
Received 27 May 2022; revised 17 September 2022; accepted 3 October 2022. Date of publication 28 October 2022;
date of current version 29 December 2022.

Digital Object Identifier 10.1109/OAJPE.2022.3217909

How Can Probabilistic Solar Power Forecasts
Be Used to Lower Costs and Improve

Reliability in Power Spot Markets? A Review
and Application to Flexiramp Requirements

BENJAMIN F. HOBBS 1 (Life Fellow, IEEE), VENKAT KRISHNAN2 (Member, IEEE),
JIE ZHANG 3 (Senior Member, IEEE), HENDRIK F. HAMANN4 (Senior Member, IEEE),

CARLO SIEBENSCHUH4 (Student Member, IEEE), RUI ZHANG4,
BINGHUI LI 3 (Member, IEEE), LI HE 3 (Member, IEEE), PAUL EDWARDS2,

HAIKU SKY2, IBRAHIM KRAD2 (Member, IEEE), EVANGELIA SPYROU 2 (Member, IEEE),
XIN FANG 2 (Senior Member, IEEE), YIJIAO WANG1, Q. XU1,

AND SHU ZHANG1 (Member, IEEE)
1Robert O’Connor Sustainable Energy Institute, Johns Hopkins University, Baltimore, MD 21218 USA

2National Renewable Energy Laboratory, Golden, CO 80401 USA
3Department of Mechanical Engineering, University of Texas at Dallas, Richardson, TX 75080 USA

4IBM Thomas J. Watson Center, Yorktown Heights, NY 10598 USA

CORRESPONDING AUTHOR: B. F. HOBBS (bhobbs@jhu.edu)

This work was supported by the U.S. Department of Energy’s Office of Energy Efficiency and Renewable Energy under Solar Forecasting II
DE-FOA-0001649, Topic Area 3: Power Forecasts and Operational Integration, under Agreement EE0008215.

ABSTRACT Net load uncertainty in electricity spot markets is rapidly growing. There are five general
approaches by which system operators and market participants can use probabilistic forecasts of wind, solar,
and load to help manage this uncertainty. These include operator situation awareness, resource risk hedging,
reserves procurement, definition of contingencies, and explicit stochastic optimization. We review these
approaches, and then provide a case study in which a method for using probabilistic solar forecasts to define
needs for reserves is developed and evaluated. The case study has three parts. First, we describe building
blocks for enhancing the Watt-Sun solar forecasting system to produce probabilistic irradiance and power
forecasts. Second, relationships between Watt-Sun forecasts for multiple sites in California and the system’s
need for flexible ramp capability (flexiramp) are defined by machine learning and statistical methods. Third,
the performance of present methods to defining flexiramp requirements, which are not conditioned onweather
and renewables forecasts, is compared with that of probabilistic solar forecast-based requirements, using
a multi-timescale production costing model with an 1820-bus representation of the WECC power system.
Significant potential savings in fuel and flexiramp procurement costs from using solar-informed reserve
requirements are found.

INDEX TERMS Power markets, probabilistic solar forecasts, renewable energy, operating reserves,
California, flexiramp.

I. INTRODUCTION

MANY jurisdictions have adopted goals of largely or
completely decarbonizing the power sector by the

2030 to 2050 time frame [27]. Electrification based on renew-
ables will play a major role in meeting these goals.

As we pursue this clean energy transformation, how
can probabilistic resource and load forecasts help to cost-
effectively integrate renewables [43]? To address this ques-
tion, we first provide a focused survey of ways which such
forecasts can inform decisions by operators and market
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FIGURE 1. Two hour-ahead probabilistic forecasts of solar
irradiance for two days for los angeles, CA from the IBM
probabilistic Watt-Sun forecasting system. (Image courtesy of
IBM. Reproduced with permission from [22].)

participants, and then describe a specific application to
dynamic reserve procurement.

Fig. 1 illustrates an example of probabilistic forecasts,
giving selected quantiles for a 2-hour ahead solar irradiance
forecast. These forecasts are in the form of marginal proba-
bility distributions for particular points in time; alternatively,
they can consist of collections of possible scenarios of rele-
vant variables. Such characterizations of uncertainty have the
potential to support the following five operations and market
activities:
• Situational awareness by control room operators and

energy management systems.
• Risk characterization for individual renewable

resources and load serving entities, who can use that
information to adjust spot market positions and choose
hedges.

• Procurement of operating reserves of various types
(e.g., regulation, spinning reserves, replacement
reserves, and flexible ramp product, which we call
FRP or ‘‘flexiramp’’ for brevity), along with defini-
tion of demand curves for those reserves that reflect,
for instance, the likelihood of load balance constraint
violations and their consequences.

• Economic scheduling of energy resources consider-
ing the possible time evolution of net load contingen-
cies representing deviations from forecasts, in order to
endogenously choose where and how much reserves to
procure.

• Stochastic programming-based resource scheduling
considering possible net loads and their probabilities.

All but the last activity (stochastic programming) are, to vary-
ing extents, a part of existing scheduling processes used
by North American independent system operators (ISOs).
Additionally, it is anticipated that the U.S. DOE ARPA-E
PERFORM initiative [25] will stimulate development of
additional approaches to manage risk using probabilistic
forecasts.

In this paper, we first review how probabilistic forecasts
can assist the above five classes of uncertainty manage-
ment activities in spot markets. Previous reviews (e.g., [36],
[60]) have examined the many ways in which probabilistic
forecasts can inform operations, without providing details

on particular applications. In contrast, our review succinctly
focuses on the present and potential roles of probabilistic
forecasts in reserve determination and hedging, followed by
an in-depth case study. This case describes how an enhanced
probabilistic solar forecast system can be dynamically linked
to reserve needs, and how the system benefits of this linkage
can be quantified.

The particular application is the dynamic procurement of
flexiramp, a new type of operating reserve. Traditionally,
operating reserve requirements have been based on deter-
ministic load and variable renewable forecasts augmented
by a statistical analysis of historical net load variability and
forecast uncertainty, area control error, and other stochastic
variables [26]. These practical methods do not account for
how the uncertainty that a system actually faces can vary
daily or even hourly based on weather. Our case study shows
how probabilistic forecasts can plug this key information gap
by providing risk indices that help operators reduce reserve
procurement costs when uncertainty is low, while alerting
them to situations in which more reserves are needed to
maintain system reliability [12].

More specifically, our case study addresses the potential
use of probabilistic solar forecasts to define requirements for
the California ISO’s (CAISO’s) flexible ramp product. First,
we enhance an existing solar forecasting system to provide
well-calibrated 2 hr-ahead probabilistic forecasts. We then
relate the degree of uncertainty in those forecasts to error
distributions for net load ramps for the CAISO using statisti-
cal and machine learning methods. Distributions of net load
errors conditioned on solar uncertainty are translated into
flexiramp requirements that consequently reflect ‘‘day-of’’
meteorological and solar conditions, improving on typical
ISO procedures. Focusing on flexiramp, we then use a multi-
settlement production simulation model to quantify how
conditional ramp requirements can improve operations by
(1) decreasing operating costs by reducing requirements,
compared to often conservative unconditional methods, while
also (2) reducing the likelihood of supply scarcity by increas-
ing flexiramp procurement at times when unconditional
requirements understate actual ramp uncertainty and the need
for flexibility.

Next, in Section II, we elaborate on the above five classes
of market applications of probabilistic forecasts, emphasiz-
ing the definition of reserve requirements. Section III then
describes our potential application to flexiramp procurement
in the CAISO and its potential benefits. Section IV offers
conclusions.

II. POSSIBLE APPLICATIONS OF PROBABILISTIC
SOLAR FORECASTS IN POWER MARKETS
Here we review five general uncertainty management activi-
ties in spot power markets that can benefit from incorporation
of probabilistic forecasts. We point out several existing and
potential frameworks for taking advantage of such forecasts,
focusing on acquisition of reserves and market hedging
needs. Our review is intended to provide a brief but focused
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FIGURE 2. Decision tree representation of alternative spot
market processes, from deterministic energy scheduling to full
stochastic programming. See text.

overview of these particular uses rather than exhaustively
survey the literature on probabilistic forecasts and potential
uses. Broader discussions of applications are provided in [24],
[36], [60], and [63].

As a framework for this discussion, Fig. 2 presents
schematics of scheduling decision processes in spot mar-
kets. These range from simple energy scheduling against a
deterministic forecast to full stochastic programming (see
also [14]). Time proceeds from left to right; squares are
decision nodes (generator commitment and dispatch), while
circles are chance nodes that indicate that more than one
scenario of net load can occur. Blue lines represent energy
schedules, while red represents operating reserve schedules.
Solid lines extending from a chance node indicate that subse-
quent costs are weighted by each scenario’s probability in the
model’s objective function, while dashed lines imply that the
model just considers feasibility and not costs of the schedule
under that contingency scenario.

For instance, in Fig. 2(a), ISO scheduling decisions in day-
ahead and real-time markets are simplistically represented as
a sequence of decisions (one set of decisions per market inter-
val) that schedule supply offers against either bid-in demand
or a single deterministic forecast of net load at each bus in
the network. There are no uncertainties or contingencies in
that relatively simple process. At the other extreme, Fig. 2(e)
schedules near-term generation while accounting for possible
scenarios of net load that occur later, and how the system
would subsequently adjust dispatch and commitment to adapt
to each.

A. IMPROVING SITUATIONAL AWARENESS
IN THE CONTROL ROOM [24]
Operators who are running market software to schedule
energy and reserves against a deterministic net load (as in

Fig. 2(a)) of coursemust still recognize net load uncertainties.
One way they do so is by maintaining a keen awareness of
system developments over the day, so that they can manu-
ally adjust resource schedules to meet unexpected net load
changes.

Control centers typically host several screens for visualiz-
ing network situational awareness, such as switch status and
available reserves. Information is displayed about possible
high-impact contingencies, as well as their effect on transmis-
sion line overloads, and, in some cases, voltage and transient
stability [41]. The idea of situational awareness in the form
of real-time visualization, event alerts, and plausible control
locations/parameters is not new; however, enhancements to
include probabilistic forecasts of variable renewable gener-
ation are desirable as renewable penetration and associated
uncertainties grow.

With increasing uncertainty and emergent dynamic events,
the awareness that is conventionally reported at aggregated
levels is insufficient. Additional capabilities are needed,
including:

• Innovative ways to integrate renewable forecast data—
including higher spatial resolutions and distributed
resources.

• Probabilistic forecast data integration that quantifies
renewable resource uncertainties, which will be key
to operator assessments of risk associated with system
dispatch.

• Timely alerts to excessive ramping events for net load.

Fig. 3 shows an example display of such information from
an open-source tool RAVIS (Resource Forecast and Ramp
Visualization for Situational Awareness) [18], which we
developed as part of the project described in Section III.
RAVIS is intended to help forecast vendors and operators
(such as utilities, ISOs, and balancing authorities) to integrate
probabilistic and other advanced forecasts for variable renew-
ables into their operations, and thereby develop situational
awareness and timely mitigation strategies. A challenge is
that probabilistic forecasts have much more information than
median forecasts. Therefore, displays must be designed to
display probabilities intuitively and simply, and to help oper-
ators quickly sort through large amounts of data to obtain the
information they need.

B. MANAGING RESOURCE RISK BY OWNERS
Of course, even if the ISO uses a deterministic approach
like Fig. 2(a) to schedule resources against a single net load
forecast, risks remain, and market participants must reckon
with them. Resource owners need to weigh the risks they face
in deciding howmuch energy to offer, and at what price, in the
day-ahead market, given uncertainties in real-time prices and
the possibility of equipment outages or erroneous production
forecasts.

Probabilistic forecasts offer resource owners a more
sophisticated understanding of their physical supply risks.
Advanced systems can also show how their output is
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FIGURE 3. Excerpts from sample RAVIS tool screen for control
room situational awareness: site-specific and power ramp alerts
and time-series forecasts with confidence bands for solar
production for California and U.S. [18].

correlated to overall market net load and prices [6]. Resource
owners can then tailor forward schedules and virtual posi-
tions in the ISO’s day-ahead market to the conditions on
that particular day. Probabilistic real-time price forecasts
can also facilitate valuation of risk management instruments,
such as congestion revenue rights or the novel financial
products proposed under the ARPA-E PERFORM program
(e.g., [51]).

Probabilistic forecasts can also inform purchases of hedges
in the form of bilateral options and forward obligations.
For instance, an appropriately configured hedge can put a
ceiling on prices paid for imbalances when resources fall
short of day-ahead schedules. Probabilistic forecasts can
also contribute to better informed decisions about how to
create or preserve physical hedges and options, such as
charging batteries in a hybrid plant or committing a flexible
generator.

Biases can arise from ISO use of deterministic rather than
stochastic day-ahead unit commitment models, for example
against committing flexible units with high start-up costs.
However, if probabilistic forecasts of net load and prices
are available, many of these biases can be corrected by
individual market participants, for instance by virtual bid-
ding together with generator self-commitment [29]. As a
result, overall market efficiency resulting from a determin-
istic ISO scheduling process can, in theory, approach that
of the sophisticated two-stage stochastic optimizations of
Section II.E.

C. DEFINING REQUIREMENTS FOR
OPERATING RESERVES
All ISO markets run day-ahead and real-time energy mar-
kets, and also simultaneous procure reserve products, usually
considering just a single deterministic net load forecast or
amount of cleared demand bids (Fig. 2(b)). There are many
types of reserve products, such as up and down regulation,

up and down flexible ramp, residual unit commitment, and
spin, non-spin, and replacement reserves. Present practice
involves setting requirements considering explicit contingen-
cies (such as the single largest contingency, in the case of
spinning reserves), percentages of the solar andwind forecast,
or a specified quantile of the probability distribution of need.
‘‘Need’’ might be measured, e.g., by net load ramp uncer-
tainty (in the case of flexible ramp product, see Sect. III) or
by extreme values of adjusted area control error (ACE) values
expected in a five-minute real-time interval (in the case of
regulation).

When basing requirements on a quantile of a distribution
of need, ideally the choice of quantile (e.g., the 97.5th per-
centile) is justified by a careful balancing of the incremental
benefits of more reserves (in terms of reducing the probability
weighted consequences of being short of reserves) against
the incremental costs of procuring and, if needed, deploy-
ing the reserves [42], [45]. ISOs have been moving in this
direction. The concept of an operating reserve demand curve,
in which higher prices are paid for reserves as the amount
procured falls short of a base requirement, has been adopted
in several ISO markets. Examples include overall reserves
in the Electric Reliability Council of Texas (ERCOT) and
for flexiramp in the Midcontinent ISO (MISO) and CAISO
[57]. The willingness to pay for additional reserves is directly
related to a calculation of the conditional probability of
insufficient reserves and violation of the power balance in
real-time. Probabilistic forecasts of reserve availability and
net load would be potentially useful inputs to creating such
demand curves; this has been demonstrated in the case of
non-spinning reserves for the ERCOT market [21].

In addition to balancing benefits and costs when setting
requirements, ISOs should condition the probability distribu-
tions of need upon dynamic information about weather and
system conditions. ISOs are beginning to move away from
static methods (such as the CAISO’s use of histogram of
the last 40 days of weekday data to estimate weekday ramp
errors [9]). In theory, conditional net load distributions could
be derived by appropriately convolving separate probabilistic
forecasts of wind, solar, and gross load, accounting for their
correlations [37].

However, two other approaches have proven more prac-
tical. One derives a suite of possible scenarios of the evo-
lution of net load by fitting models that relate observed
net load forecasting errors to, e.g., causal weather variables
and renewable forecasts [11], [35]. Proposed reserve require-
ments could then be compared to the set of scenarios before
running the market software to see if the amount of reserves
would be sufficient to meet a target level of reliability. This
approach has often been proposed by researchers (e.g., [50]),
and has been tested by utilities (e.g., Hawaii Electric [42]).
Other examples of this approach include the following. Ref.
[13] probabilistically predicts wind power ramp events by
generating scenarios of wind power generation. Ref. [12]
transforms probabilistic solar forecasts into scenarios which
are then translated into dynamic operating reserves. Ref. [3]
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applies a set of machine learning (ML) methods to generate
and reduce scenarios from probabilistic solar forecasts. Com-
pared to forecasts of marginal distributions at discrete points
in time, dynamic scenarios also have the distinct advantage
of also being able to evaluate whether there is enough energy
available (e.g., battery charge) over multiple market intervals,
if scenario construction accounts for autocorrelations of fore-
cast errors.

The second practical approach is to use ML or quantile
regression approaches to estimate distributions of net load
or ACE as a function of weather conditions and forecasts of
net load components. The general idea is to fit a mapping
in the training stage between deployed reserves and model
inputs (e.g., system states, meteorological parameters, prob-
abilistic renewable forecasts, etc.). Typical ML algorithms
used for reserve sizing include clustering (e.g., k-means [5],
[15], [46]), regressionmethods (e.g., multiple regression [61],
support vector regression, gradient boosting machines, ran-
dom forests [34]), and deep learning (e.g., artificial neural
networks [28], [52], convolutional neural networks [34], and
extreme learning machines [62]). Other data-driven meth-
ods, such as Bayesian belief networks, can also be used
[20]. These methods have been used to estimate require-
ments of regulation, spinning, and non-spinning reserves. For
example, Ref. [15] applies k-means and k-nearest neighbors
(kNN) to estimate reserve requirements in Belgium. Ref. [4]
employs a clustering approach to derive dynamic reserves by
convolving conditional load, wind and solar forecast errors,
and plant outage distributions. Multiple regression has been
used [61] to estimate regulating reserve requirements based
on load and wind power forecasts. Our previous study [34]
compares a set of ML methods with a kNN-based method for
predicting flexiramp needs, and finds that the kNN method
performs better.

The CAISO is planning to replace its histogram-based
flexiramp error estimates with quantile regressions that relate,
for instance, the 97.5th percentile of net load errors to deter-
ministic forecasts of the amount of load, wind, and solar out-
put [7]. In Section III, we show how using prediction intervals
(e.g., the difference between the 25th and 75th percentiles)
for solar can inform the setting of flexiramp requirements for
the CAISO, potentially lowering the total amount needed, but
also improving the reliability with which reserves cover the
realized need.

Related to the above use of probabilistic forecasts to
define ex ante reserve needs before running a market model
is the idea of using chance-constrained programming to
endogenously calculate what reserves or other decisions
need to be made to ensure against low probability adverse
outcomes [17]. Probabilistic forecasts of key inputs would
then be required. Another approach to endogenously opti-
mizing reserve levels is robust optimization, which uses
so-called uncertainty sets rather than probability distributions
as inputs [2]. Probabilistic forecasts can inform decisions
about the size of uncertainty sets.

D. ASSESSING SCHEDULE FEASIBILITY UNDER
MULTIPLE SCENARIOS
Using reserves to manage uncertainty poses several chal-
lenges. One is that, over time, there has been a tendency
for operators to introduce additional products in order to
address particular needs that existing products do not handle
well, such as steep ramps. This proliferation can decrease
transparency, and the job of market designers can feel like
a game of whack-a-mole.

Another challenge is that procurement of reserve capacity
on a system or zonal basis can result in over-procurement in
some places and under-procurement elsewhere, so that con-
gestion prevents deploying reserves when needed. There is an
inherent bias towards procuring reserves where deployment
would be difficult, since the opportunity cost of reserves is
naturally lower in generation pockets already experiencing
congestion.

One approach to dealing with these challenges is to
replace—in part or entirely—explicit reserve requirements
with a set of contingency constraints. Forecasting meth-
ods that generate scenarios of net load errors or equipment
failures (see Sect. II.C) are crucial to implementing this
approach. Each contingency represents a scenario in which
the market optimization tests whether the resource schedule
can still satisfy load under a particular outage or net load
outcome. The most familiar version (e.g., n − 1 constraints)
simply asks whether post-contingency flows resulting from
the scheduled operating point remain feasible with respect to
network constraints. We show this in Fig. 2(c), where one
of the chance node’s outcomes is the deterministic energy
forecast used to schedule resources (solid line), while other
outcomes (dashed lines) are contingency scenarios that check
the feasibility of the chosen schedule.

Improvements in computation allow a second, more com-
plex approach, in which post-contingency redispatch of
resources is explicitly modelled as decision variables to be
optimized. These variables are not assigned costs in the objec-
tive function; to check the feasibility of post-contingency
redispatch is their only reason to exist. The price of mod-
elling this flexibility is a larger model that includes additional
dispatch variables and associated constraints for each contin-
gency, but the result may be much lower costs of managing
the contingency [8]. Fig. 2(d) thus shows a decision node
(representing optimized redispatch to maintain feasibility) on
each contingency’s dashed line.

In theory, a ‘‘complete’’ set of contingencies could com-
pletely replace capacity reserve constraints, but the curse of
dimensionality makes that impractical. A hybrid approach
that procures a smaller amount of traditional reserves while
also including just a few critical contingencies may be a
practical and helpful compromise. For instance, the CAISO
has proposed implementing such hybrids in two situations.
One addresses certain types of network outages after which
the CAISO is required to return to a safe operating point
within a specified time (20-30 minutes); the CAISO proposes
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to optimize the simulated redispatch rather than assume that
the required up-dispatch comes from predetermined reserved
capacity [8]. In the second situation, the CAISO is propos-
ing to include two deployment scenarios for its flexiramp
product: an ‘‘up’’ scenario in which net loads are increased
across the board and the resulting redispatch of flexiramp is
calculated, and a ‘‘down’’ scenario in which that redispatch
is used to meet net loads that have been decreased from the
base values [9]. A possible enhancement would be to use
probabilistic methods to generate additional scenarios defin-
ing possible extreme cases that reflect correlations among net
load forecast errors among all the buses in the system.

E. STOCHASTIC OPTIMIZATION TO PROCURE OPTIMAL
AMOUNTS AND LOCATIONS OF RESERVES IN
MARKET SOFTWARE
Stochastic multistage programming can be viewed as an
extension of multi-scenario methods of Sections II.C,D in
which probabilities are assigned to scenarios of, e.g., wind
and solar output or net loads, and the objective is to min-
imize probability weighted costs across scenarios. Many
researchers propose this approach as a rigorous method
for endogenous determination of locations and amounts of
reserves to manage uncertain net loads in unit commit-
ment and dispatch problems (e.g., [47], [54], [56]). Indeed,
it is undeniable that, in theory, probability-weighted costs
would be minimized by optimizing immediate ‘‘here-and-
now’’ decisions considering the many ways that uncertainties
can unfold over the time horizon and how later ‘‘wait-and-
see’’ decisions would optimally respond to forecast errors.
Fig. 2(e) shows how these two types of decisions are related;
after the initial decision, there are sets of scenarios issuing
from a chance node, each with a probability and subsequent
set of recourse decisions and associated costs. (We only show
one chance node there; more generally, sequences of chance
nodes could represent the random evolution of net load over
the day.)

But as has been pointed out [16], [48], this theoretical
point does not imply that practical implementations by ISOs
of stochastic programming in spot markets would actually
improve schedules. This is because the sheer number of
uncertain variables and decision stages cause an exponential
explosion in problem size, and compromises have to be made
to simplify the problem so it can be solved. Although compu-
tationally clever implementations of stochastic programming
have greatly improved the efficiency of hydropower opera-
tions around the world (e.g., [40]), such practical success has
been elusive for high dimensional unit commitment and dis-
patch problems of the size typically solved by ISOs. Another
challenge is the need for scenario probabilities, including for
extreme events whose probabilities are subject to high sample
error and might be nonstationary due to, e.g., climate change.
A lack of accepted and transparent methods for calculating
such probabilities is a barrier to acceptance by stakeholders,
many of whom already complain about the opaqueness of
market processes.

Despite these obstacles, the theoretical advantages of
stochastic programming for rigorous evaluation of sys-
tem flexibility and diversity are appealing, and research
has shown potential for significant benefits [47]. Like
Section II.D’s multi-scenario methodology, a hybrid ‘‘belt
and suspenders’’ approach, in which a few crucial scenarios
are considered, but some reserve capacity requirements are
retained to cover other possibilities, may represent an optimal
use of limited computing resources that may both lower
system costs and increase reserve effectiveness. The fact that
ISOs are already implementing post-contingency redispatch
models (Sect. II.D) means that the stochastic programming
camel’s nose is already under the tent—in that extending
Fig. 2(d) models to a full stochastic formulation requires only
inserting probabilities and costs in the objective for already
existing variables.

Probabilistic forecasts are critical to implementing
stochastic programming-based scheduling models in order to
construct the ‘‘event trees’’ that describe how stochastic net
load processes evolve over time. If suchmodels are to be used,
then present probabilistic forecasting methods will need to be
significantly revised, since their time horizons and data out-
puts often are based on availability of relevant meteorological
inputs, rather than the needs of system operators.

III. AN EXAMPLE OF LINKING PROBABILISTIC SOLAR
FORECASTS TO RESERVE REQUIREMENTS DEFINITION
We now provide a detailed example to show the practicality
and potential benefits of using probabilistic solar forecasts to
create weather-informed operating requirements for inclusion
in market models. Probabilistic solar forecasts for multiple
sites in California from the IBM Watt-Sun probability fore-
casting system (see Sect. III.A) are input to statistical and
ML models that predict quantiles of error distributions for
forecast real-time (fifteen minute) ramp needs (Sect. III.B).
We then evaluate the magnitude of resulting cost improve-
ments for a sample of days using an 1820-bus model of the
Western Electricity Coordinating Council (WECC) system,
compared to using weather-independent ramp requirements
based on an unconditional histogram of past forecast errors.
This is done by simulating the WECC region’s schedul-
ing processes using NREL’s Flexible Energy Scheduling
Tool for Integrating Variable Generation (FESTIV) platform
[19], yielding day-ahead and real-time schedules and costs.
(Sect. III.C).

Fig. 4 gives an overview of our proposed probabilistic
forecast-informed process. Numerical weather predictions
and historical data are input to the Watt-Sun forecasting
method, which produces probabilistic solar forecasts. Using
this and other weather information, we can then project FRP
and other reserve needs that are then input to the ISO’s
scheduling processes. (For brevity, we emphasize the role
of FRP requirements below.) Finally, historical ramp and
weather data are accumulated day-to-day, and can be used to
dynamically update relationships between solar forecasts and
reserve needs.
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FIGURE 4. Overview of proposed process of developing and
applying probabilistic solar forecast-informed flexible ramp
product requirements.

The flexible ramp product that is the focus of our analysis
is a new type of operating reserve that three ISO markets
(CAISO, MISO, and Southwest Power Pool) use to manage
uncertainties in net load changes from interval to interval. The
fundamental idea is to pre-position resources in one real-time
market interval so that if the net load change turns to be either
much higher or lower than anticipated in the next interval, the
system can still feasibly and economically satisfy load. FRP
can be viewed as a type of noncontingent spinning reserve
that is acquired in one interval and can be used for energy
production in the next if needed. Although details of imple-
mentation differ among the three ISOs using the product, their
processes attempt to characterize the degree of uncertainty in
real-time net load ramps both in the up and down directions,
and then ensure that there is enough capacity to meet loads
in either event with a predetermined degree of confidence.
We hypothesize that the cost and reliability performance of
the CAISO FRP could be improved by conditioning FRP
requirements on weather conditions of the day, especially as
reflected in the uncertainty in solar forecasts.

A. IBM WATT-SUN PROBABILISTIC
FORECASTING SYSTEM
The field of big data-driven probabilistic solar forecasting
is evolving fast, driven by multiple trends including rapidly
growing renewables and adoption of new decision-making
processes by grid operators [53]. Solar forecasting research
can be divided into (a) advancing the underlying physics
in numerical weather prediction models, (b) developing
non-physical but data-driven forecasting approaches that
apply statistics, ML, and artificial intelligence to histori-
cal data, and (c) combinations of these physical and data-
driven approaches [1]. The creation of probabilistic Watt-Sun
provides an example of the third method which lever-
ages advanced data acquisition and integration; scalable dis-
tributed computation; and validation to inform ML models
for probabilistic forecasts.

The original version of Watt-Sun was deterministic, yield-
ing forecasts of median solar insolation and power [38]. The

FIGURE 5. The four building blocks of the Watt-Sun Forecasting
System that enable probabilistic forecasts.

flowchart within Fig. 5 summarizes the basic mechanics of
the deterministic Watt-Sun forecasting method. The system
is supported by a big data curation engine that integrates
data frommultiple numerical weather predictionmodels, plus
shorter term models that forecast cloud movement. Then,
multiple models are blended using a measurement-informed
ML model, creating more accurate forecasts than any indi-
vidual weather and cloud forecasting model. Predicted solar
irradiance is then converted to power. The accuracy of the
forecasts is then fed back to a ML approach that further
optimizes model blending.

For the present project, IBM extendedWatt-Sun to produce
not only the median but also other quantiles (as in Fig. 1).
Fig. 5 summarizes four building blocks that made this exten-
sion possible. The first building block is the replacement
of the data management system of Watt-Sun with PAIRS
(PhysicalAnalytics IntegratedData Repository and Services),
a completely scalable platform for geospatial-temporal data
based on a Hadoop/Hbase cluster, allowing distributed and
scalable processing [31], [39]. PAIRS improved speed and
data processing throughput more than 50-fold compared to
the previous system. PAIRS enables ‘‘automatic’’ fusing of
satellite, weather, and sensor data; supports handling of tens
of petabytes; and can inject data much faster than previously
possible (eventually up to hundreds of TB/day). Crucially,
PAIRS can also distribute forecast data in a scalable matter.

The second building block is a new short-term
solar forecasting module, enhancing ‘‘convection-based’’
forecasting-based Geostationary Environmental Satellite
(GOES) satellite observations with a 2-D Navier-Stokes
equation. We leveraged the new GOES-R data in this project,
which have significantly better spatial and temporal and
spectral resolution than the previous GOES (−13/−14) satel-
lite data used in the earlier deterministic Watt-Sun. Watt-
Sun also now leverages real-time cloud information from
GOES-16 [44], enabling better short-term Lagrangian-based
solar forecasts.

A third building block is distinct model blendings for
different weather situations. Given multimodal data input
from IBM PAIRS, Watt-Sun distinguishes common weather
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situations by data-driven categorization (namely volumetric
convolution [59], which can identify situations based on
full images or raster observations from, e.g., GOES). Then
Watt-Sun assesses the performance of a wide array of predic-
tionmodels for different categories. Specifically, a variational
autoencoder is trained to infer the future weather situation
onto a latent space [30]. That inferred state of the atmosphere
and the models’ forecasts are inputs to Watt-Sun’s model
blending (ensemble learning) to derive an ideal global hori-
zontal irradiance (GHI) forecast. But we note that Watt-Sun’s
latent space of weather categories is continuous rather than
discrete, as in vector quantized variational autoencoders [49].
Details are provided in [38] and [39].

The fourth building block extends Watt-Sun’s capabilities
to include probabilistic estimates of irradiance for points
and regions. This was done by implementing linear quan-
tile regression in the last step of the situation-dependent
error analysis; this method allows capturing of non-normal
distributions.

As a result of these changes, the probabilistic Watt-Sun
forecasting system’s accuracy increased, significantly out-
performing a probabilistic baseline model, namely, a persis-
tence estimator that is augmented with an empirical error
distribution.1 The metric used to evaluate calibration was
the probability-probability (PP) metric, which is a metric of
how similar the predicted probability distribution is to the
actual distribution of errors, as Fig. 6 shows. The comparison
showed that Watt-Sun’s PP metric was better on average
for 79% of the 24 sites tested over the period March-May,
2020. As an index of the reliability of these improvements
for 4 hr ahead forecasts, daily values of Fig. 6’s PP-based
metric of forecast improvement (right panel) were <70% for
at least 3 weeks straight during that period for 17 of 24 sites
tested in the CAISO and MISO regions. These results are
robust with respect to other probabilistic accuracymetrics and
stations. Thus, Watt-Sun’s improvements are statistically and
economically meaningful.

To give a quantitative indication of the contribution of the
four building blocks to improving Watt-Sun’s probabilistic
distributions, we estimate and compare the performance of
7 models of increasing complexity using an out-of-sample
(spatial) location. Chicago (IL) was selected as it distant from
NOAA’s irradiance measurement stations in New England
and California that feed into Watt-Sun. Moreover, Chicago
is particularly challenging for irradiance forecasts due to
persistent wind and rapidly changing cloud cover. We chose
399 days starting in Jan. 2021. Of these, 279 days serve as a
training set while the remaining data were split into equally
sized validation and test subsets. The latter subset was held

1Persistence as a baseline predictor is limited in forecasting non-stationary
time series data across long horizons. But as Watt-Sun is designed for
intraday (GHI, wind speed) prediction, we view a probabilistic version of
a persistence estimator that is corrected for the diurnal GHI pattern and
augmented by an intraday GHI variability assessment to be reasonably com-
petitive. Further, the usefulness of (slightly modified) persistence measures
as a baseline has been noted for general intraday meteorological forecasts
[58] and particularly GHI prediction [33], [55].

FIGURE 6. Visual interpretation of the PP metric. The size of the
shaded area enclosed by the baseline method (PP-plot, left) is
compared to that of Watt-Sun (PP-plot, center). The relative
improvement of Watt-Sun over the baseline is assessed by the
decrease in the shaded area, and visualized as a quotient
(right).

out during model calibration while the former was used for
hyperparameter tuning. Each predictor is distributional (i.e.,
yields a conditional cumulative distribution function (CDF)).
However, only the most complex of the 7 models imple-
ments non-parametric CDF estimation, while the remaining
models are conditional Gaussian. To compare the models’
probabilistic calibration, our out-of-sample comparison used
two metrics: PP and CRPS (continuously ranked probability
score), the latter being a key calibration metric as it is a proper
scoring rule [23].

The literature has suggested many refinements to the basic
persistence approach, so we consider three versions of that
method in our comparison. Specifically, we compare naïve
persistence (Persistence 1, using the previous day’s observa-
tion and fixed conditional variance estimate), a persistence
estimator with adaptive conditional variance called Persis-
tence 2 (via lagged estimation, where the order of the lag
is chosen in a data-driven fashion), and Persistence 3, which
corrects the previous observation with diurnal and seasonal
component while leveraging adaptive conditional variance.
We found that Persistence 3 shrinks CRPS by about 12%
compared to both Persistence 1 and 2, which have similar
performance. Note that as we developedWatt-Sun, we consis-
tently compared it to ‘‘smarter’’ persistence estimators, e.g.,
Persistence 3.

Turning to the building blocks used to create probabilis-
tic Watt-Sun, the fourth of seven models in the compar-
ison simulates Watt-Sun’s use of PAIRS (building block
1) by adding 12 atmospheric variables to the dataset (e.g.,
temperature, windspeed); this yielded the most significant
CRPS improvement of 26% relative to Persistence 1 and
about half that relative to the ‘‘smartest’’ persistence model
(Persistence 3). In the fifth model, we add further physical
data (from numerical simulations, building block 2), enhanc-
ing the forecasting accuracy in terms of CRPS by an addi-
tional ∼7%. Adding deep-learning-based categorization of
weather situations (building block 3) (either through varia-
tional autoencoder or unsupervised clustering via hierarchical
agglomeration) decreases CRPS by another ∼3.5%. Finally,
switching to quantile estimation (building block 4) decreases
CRPS by around another ∼4.4%.

These results confirm that PAIRS is the most crucial of the
four building blocks, but that the combined benefit of the last
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FIGURE 7. Up and down flexiramp requirements for two days by the (unconditioned) baseline
requirements method used by the CAISO (black lines) versus (weather-informed) requirements
based in part on probabilistic solar forecasts (kNN method, green lines). Actual net load (NL)
forecast errors shown in red. Left: Less cloudy day (less forecast error); Right: Cloudier day
(more forecast error).

three blocks is similar to using PAIRS. The cumulative effect
of all four building blocks resulted in nearly a halving of the
CRPS of Persistence 1. The analysis was repeated for the PP
metric, and broadly similar results were obtained. Overall,
this comparison provides evidence that Watt-Sun performs
well across probabilistic accuracy metrics (PP, CRPS) and for
data that are distributional shifted, spatially and temporarily.

In our next step, we use Watt-Sun forecasts for a geo-
graphically distributed subset of up to ten CAISO locations to
calibrate models that predict the amount of flexiramp needed
to meet uncertain net load ramps in the real-time market.

B. RELATING FLEXIRAMP NEEDS TO PROBABILISTIC
SOLAR FORECASTS
As noted in Section II.C, the probability distribution of fore-
cast errors for net load ramps from market interval to interval
could be derived by convolution of probabilistic forecasts of
the solar, wind, and gross load components of net load. Since
this is not yet practical, we instead use ML and statistical
methods to empirically relate quantiles of the distribution
of net load forecast errors to meteorological variables, espe-
cially the width of prediction intervals from probabilistic
solar forecasts. (Note that the up (down) ‘‘forecast error’’
for each 15-minute real-time interval being predicted by the
CAISO has a specific definition. It is the difference between
(a) the max (min) binding interval energy forecast from the
5-minute market over the three 5-minute intervals within
the 15-minute interval of interest and (b) the first advisory
15-minute interval forecast from the previous 15minute inter-
val in the 15-minute real-time market.)

Our search for empirical relationships is inspired by evi-
dence that different solar conditions are associated with dif-
ferent amounts of ramp forecast errors. For instance, Fig. 7
(left) shows that on an uncloudy day, those errors (shown
in red) can be relatively smaller than on a somewhat cloudy
day (right), when solar output is likely to be less predictable.
Under the present CAISO FRP requirements process, the
FRP up and down requirements (shown in black) vary from
hour-to-hour based on the distribution of errors experienced
in recent weeks, but are not conditioned on today’s weather

conditions. That is, whether today is cloudy or not, the black
lines would stay the same on a given day. (Note that the
requirements for the two days in Fig. 7 do differ because they
are 13 days apart.)

Weather-conditioned requirements, by contrast, would
shift the black lines on a given day depending on solar
uncertainty and other variables. In Fig. 7, relationships
between ramp forecast error distributions and weather vari-
ables estimated by a ML-based method (k th-nearest neigh-
bor ‘‘kNN’’) have been exploited to adjust the requirements
to account for the degree of cloudiness by using medians
and prediction interval widths from probabilistic solar fore-
casts [34]. These are shown as green lines; consequently,
up- and down-FRP requirements are reduced relative to base-
line unconditional requirements on less cloudy days when
there is less solar uncertainty (left side of figure), but are
increased on cloudy days with more solar uncertainty (right
side). By reducing requirements when there is less forecast
error, money is saved by not procuring unneeded reserves.
On the other hand, by increasing requirements when more
error is anticipated, reliability of the system is improved
and price spikes in the real-time energy market are avoided.
Overall, the result can be a less costly and more reliable
system.

Fig. 8 displays the overall performance of the kNN proba-
bilistic solar forecast-conditioned FRP requirements (in the
upwards direction) versus the CAISO unconditional base-
line method. We consider two performance indices: (a) the
amount of FRP procured and (b) the reliability of the require-
ment, in terms of the chance that actual ramps exceed the
procured FRP. The target reliability of the CAISO system is
that no more than 2.5% of intervals have upward ramp errors
that exceed the FRP-up requirement. (The target is also 2.5%
for downward ramp errors.) A system with smaller values
of both (a) and (b) is preferred. Here, whisker plots (top of
figure) reveal that the median FRP is reduced in 6 of 8 hourly
intervals, and by as much as 50%. Also, in 6 of 8 intervals,
the reliability of the kNN requirements (bottom) is as good or
better than the baseline reliability, and is much better in most
intervals.
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FIGURE 8. Example of performance of kNN-based estimates of
upwards FRP requirements (CAISO fifteen-minute ramps
occurring in eight 1-hr market intervals, Feb. 2020). Top:
Distribution of changes in the portion of the FRP requirement
used to meet upward uncertainty relative to the CAISO baseline
(unconditional) method. 0 means no change in MW
requirement, and a negative value means a decrease. Bottom:
Fraction of 15-min ramps (four per hour interval for each of
29 days) that exceed the FRP requirement defined by methods.

FIGURE 9. Schematic Pareto plot with two objectives: reliability
(minimize frequency of FRP shortage on y-axis) and cost
(minimize excess FRP, x-axis).

A Pareto plot is another way to show the relative perfor-
mance of requirements estimation methods, by showing both
how often ramp shortages occur and amounts of excess FRP
(the amount above what is needed to meet actual ramps) for
a given method as a point on an x-y plot (Figs. 9, 10). If a
method’s point lies southwest of the baseline, it is better in
both objectives, whereas points to the northeast are worse in
both.

In Fig. 10, the performance of quantile regression (QR),
which is a statistical method for estimating the quantile of a

FIGURE 10. Two-objective Pareto plot (reliability (minimize
frequency of FRP shortage) vs cost (minimize excess FRP))
showing performance of four quantile regression specifications
(for 12:00-13:00 local time, March 2020), compared to
performance of CAISO procured FRP. Specifications include:
linear using width of 25th − 75th percentile prediction interval
for solar global horizontal irradiance (blue); linear using median
GHI (purple); linear using median GHI plus CAISO wind and
gross load forecast (pink); and linear with GHI prediction
interval and a nonlinear (sine) transformation of median GHI
(light blue). Each set of solar variables is averaged across four
CAISO solar sites. The four points on each curve (upper to
lower) correspond to 10%, 5%, 3%, and 1.5% a priori frequency
of FRP shortage.

distribution of a random dependent variable [32], is assessed
by a Pareto diagram. In a three-step process, the QR method
estimates what level of upward ramp forecast error corre-
sponds to an a priori reliability level (e.g., 2.5% rate of
shortages), and is then validated. This is done separately
for each operating hour. Although QR does not obviously
outperform the kNN-based ML method, it has the advantage
of being simpler to implement for the CAISO because it is
already using QR [7].

The steps are as follows. First, two separate QR estimations
are performed for the 50th and 90th percentiles of the forecast
error as a linear function of a set of independent variables
related to weather and system conditions. (Four sets of such
variables are considered here, as described in the figure cap-
tion.) Second, the value of error for the desired reliability (say
the 97.5th percentile, which would result in a 2.5% shortage
rate) is obtained by fitting a normal distribution to the 50th and
90th percentiles and extrapolating. Out-of-sample validation
found that this resulted in more stable estimates of extreme
percentiles rather than using QR directly to estimate that
percentile, due to small sample issues with the number of
observations in the tail. This is done for using 30 days of
data prior to the day of interest; the desired percentile is then
estimated for that day given the value of the independent
variables on that day. The FRP requirement is set equal to
that value. The performance of the method is then assessed by
comparing the realized forecast error against the requirement.
This is repeated for each of the days in the month (March
2020 in Fig. 10), and four 15-minute intervals within each
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hour considered; this would give 30∗4 = 120 observations to
estimate the reliability and cost performance.

In Fig. 10, we repeated this for four levels of a priori reli-
ability (10%, 5%, 3%, and 1.5% shortage probabilities) for
each of four model specifications for the noon hour in March
2020. The best specification is based on two independent
variables: the average (across four sites) of the 25th − 75th

percentile prediction interval for GHI (this interval measuring
the uncertain availability of solar energy; see [62] for a wind
application of this measure) (Fig. 1); and a nonlinear (sine
wave) transformation of median GHI, again averaged over
four sites. That transformation yields values of zero if GHI
is at zero or its theoretical maximum at that hour, and attains
a maximum if GHI is halfway between those extremes; this
reflects the fact that if solar is zero or if there is a clear sky,
there is less uncertainty than if GHI is somewhere between
the extremes. As Fig. 10 shows, there is one version of
that model (the second point from the left, with an a priori
reliability of 5%) that reduces oversupply by 20% (x-axis)
and cuts the ex post frequency of FRP shortage by about half
(from 7.5% to 4%), relative to the actual amount of FRP that
the ISO procured for those intervals. Although that precise
specification does not result in improvements in every month
and time interval we considered, it often did so, and is thus
worth considering as a relatively simple but effective way to
condition FRP requirements on weather.

C. SIMULATION OF PRODUCTION COST SAVINGS FROM
SOLAR FORECAST-INFORMED FLEXIRAMP
REQUIREMENTS
The evaluation of solar probabilistic forecast-informed FRP
requirements described in the above section considered only
the probability of FRP shortage and the average amount of
excess FRP procured. More useful to power engineers is an
understanding of how different requirement estimation meth-
ods affect overall power system operating costs, including any
load shedding costs associated with reliability issues.

Thus, we now compare the system cost performance of a
production costing simulation that uses kNN-based estimates
of FRP requirements relative to the CAISO baseline method.
We use FESTIV to simulate security-constrained unit com-
mitment and economic dispatch for an approximation of the
WECC system. The approximation was created especially
for this analysis, and was based on earlier NREL modeling,
and models CAISO transmission in detail while omitting
transmission limits outside California. Table 1 summarizes
the test system.

The real-time markets simulate the operation of the real-
time commitment processes used by the CAISO-run west-
wide Energy ImbalanceMarket (EIM), which uses 15-minute
settlement intervals, as well as the subsequent 5-minute dis-
patch processes of the EIM. The model captures the procure-
ment of reserves, including the up- and down-flexible ramp
product, and how those reserves are deployed in real-time
in response to imbalances resulting from net load forecast
errors. FESTIV’s detailed representation of the network,

TABLE 1. Summary of WECC-scale simulation model.

TABLE 2. Production cost and FRP procurement cost
compari-sons: Baseline vs solar-informed FRP, March 16-20,
23-25, 2020.

generators, and rolling real-time market processes (including
updating of solar, wind, and load forecasts) yields highly
realistic representations of operations and costs, but also long
execution times. To accelerate the computations, some sim-
plifications were made, such as assuming fixed FRP require-
ments rather than using the CAISO FRP demand curves.

Table 2 summarizes cost results of applying FESTIV using
the two sets of FRP requirements (baseline and kNN solar
probabilistic forecast-informed), as well as a benchmark
FESTIV simulation using perfect forecasts (i.e., day-ahead
forecast = real-time forecast = actual net load). Differences
between the FRP simulations’ costs and the perfect forecast
simulation quantify cost increases due to uncertainty in fore-
casts. Eight days inMarch 2020 are considered; because FES-
TIV simulations took approximately 24 hr of clock time for
each simulated day, it was not possible to perform simulations
for more days. Future work on FESTIVmay implement faster
computing procedures, allowing simulation of a more repre-
sentative sample of days. In addition to production costs, we
also estimated impacts on ‘‘FRP procurement cost’’, which
equals FRP price times quantity procured.

Table 2 shows that using FRP requirements that are
informed by weather, notably by probabilistic solar forecasts
as described in Section III.B, would simultaneously lower
FRP procurement costs by ∼30% (∼$40K over the days
considered) as well as production costs by 0.4% (∼$430K,
over ten times the procurement cost savings). Interestingly,
procurement costs decreased even though Fig. 11 shows
that considering probabilistic solar forecasts did not always
decrease FRP-up requirements (which tend to have higher
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FIGURE 11. Top: Baseline (CAISO present method, orange) and
new probabilistic solar forecast-informed flexible ramp-up
product requirements (blue), March 16-20, 2020. Bottom:
difference between new and baseline requirements. (Note:
Real-Time Unit Commitment intervals each last 15 minutes.)

prices than FRP-down); thus, decreases in requirements must
have occurred during periods of relatively high FRP prices.
Later, we discuss possible reasons for production cost savings
from solar-informed FRP requirements.

The last rows in Table 2 also reveal that, as expected, oper-
ating the system with perfect error-free net load forecasts has
the lowest cost, with a large∼20% savings relative to the two
runs with imperfect forecasts. This is termed ‘‘uncertainty
cost’’ in the table, and represents the potential economic value
of perfect forecasts. (Note however that those savings are
likely to be much larger than what perfect forecasts would
actually be expected to typically provide.) Better operating
reserve requirements should reduce this uncertainty cost, and
indeed the table shows that solar-informed FRP requirements
do so.

To provide some context for these production and pro-
curement cost savings, the CAISO annual market monitoring
reports for 2018-20 document that annual total energy and
ancillary services procurement costs for the CAISO system
alone are on the order of $8B/yr, while FRP procurement
costs varied between about $10M/yr to $25M/yr [10]. If we
extrapolate savings in production and flexiramp procurement
expenses calculated in Table 2 from those 8 days to a full
year, they would amount to a reduction of∼$20M in produc-
tion costs and ∼$2M in procurement costs annually. Extrap-
olating instead the percentage cost savings shown in the
table yields somewhat higher annual savings (∼$30M/yr and
$3M-$7M/yr, respectively). Of course, such extrapolations
should be interpreted cautiously as market conditions vary
over the year. But they indicate that the potential magnitude
of annual savings would, if confirmed to be that large, justify
efforts to use probabilistic solar forecasts to help define FRP
requirements.

FIGURE 12. Generation (MW) from FESTIV simulations by an
example peaker (combustion turbine) during March 12-13, 2020:
under baseline method FRP requirements (orange) and
probabilistic solar-informed requirements (blue).

We now consider some potential reasons for the produc-
tion cost-savings estimated by FESTIV. Fig. 11 compares
the FRP requirements (in the up direction) for five days
(March 16-20, 2020) from the two methods (orange = base-
line, blue = new requirements). The figure shows that the
solar-informed requirements for FRP-up were increased in
the early morning on some days, when net load is ramping up
quickly, but were slightly reduced on other days. Meanwhile,
ramp requirements were reduced during mid-day periods (the
‘‘belly’’ of the famous CAISO ‘‘duck curve’’) as well as dur-
ing evening ramps (the ‘‘neck’’ of the duck curve). We note
that patternswere sometimes the opposite, with days earlier in
March 2020 (not shown) showing higher ramp requirements
by the new method in the evening, and lower requirements in
the morning.

How might those changes affect production costs? Con-
sider first a case when ramp requirements are decreased; if
that occurs at times that ramp capability is actually unneeded
(as in the sunny day on the left of Fig. 7, above), then fuel
costs shrink by not having to commit as many flexible units.
On the other hand, consider when ramp requirements are
increased; if that happens when ramp forecast errors are high
(as in the cloudy day on the right side of Fig. 7), then there
are two possible sources of reduced production costs. One
is decreased renewable curtailment (if more down-ramp was
needed than previously anticipated), and the other is less
severe price spikes and fuel costs because the system can
avoid committing expensive short-start units to accommodate
unexpectedly high ramps.

We now show an example of the latter cost savings.
Because there are hundreds of generators in the western US
power system, it is challenging to untangle the actual sources
of cost savings from the output of a complex production
costing model, but Fig. 12 provides a simple example.

Fig. 12 shows FESTIV’s simulated real-time commitment
of a single short-start combustion turbine during morning
and evening ramps for March 12-13, 2020 under the two
sets of FRP requirements. Under the solar-informed FRP
requirements, the generator needs to be committed for just
one of those four peak periods (early on March 12), yielding
cost savings relative to the FESTIV simulation based on the
baseline FRP requirements, which committed that unit for all
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FIGURE 13. Change in total generation (MW) from FESTIV
simulations (New FRP simulation minus Base simulation) for
seven generation types.

four peaks. It turns out that more FRP in the up direction
was procured by the new requirements at those times. As a
result, we infer that it was unnecessary to commit short-start
generation for three of those peaks, providing start-up and
generation fuel cost savings.

Fig. 13 shows overall changes in system dispatch for two of
the days considered in Table 2, illustrating possible sources
of the reported $430K production cost savings. In particu-
lar, the figure shows differences between dispatch levels (in
MW) under the revised (solar-informed) FRP requirements
versus the base dispatch. The green line shows that combined
cycle units are dispatched more on average under the new
requirements, while the dark brown line shows (on average)
a decrease in more costly combustion turbine output. This
change is most striking late in the evening of March 19,
although there are some hours (e.g., late March 20) when
instead turbine output increases somewhat and displaces
combined cycle generation.

IV. CONCLUSION
Probabilistic forecasts have the potential to increase the effec-
tiveness of several processes for managing uncertainty in
spot powermarkets, including operator situational awareness,
market participant hedging, setting reserve requirements, def-
inition of net load contingencies for evaluating reserves,
and, perhaps eventually, stochastic optimization of energy
and reserve schedules. Realizing this potential poses many
challenges to researchers. Methods are needed for visualizing
high dimensional data sets; creating sets of scenarios and
then reducing them to a manageable size for contingency
constraints and event trees; estimating models for uncertainty
forecasts for different net load components and locations,
then aggregating them to obtain overall net load distributions;
and managing the incompatibility of the timing and scale of
probabilistic forecasts to the needs of system operators.

A particularly promising application of probabilistic solar,
wind, load, and equipment availability forecasts is to improve
the cost and reliability performance of operating reserves on
various times scales, from frequency regulation to replace-
ment reserves, even as much larger amounts of vari-
able renewables are integrated. We have demonstrated the

potential for probabilistic solar forecasts to inform dynamic
requirements for the CAISO flexible ramp product, and
significantly reduce production expenses and costs to con-
sumers. Our detailed case study illustrates the importance and
effectiveness of particular methods to improve the quality of
probabilistic forecasts; demonstrates statistical and machine
learning methods to relate the degree of solar uncertainty
to forecasts of needs for system reserves; and shows how
multi-timescale production costing can quantify the value of
improved reserve requirements and, by extension, the value
of better probabilistic forecasts.
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