stator winding insulation
degradation level. When the insulation degradation is severe, the short circuit resistor is lower
and consequently the current has a bigger jump, as illustrated in Fig. 3. Fig. 3 further shows
that as the winding insulation degradation intensifies, indicated by lower short circuit resistance,
the faulty phase current exhibits a corresponding increase.

Figure 4 shows the impact of ITSCF on the three-phase currents in the generator. The
differentiation of three-phase current under short circuit resistance R = 0.0001Ω situation
illustrates the asymmetric phase current phenomena caused by ITSCFs. And the zoom-in
box in Fig. 4 (b) again presents the three-phase current jump in ITCSF condition. The
condition monitoring system’s diagnosis model will not only tell us if the WT generator is
normally operating or not, but also classify which phase is at fault. While the current rises are
notably discernible compared to normal operation under similar conditions, distinguishing these



variations becomes challenging when compared to other operational scenarios. Since even in the
severest situation of the case study, the short current is still lower than the maximum current
in the pitch brake mode. And therefore, the proposed deep learning framework is developed to
distinguish whether the current soaring up is due to the short circuit fault or other operating
conditions, like under the high wind speed environment.
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Figure 3: (a) Phase A current comparison on different phase A winding short circuit resistance;
(b) zoom-in figure of (a)
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Figure 4: (a) Three-phase current comparison on healthy condition and phase A ITSCF
condition; (b) zoom-in figure of (a)

3. Cascading Condition Monitoring Framework
Figure 5 illustrates the proposed cascading condition monitoring framework, consisted of four
main components: data sampling, signal analysis, fault diagnosis, and severity estimation.
Following the recording of three-phase current signals, we employ a DWT to extract both
time and frequency domain features. Simultaneously, a fault diagnosis model is deployed to
detect and isolate ITSCFs. Furthermore, for each winding in every phase, three distinct severity
estimation models are meticulously trained.

3.1. Signal Analysis
Both the Short-Term Fourier Transform (STFT) and wavelet transform are prominent signal
processing techniques for extracting frequency features from time series data, with the objective
of preserving crucial time domain information. Notably, the wavelet transform is esteemed for
its superior time-frequency localization capability, as acknowledged in the literature [19].

In contrast to sine waves characterized by infinite energy, a wavelet concentrates energy
at a point and oscillates out rapidly. For any signal function f(n) residing in the Hilbert
space L2(R), it can be dissected through the linear combination of two series. The first series
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Figure 5: The overall framework of cascading condition monitoring

comprises orthonormal wavelet functions denoted as ψ ∈ L2(R), while the second series involves
orthonormal scaling functions represented by ϕ ∈ L2(R), as illustrated in Eq. (2).

f(n) =
∑
k∈Z

aj0,kϕj0,k(n) +
∑
j∈Z
j≥j0

∑
k

dj,kψj,k(n) (2)

where j0 is the level of decomposition. aj0,k and dj,k are approximation and detail coefficients.
Due to the orthonormal characteristic of wavelet and scaling functions, they can be derived
through the inner product of the signal function f(n) and their respective bases:

aj0,k = ⟨f(n), ϕj0,k(n)⟩ (3)

dj,k = ⟨f(n), ψj,k(n)⟩ (4)

Consequently, the time and frequency features are extracted by those coefficients, with
carefully selected wavelet and scale functions. The decomposition in Eq. (2) effectively captures
the high frequency through the wavelet function and keeps the time resolution through the
scaling function.

3.2. Long Short-Term Memory Networks
Operating as a dynamic neural network, RNNs have the capability to capture both spatial and
temporal patterns from input data through a feedback mechanism within the neuron structure
[20]. In contrast, Long Short-Term Memory (LSTM) networks specifically address the gradient
vanishing problem inherent in traditional gradient-based RNNs. To mitigate this issue, the
LSTM model introduces two additional gates – the forget gate and the output gate. The
mathematical formulations of the LSTM structure are described as follows.

ft = σ(Wf · [ht−1, xt] + bf ) (5)

it = σ(Wi · [ht−1, xt] + bi) (6)

Ot = σ(Wo · [ht−1, xt] + bo) (7)

where xt is the input vector, ht−1 is the output of the previous block, ft, it, and Ot represent the
forget gate, input gate, and output gate at timestamp t, respectively. The W, b pair functions as
the weight and bias parameters for each gate, while σ assumes the role of the “sigmoid” function.
Equation (5) determines whether to retain or discard the vector for this cell, encapsulating the
decision-making process. Simultaneously, Eq. (6) represents the new input vector. Lastly, the
output gate in Eq. (7) contributes to the activation of the cell’s output.

C̃t = tanh(Wc · [ht−1, xt] + bc) (8)



Ct = ft × Ct−1 + it × C̃t (9)

where C̃t is the output candidate of the cell, Ct and Ct−1 are the memory from the current and
previous cell, respectively.

ht = Ot × tanh(Ct) (10)

where ht is the output of the current cell at timestamp t.

4. Experimental Results
After collecting current signals from 15 different faulty scenario simulations, only each 0.5-second
faulty condition period is captured as faulty condition. The transient state of the current,
which can be observed at the beginning of the short circuit situation, is maintained in the case
study. This is because in real cases, the short circuit can happen in a sudden resulting from
the manufacturing defect like void in the insulation material. This incipient period is kept to
guarantee the quick response capability of the condition monitoring system. Such transient state
gradually diminishes and the steady state remains, together with the generator’ response, which
fluctuates in accordance with the turbine rotor speed, exhibiting both transient and steady state
behaviors. The relative steady state with respect to short circuit current can also reflect the
situation when the insulation degradation is slowly propagated. A whole 80-second simulation
under normal operation is obtained for healthy dataset.

Based on the electrical characteristics depicted in Fig. 3, we establish three severity ranks
for ITSCFs:

• Mild Class: A notification is triggered when Rs ≥ 0.1Ω.

• Medium Class: A flag is raised when 0.1Ω > Rs > 0.001Ω.

• Severe Class: The WT should be shut down immediately when Rs ≤ 0.001Ω.

4.1. Computational Setup and Hyper-parameters
The experimental results are obtained from a computer equipped with an AMD Ryzen
Threadripper Pro 5995WX featuring 64 cores and 128 CPUs, complemented by 512 GiB of
RAM. All simulations and feature extraction processes are carried out using MATLAB version
2022a, while the implementation of deep learning models utilizes TensorFlow in version 2.15.0.

The Discrete Meyer wavelet function is employed for the implementation of the DWT in data
processing. All deep learning models are designed with four layers and trained using the Adam
optimizer and categorical cross-entropy loss function. Following iterative experimentation, the
fault diagnosis model is configured with layers having 24, 48, 48, and 24 units, respectively. In
contrast, the severity estimation models have layers with 24, 48, 24, and 12 units, respectively.
To mitigate overfitting, 1/10 of the units in each layer are randomly dropped out during the
training period. The fault diagnosis model undergoes 15 epochs with a batch size of 256, while
the three severity estimation models undergo 30 epochs with a batch size of 512 each.

The input features of both diagnosis and prognosis models are the same: three phase current
data and the first level approximation coefficient of each phase current after DWT, totally 6
input parameters. Every input includes preceding 50 time step signals for the LSTM model.

The division of training and testing sets is performed randomly in an 80:20 ratio. For diagnosis
model, the training data for different classification, i.e. healthy, phase A fault, phase B fault,
and phase C fault, are highly unbalanced. The ratio of healthy and single-phase fault period
is 80/(0.5 ∗ 5) = 32 in the case study. Therefore, the dataset in faulty situation is randomly
resampled in all classes to eventually have the same number of data points under different classes
to train the model. A similar resampling process is implemented to the training set for prognosis
models, but not for the testing set.



4.2. Results and Discussion
Both the fault diagnosis and severity estimation problems are treated as classification tasks.
Since the naturally imbalanced data is maintained during the testing period, to ensure the
evaluation of performance in underrepresented scenarios, such as the faulty condition in fault
diagnosis and the medium severity condition in severity estimation, the averaged metrics are
leveraged, which average the performance with respect to each detecting class as the overall
metric value of the classifier. Four key metrics are evaluated in this study: averaged accuracy,
averaged precision, averaged recall, and averaged F-measure. The calculation of these metrics
can be found in [21].

To verified the necessity of DWT, comparative experiments with and without DWT coefficient
input into the diagnosis model are conducted. The confusion matrices depicting fault diagnosis
and insulation degradation severity estimation for the proposed method are illustrated in Fig. 6
and Fig. 7, where the number of samples in each class is scaled to 100 for the illustration purpose.
Table 1 provides an overview of the evaluation metrics derived from these confusion matrices.
A metric value closer to 100% indicates superior classification performance of the model. The
comparison of diagnosis model with and without DWT input shows that the final gap between
high accuracy of fault diagnosis and perfect can be bridged with the frequency information
extracted by wavelet transform. The proposed method exhibits exceptional capability in ITSCF
severity estimation, with all metric values surpassing 97%. While the overall accuracy for severity
estimation is 97.39%, the proposed framework achieves an accuracy of 97.39%, as detailed in
Table 1.
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Figure 6: Confusion matrices of fault diagnosis with and without DWT
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Table 1: Evaluation metrics (%) for fault diagnosis and severity estimation performance

Model Accuracy Precision Sensitivity F1-score
Fault diagnosis with wavelet transform 100 100 100 100

Fault diagnosis without wavelet transform 99.79 99.83 99.79 99.81
Phase A severity estimation 99.26 98.51 99.26 98.87
Phase B severity estimation 97.39 97.20 97.39 97.28
Phase C severity estimation 97.98 98.60 97.98 98.27

Overall performance 97.39 97.20 97.39 97.28

It is essential to highlight that the fault diagnosis model not only detects anomalies but also
identifies the specific phase where the anomaly occurs, encompassing various severity situations.
The discernment of current variations under diverse operating conditions and ITSCF is achieved
through the feature extraction facilitated by DWT and the implementation of LSTM.

5. Conclusion
In this paper, a novel, cost-effective, and highly reliable condition monitoring system for WT
generator is proposed. This system uniquely harnesses high-resolution current signals directly
sourced from the WT’s operations. Initially, these real-time signals undergo a DWT, extracting
intricate time and frequency features. This approach excels at pinpointing distinctive signatures
within the signals, thus enabling the identification of a wide spectrum of potential issues
encompassing malfunctions, abnormalities, and defects. Subsequently, four LSTM models are
deployed to interpret these extracted features, spearheading the essential tasks of fault diagnosis,
predictive maintenance, and reliable operation. These models possess exceptional capabilities
not only for identifying ITSCFs but also for severity estimation. The development and training
of the proposed deep learning framework rely on physics-based simulations. As the system
refines its predictions against known outcomes, it sharpens its diagnostic abilities, distinguishing
between normal and faulty states while extrapolating potential future deviations.

Potential future work will explore (i) more faulty scenarios in generators such as different
faulty winding percentages and the faulty propagation to phase-to-phase and phase-to-ground
faults, (ii) remaining life estimation on WT generator, and (iii) the application of this condition
monitoring methodology to transformers.
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