Hierarchical Microenergy Hub Sizing and Placement in Integrated Electricity and Natural Gas Distribution Systems

Seyed Abbas Seifossadat, Mohammad Rastegar, Member, IEEE, Mohammad Mohammadi, Member, IEEE, Soroush Senemmar, Student Member, IEEE, and Jie Zhang, Senior Member, IEEE

Abstract—The integration of different energy carriers is a key factor to improve the energy network performance. A micro-energy hub (μEH) concept has recently been proposed in the integrated electricity and natural gas distribution systems (IENGDSs), for generating, converting, storing, and managing different types of energy at the customer level. To improve the performance of μEH, this paper proposes a hierarchical optimization-based model to optimize the sizes of μEH components and locations of μEHs in the IENGDS. The operation and structural sizing constraints of the μEHs are first determined. Then the optimal electricity network buses and natural gas nodes for installing μEHs are determined, considering the operational constraints of IENGDS. The objective in both steps is to minimize operation and investment costs. Moreover, the impacts of seasonal climate changes on energy demands and prices are considered during the planning horizon. Furthermore, the uncertainties in demands and renewable energy generation are quantified with a two-stage stochastic programming framework. The effectiveness of the proposed performance is evaluated on an IENGDS that consists of an IEEE 33-bus distribution system and a Belgian 20-node natural gas system. Numerical simulations demonstrate that the optimal hierarchical planning model can improve total line losses and reduce the total purchased electricity costs. Moreover, the impacts of seasonal climate changes on energy demands and prices are considered during the planning horizon.

Index Terms—Integrated electricity and natural gas distribution systems (IENGDSs), microenergy hub, planning, stochastic programming.

NOMENCLATURE

Indices

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>s</td>
<td>Index of seasons</td>
</tr>
<tr>
<td>t</td>
<td>Index of time</td>
</tr>
<tr>
<td>c, e</td>
<td>Index of μEH</td>
</tr>
<tr>
<td>i, j</td>
<td>Index of μEH network buses</td>
</tr>
<tr>
<td>g, n, m</td>
<td>Index of gas wells in natural gas systems</td>
</tr>
<tr>
<td>w(n)</td>
<td>Number of days in each season</td>
</tr>
<tr>
<td>sc</td>
<td>Natural gas tariff for μEH operator</td>
</tr>
<tr>
<td>μEH</td>
<td>μEH operator</td>
</tr>
</tbody>
</table>

Parameters

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>Number of days in each season</td>
</tr>
<tr>
<td>D_s</td>
<td>Natural gas tariff for IENGDS operator</td>
</tr>
<tr>
<td>C_{μEH}^{Electricity}</td>
<td>Investment cost of gas boiler, CHP, ESS, and PV panel</td>
</tr>
<tr>
<td>C_{μEH}^{Boiler/CHP/ESS/PV}</td>
<td>Investment cost of gas boiler, CHP, ESS, and PV panel</td>
</tr>
<tr>
<td>ηP_{CHP}</td>
<td>2P conversion efficiency of CHP at μEH c</td>
</tr>
<tr>
<td>ηP_{Boiler}</td>
<td>2H ratio of CHP at μEH c</td>
</tr>
<tr>
<td>H_{y,s,t,sc}^{Load_{μEH}}</td>
<td>Efficiency of gas boiler</td>
</tr>
<tr>
<td>P_{y,s,t,sc}^{Load_{μEH}}</td>
<td>Heat demand at μEH c</td>
</tr>
<tr>
<td>P_{y,s,t,sc}^{Electricity}</td>
<td>Electricity demand at μEH c</td>
</tr>
<tr>
<td>P_{y,s,t,sc}^{PV,com}</td>
<td>Charging and discharging efficiency of ESS</td>
</tr>
<tr>
<td>P_{y,s,t,sc}^{Electricity}</td>
<td>Maximum charging rate of ESS</td>
</tr>
<tr>
<td>P_{y,s,t,sc}^{Electricity}</td>
<td>Maximum discharging rate of ESS</td>
</tr>
<tr>
<td>P_{y,s,t,sc}^{Electricity}</td>
<td>Standard energy output from a 1-kW PV panel</td>
</tr>
<tr>
<td>P_{y,s,t,sc}^{Electricity}</td>
<td>Maximum input electricity of μEH c</td>
</tr>
<tr>
<td>P_{y,s,t,sc}^{Electricity}</td>
<td>Maximum input natural gas of μEH c</td>
</tr>
<tr>
<td>P_{y,s,t,sc}^{Electricity}</td>
<td>Electricity tariff for IENGDS operator</td>
</tr>
<tr>
<td>P_{y,s,t,sc}^{Electricity}</td>
<td>Natural gas tariff for IENGDSs operator</td>
</tr>
<tr>
<td>Z_{i,j}</td>
<td>Impedance of line i, j</td>
</tr>
<tr>
<td>θ_{i,j}</td>
<td>Admittance angle between buses i, j</td>
</tr>
<tr>
<td>P_{i,j}^{Max}</td>
<td>Capacity of line i, j</td>
</tr>
<tr>
<td>K_{n,m}</td>
<td>Weymouth constant of pipeline n, m</td>
</tr>
<tr>
<td>f_{n,m}^{Max}</td>
<td>Capacity of gas pipeline n, m</td>
</tr>
<tr>
<td>ρ_{n}^{Min}, ρ_{n}^{Max}</td>
<td>Lower and upper limit pressure of natural gas node n</td>
</tr>
<tr>
<td>λ_{com}^{Min}, λ_{com}^{Max}</td>
<td>Compressor factor at pipeline n, m</td>
</tr>
</tbody>
</table>

Acknowledgment—This research was supported by the National Research Foundation of Korea (NRF) through the Global Frontier Research Center for Cyber-Physical Energy Systems (2020M3A7B4031132) and the Korea Institute for Advanced Study (KIAS) and by the National Natural Science Foundation of China (NSFC) under Grant 52177080.
Variables

\(OC_C \)

\(IC_c \)

\(OC^{IENGDS} \)

\(\mu^{\text{EH}}_{y,s,t,c} \)

\(\mu^{\text{CHP}}_{y,s,t,c} \)

\(\mu^{\text{ESS}}_{y,s,t,c} \)

\(\mu^{\text{PV}}_{y,s,t,c} \)

\(\mu^{\text{Net}}_{y,s,t,i} \)

\(\delta_{y,s,t,i,j} \)

\(\mu^{\text{EH}}_{y,s,t,n,m} \)

\(\mu^{\text{IC}}_{y,s,t,n} \)

\(\mu^{\text{source}} \)

Fuel consumption factor of a natural gas compressor at pipeline \(n, m \)

Electricity demand of an energy network

Maximum imported electricity to the substation

Gas demand of a natural gas system

Maximum imported natural gas from the gas wells to natural gas nodes

Operation cost of \(\mu^{\text{EH}} \) c

Investment cost of \(\mu^{\text{EH}} \) c

IENGDS operation cost at planning horizon

Electricity and natural gas transferred to \(\mu^{\text{EH}} \) c

Installed boiler capacity at \(\mu^{\text{EH}} \) c

Installed CHP capacity at \(\mu^{\text{EH}} \) c

Installed ESS capacity at \(\mu^{\text{EH}} \) c

Number of installed 1-kW PV panels in each \(\mu^{\text{EH}} \)

Electricity generation of CHP at \(\mu^{\text{EH}} \) c

Dispatch factor of natural gas at \(\mu^{\text{EH}} \) c

Heat generation of CHP at \(\mu^{\text{EH}} \) c

Heat generation of boiler at \(\mu^{\text{EH}} \) c

Charging energy of ESS at \(\mu^{\text{EH}} \) c

Discharging energy of ESS at \(\mu^{\text{EH}} \) c

State of charge of ESS at \(\mu^{\text{EH}} \) c

Produced energy by the PV panel at \(\mu^{\text{EH}} \) c

Imported electricity to the substation

Imported natural gas from gas wells

Active power flow through line \(i, j \)

Voltage of the \(i^{\text{th}} \) bus

Phase angle of the \(j^{\text{th}} \) bus

Gas flow of gas pipeline

Gas pressure of the \(n^{\text{th}} \) node

Binary decision variable for optimal place \(\mu^{\text{EH}} \) c in the electric network

Binary decision variable for optimal place \(\mu^{\text{EH}} \) c in the natural gas system

I. INTRODUCTION

A. Research Background and Motivation

Electricity and natural gas systems are known as the most important energy infrastructures in the world. It is becoming popular to integrate the operation of different energy infrastructures [1], [2], due to the constantly growing energy demands, environmental concerns, and the rapid improvement of cogeneration technologies such as combined heat and power (CHP) units. Recent studies have shown that the integrated energy systems can increase the overall efficiency of energy consumption by approximately 20% [3], [4]. Accordingly, the operation and planning studies of the integrated electricity and natural gas distribution systems (IENGDSs) have become particularly important. The optimal operation of multicharrier energy systems determines the optimal power flow of integrated energy systems, and thereby the amount of energy for each carrier should be purchased and converted to supply the energy demands [5]–[8]. Further, multicharrier energy systems planning studies seek to determine the optimal capacities of the components for a definite planning horizon [9]–[11]. These energy system operation and planning problems are usually solved through an optimization-based procedure [12].

Planning problems of integrated energy systems can be studied in two ways. First, from the customer viewpoint, where a customer may determine the optimal size and technology of IENGDS components such as CHP, boiler, renewable energy resources (RERs), and storage systems to provide heat and electricity demands with the lowest cost in a definite planning horizon. The multicharrier energy customer hereinafter is called the microenergy hubs (\(\mu^{\text{EHs}} \)) operator. At the customer level, previous studies [13]–[18] tried to determine the optimal capacities of \(\mu^{\text{EH}} \) components including CHP, boiler, energy storage, and RER. For example, the authors in [13] determined the optimal size of a single residential \(\mu^{\text{EH}} \), consisting of CHP, boiler, photovoltaic (PV) panel, and energy storage system (ESS), by minimizing the operation cost and installation cost during the planning horizon. The authors in [16] determined the optimal size and operation of the CHP, heat pump, absorption chiller, boiler, renewables, and ESS for residential \(\mu^{\text{EH}} \), by minimizing the investment, operational and maintenance costs, and the total carbon emissions during the planning horizon. Recent studies have modeled the uncertainties in energy demands [6], [10], [14], [19], [20], energy prices [10], and RERs (e.g., generation from PV panels [10], [13], [15], [19] and wind turbines [6], [14], [15], [20]), for \(\mu^{\text{EH}} \) planning. For example, the authors in [14] proposed a probabilistic model to determine the optimal size of a wind turbine and \(\mu^{\text{EH}} \) components including CHP, boiler, chiller, electrical and thermal storages, considering the uncertainties in wind power generation, and electricity and heat demands. The authors in [19] determined the optimal planning of a residential \(\mu^{\text{EH}} \) including a CHP unit, ESS, PV, heater, electric heat pump, boiler, and absorption chiller, to minimize investment and operation costs, considering the demand response and uncertainties in PV power generation and energy demands.

On the other hand, the integrated energy system (i.e., IENGDS) operator may have various technical and economic concerns in system planning. These concerns should also be considered during the planning from the IENGDS operator viewpoint [21]–[25]. For instance, the authors in [21] focused on determining the optimal places and sizes of PV panels, heat boiler, and heat pumps in the coupled electricity and heating distribution systems, by minimizing the total purchased energy costs and the cost of electricity distribution losses. The authors in [22] tried to determine the optimal design of an urban integrated energy system, consisting of electricity, natural gas, and district heating systems, by minimizing the total costs, wind power curtailment, and variance of peak-valley electricity demands. The authors in [23] proposed a two-stage planning approach to determine the optimal site and size of CHPs in an IENGDS, by minimizing incremental network investment costs and use-of-system charges for IENGDS. The authors in [26] determined the optimal size and placement of CHP, using particle swarm
optimization. The objective is to reduce power losses and improve the voltage profile and reliability of microgrids. The authors in [27] tried to determine the optimal site and size of PV, CHP, heat and electricity storage in an integrated heat and electricity distribution network, by maximizing the economic profit of the system operator. Furthermore, some works considered seasonal studies on energy demands, prices, and RER output in planning optimization problems [13], [15], [17], [19], [24]. For instance, the authors in [24] determined the optimal placement of CHP, boiler, ESS, and wind turbine for an IENGDS, considering seasonal climate change and its effect on energy demands and prices, with an objective of minimizing the operation cost of the IENGDS.

Recent works [28]–[31] have used hierarchical and bilevel programming to consider both μEH operators’ and IENGDS operators’ concerns in planning studies, while also keeping the privacy of μEHs. For example, the authors in [29] investigated the interaction between the heating costs of end-users in winter and energy generation of components such as CHP, power to gas units, and gas boiler. The upper level maximized the benefits of the energy supplier while the lower level minimized the heating costs of customers. The authors in [31] proposed a bilevel linear problem to determine the optimal operation of μEHs in IENGDS, in which each μEH was operated by a specific operator with its own objective function. In [31], the objective of μEH operators and the IENGDS operator was minimized simultaneously. The authors in [32] proposed bilevel planning for an integrated electricity and heating distribution system, considering a demand response program. In the lower level, the optimal sizes of ESS, heat boiler, and RER were determined by minimizing the installation and operation costs of μEH. Then, the upper level optimized the operation of electricity and heating systems during the planning horizon, by minimizing the operation cost of the integrated energy system. The uncertainties in the power generation of wind turbines and PV panels, and energy demands were also considered under different scenarios.

Previous works in integrated energy systems focused on customer-level problems [13], [19] or distribution networks for equipment sizing and placement [21], [23], [24], [26]. Although recent works considered concerns of both μEH and IENGDS operators [29]–[32], the impacts of μEHs’ location on the system performance have not been studied in the literature. It should be noted that, if system operators estimate and declare their housing capacities, μEH operators will be forced to select the specified capacity. Moreover, if the system operator estimates capacities of μEHs, then optimal conditions from the system operator viewpoint may not be met. Fig. 1 shows the overall concept of μEH placement in an IENGDS, where multiple candidate electricity network buses and natural gas nodes could potentially connect to a μEH. An optimal placement study aims to determine the best nodes and busses for the μEH establishment. In this study, the hierarchical model is proposed for optimal sizing and placement of μEHs in an IENGDS to determine the optimal capacity of μEH components and the optimal locations of μEHs in an IENGDS. In the hierarchical optimization problems, there are two (or more) agents in one problem, where each of them is responsible for optimizing their own objective(s). The hierarchical problems can have more advantages compared to the single-level optimization problems from a single operator’s viewpoint in previous works. The reason is that if the optimization process is done simultaneously from a single operator’s viewpoint, then the optimization results may not be in line with the goals of other operators. Furthermore, in hierarchical problems, the computational burden decreases compared to single-level problems, because the IENGDS does not consider complicated details of μEHs schedules.

B. Research Objective

To address the μEH locating challenge, this article formulates a hierarchical probabilistic planning problem for optimal locating and structural sizing of multiple μEHs in a distribution energy system. Fig. 2 shows the overall framework of the proposed IENGDS and μEH planning problem, where the optimal sizes of μEH components are first determined, and then, the optimal locations of μEHs are determined. In the first step, from the μEH operator viewpoint, the optimal size of a CHP, a boiler, an ESS, and PV panels are determined in each μEH by solving an optimization problem. The objective of the μEH operator is to minimize the operation and investment costs in the planning horizon. Load-dependent CHP exchange efficiencies are also considered to model μEH operation; the input energy of μEHs and the optimal operation of μEH components are scheduled by considering the operational constraints of μEHs. Since the IENGDS operator only receives the required energy of μEHs, the privacy of μEHs and details of the first step operation are preserved. In the second step, the main goal of the IENGDS operator is to determine μEHs’ optimal locations, i.e., the electricity network buses and the natural gas nodes, to connect each μEH to the IENGDS. The optimal power flow and gas flow in IENGDS are also determined by solving an optimization problem, considering the operational and technical constraints of the energy systems. The objective of the second step is to minimize the operation costs of IENGDS that consist of the purchased electricity and natural gas from the upstream network during the planning horizon. It is also important to note that, the proposed hierarchical planning problem is modeled by considering different energy tariffs to represent seasonal
variations in the electricity, heating, gas demands, and PV panel output; and a two-stage stochastic programming framework is developed to model and manage the uncertainties in energy demands and PV generation. Table I shows the taxonomy of the similar studies in the literature for the system operator and customers. The differences between the proposed model and previous works are specified.

The main contributions of this article are as follows.

1) A hierarchical planning model is proposed to obtain the optimal sizing and placement of \(\mu \)EHs in the IENGDS.

2) The two-stage stochastic programming framework is employed in the hierarchical planning model optimization to evaluate uncertain parameters of energy demands and renewable energy resources.

3) Seasonal climate change and its effect on energy consumption have been considered in \(\mu \)EH and IENGDS planning.

The rest of the article is organized as follows. Section II formulates the proposed IENGDS and \(\mu \)EH models, and presents the two-stage stochastic programming framework. Section III discusses the results of a case study with an IENGDS that consists of the IEEE 33-bus electricity distribution test system and the Belgian 20-node natural gas system. Finally, Section IV concludes the study and discusses potential future work.

II. IENGDS AND \(\mu \)EH MODELING AND STOCHASTIC PLANNING FORMULATION

The formulation of the proposed method consists of two steps: the \(\mu \)EH planning step and the IENGDS planning step.

A. \(\mu \)EH Planning Problem Formulation

Fig. 3 presents the proposed \(\mu \)EH structure that consists of a CHP unit, an ESS, a gas boiler, and a PV panel. The main goal of the \(\mu \)EH operator is to determine the optimal capacities of \(\mu \)EH components; the purchased electricity and natural gas from IENGDS are also determined at this step.

Equations (1)–(3) formulate the objective function of the \(\mu \)EH planning problem, seeking to minimize the total costs of each \(\mu \)EH that consist of the investment cost (IC) of the newly installed components and the operation cost (OC) of purchasing energy from the distribution system during the planning horizon.

\[
\text{Min } \text{obj} = OC_c + IC_c \quad \forall c \in \mu EH
\]
Equation (2) denotes the operation cost of purchasing energy from the IENGDS operator during the planning horizon, and (3) considers the installation costs of the CHP, boiler, ESS, and PV panel. Equations (4)–(19) formulate the constraints of the \(\mu \)EH planning problem.

\[
OC_c = \sum_{y,s,t} (ND_y \mu^{EH}_{y,s,t} p^{\mu^{EH}}_{y,s,t}) + \sum_{y,s,t} (ND_y \mu^{EH}_{y,s} \mu^{EH}_{y,s,t}) \forall c \in \mu EH \forall sc
\]

\[
IC_c = C^{CHP} Cap^{CHP} + C^{Boiler} Cap^{Boiler} + C^{ESS} Cap^{ESS} + C^{PV} N^P_{c}, \forall c \in \mu EH.
\]

\[
P^{CHP}_{y,s,t,c} = \frac{df_{y,s,t,c}}{y,s,t,c} G^{CHP}_{y,s,t,c} \forall y \forall s \forall t \forall c \in \mu EH \forall sc
\]

\[
H^{CHP}_{y,s,t,c} = P^{CHP}_{y,s,t,c} / \beta^{CHP}_{y,s,t,c} \forall y \forall s \forall t \forall c \in \mu EH \forall sc
\]

\[
PL_{y,s,t,c} = P^{CHP}_{y,s,t,c} / Cap^{CHP} \forall y \forall s \forall t \forall c \in \mu EH \forall sc
\]

\[
\eta^{CHP}_{y,s,t,c} = 0.9033 \left(P_{CHP}^{y,s,t,c} \right)^3 - 2.9996 \left(P_{CHP}^{y,s,t,c} \right)^4 + 3.6503 \left(P_{CHP}^{y,s,t,c} \right)^5 - 2.0704 \left(P_{CHP}^{y,s,t,c} \right)^2 + 0.4623 P_{CHP}^{y,s,t,c} + 0.3747 \forall y \forall s \forall t \forall c \in \mu EH \forall sc
\]

\[
\beta^{CHP}_{y,s,t,c} = 1.0785 \left(P_{CHP}^{y,s,t,c} \right)^3 - 1.9739 \left(P_{CHP}^{y,s,t,c} \right)^4 + 1.5005 \left(P_{CHP}^{y,s,t,c} \right)^2 - 0.2817 P_{CHP}^{y,s,t,c} + 0.6838 \forall y \forall s \forall t \forall c \in \mu EH \forall sc
\]

\[
SOC^{ESS}_{y,s,t,c} = SOC^{ESS}_{y,s,t-1,c} + P^{dch^{ESS}}_{y,s,t,c} / \eta^{dch} \forall y \forall s \forall t \forall c \in \mu EH \forall sc
\]

\[
P^{dch^{ESS}}_{y,s,t,c} \leq P_{ch} \forall y \forall s \forall t \forall c \in \mu EH \forall sc
\]

\[
SOC^{ESS}_{y,s,t,c} \leq \text{Cap}^{ESS} \forall y \forall s \forall t \forall c \in \mu EH \forall sc
\]

Constraints (4)–(9) denote the output energy of CHP and boiler that depends on the dispatch factor (\(df \)), gas-to-power (G2P) efficiency, power-to-heat (P2H) ratio, and boiler efficiency. The dispatch factor determines how the purchased gas is distributed between the CHP and the boiler. The part load ratio of CHP is expressed in (6), using \(\eta^{CHP}_{y,s,t,c} \) and \(\beta^{CHP}_{y,s,t,c} \) coefficients from (7) and (8), respectively. If \(P_{CHP}^{y,s,t,c} \geq 0.05 \), constraints (7) and (8) are valid; or else \(\eta^{CHP}_{y,s,t,c} \) and \(\beta^{CHP}_{y,s,t,c} \) are assumed to be 0.2716 and 0.6816, respectively [33]. Equations (10) and (11) denote the heat and electricity balance in all \(\mu \)EHs, respectively. Electricity demands can be supplied by CHP, ESS, PV generation, and electricity purchased from the grid; heat demands can be satisfied by CHP and boiler. The operational constraints of ESS are formulated in (12)–(14). Equation (12) represents the state of charge (SOC) of the ESS that depends on the SOC at the previous hour, the efficiency, charging, and discharging rate at each hour. Equation (13) denotes the maximum charging and discharging rates of ESS. Equation (14) represents that the SOC at the end of a day, which should be more than or equal to the initial SOC. The upper limits for imported electricity and natural gas at each \(\mu \)EH are expressed in (15). Equation (16) ensures that the produced electricity from PV at each \(\mu \)EH should be less than its maximum capacity. In this article, the energy profiles of 1-KW PV panel in each season are employed as the base data in the optimization. Therefore, the optimization process determines the optimal number of PV panels (\(N^P_{c} \)) and the output electricity at each \(\mu \)EH. Equations (17)–(19) guarantee that the output energy of CHP, boiler, and ESS cannot be more than their nominal capacities.
B. IENGDS Planning Problem Formulation

The objective function of the IENGDS planning problem is formulated in (20). In the IENGDS planning step, the best electricity buses and natural gas nodes are determined for installing μEHs, by minimizing the operation cost of IENGDS, i.e., the purchased electricity from the upstream network and the purchased natural gas from wells over the planning period

\[
\begin{align*}
\text{Min } \text{obj} &= OC^{\text{IENGDS}} \\
&= \sum_{y,s,t} (ND_s C_{y,s,t}^{\text{Electricity}} P_{y,s,t,\text{Load}}) \\
&+ \sum_{y,s,t} (ND_s C_{y,s,t}^{\text{Gas}} G_{y,s,t,w})
\end{align*}
\]

Equations (21)–(35) describe the optimization constraints of the IENGDS planning problem

\[
\begin{align*}
P_{i,j}^B &= \frac{V_{i,j}^2}{2} \frac{\delta_{y,s,t,i,j} \cos(\theta_{i,j})}{V_{i,j}^2} \\
&- \frac{V_{i,j}^2}{2} \frac{\delta_{y,s,t,i,j} \cos(\theta_{i,j})}{V_{i,j}^2} \\
\forall y \forall s \forall t \forall j \in \Omega_B \forall sc \tag{21}
\end{align*}
\]

\[
\sum_{i,j} \delta_{y,s,t,i,j} \leq 1.1 \sum_{i,j} \delta_{y,s,t,i,j} \leq 1.1 \tag{22}
\]

\[
\begin{align*}
f_{y,s,t,n,m,sc}^2 + (K_{n,m} \rho_{y,s,t,n,m})^2 &\leq (K_{n,m} \rho_{y,s,t,n,m})^2 \\
\forall y \forall s \forall t \forall n,m \in \Omega_N \forall sc
\end{align*}
\]

\[
\begin{align*}
0 &\leq f_{y,s,t,n,m,sc} \leq f_{n,m} \min \rho_{y,s,t,n,m} \\
\forall y \forall s \forall t \forall n,m \in \Omega_N \forall sc
\end{align*}
\]

\[
\begin{align*}
\rho_{y,s,t,n,m,sc} &\leq \rho_{y,s,t,n,m,sc} \leq \rho_{y,s,t,n,m,sc} \tag{26}
\end{align*}
\]

\[
\begin{align*}
&\sum_{i,j} P_{ij}^{\text{Load}_{\text{sub}}_{y,s,t,i,j,sc}} - I_{i,c} P_{y,s,t,c}^{\mu EH} \\
&= \sum_{i,j} P_{ij}^{\text{Load}_{\text{sub}}_{y,s,t,i,j,sc}} - I_{i,c} P_{y,s,t,c}^{\mu EH} \\
&= \sum_{i,j} P_{ij}^{\text{Load}_{\text{sub}}_{y,s,t,i,j,sc}} - I_{i,c} P_{y,s,t,c}^{\mu EH}
\end{align*}
\]

\[
\begin{align*}
G_{y,s,t,w}^{\text{Net}} - G_{y,s,t,\text{Load}} - I_{n,c} G_{y,s,t,\text{c}}^{\mu EH} \\
= \sum_{v(n,m)} f_{v(y,s,t,v(n,m))} - II_{n,c} G_{y,s,t,\text{c}}^{\mu EH}
\end{align*}
\]

\[
\begin{align*}
P_{y,s,t,w}^{\text{Net}} &\leq P_{y,s,t,\text{Load}} \forall y \forall s \forall t \forall sc \tag{30}
\end{align*}
\]

In (21), ac active power flow is adopted in the electricity network. Equations (22)–(24) represent the minimum and maximum ranges of voltage, angle of each bus, and electricity within the lines, respectively. Constraint (25) imposes the Weymouth equation for the operation condition of the natural gas system, which represents the relationship between gas flow within pipelines and nodes gas pressure. The Weymouth constant of pipeline depends on the pipe diameter and line length [34], [35]. Equation (26) ensures that the gas flow and gas pressure should be within predefined ranges. The flow directions in the natural gas system and the maximum natural gas compression ratio are given in (27). The energy balance in IENGDS is formulated in (28) and (29). Equation (28) represents the active power balance of the electricity network; the upstream network can supply the electricity to be transferred to μEHs and each load bus. Equation (29) represents the nodal natural gas balance among the imported gas from the gas wells, the gas flow through pipelines, the gas load of each node, and the gas to be transferred to each μEH. It should be mentioned that electricity and natural gas inputs of μEHs can be obtained from the first step of the optimization problem (i.e., the μEH planning problem). Moreover, binary variables in (28) and (29) could be used to optimize the site selection of μEHs in the IENGDS, where \(I_{i,h} \) and \(I_{n,h} \), respectively, denote binary variables of the optimal locations in the electricity network and the natural gas system. The maximum allowable purchased electricity from the upstream network and the imported gas from gas wells are represented in (30) and (31), respectively. Constraints (32)–(35) enforce the optimal placement of the μEHs in the IENGDS. Equation (32) ensures that each μEH can only be connected to one electricity network bus; equation (34) ensures that each μEH should be installed at one natural gas node; equations (33) and (35) eliminate certain locations for μEHs. Thus, according to constraints (28)–(29) and (32)–(35), constraints of candidate nodes have been reflected in the modeling.

C. Two-Stage Stochastic Programming Planning Framework

Several methods exist in the literature for uncertainty quantification and modeling. For example, the authors in [36] modified a two-point estimation method to consider the uncertainties related to energy demands, wind and PV generation. The authors in [20], modeled the uncertain parameters of the energy demands and wind turbine generation, by employing information gap decision theory and interval method. The authors in [19] used two-stage stochastic programming in the optimal planning of a residential μEH to model uncertainties in energy demands and PV generation. In this article, the uncertainties in the electricity, heat, gas demands, and PV generation are considered in a two-stage stochastic programming model. In particular, in the two-stage
stochastic programming, design variables and operational variables can be decided in different stages of the planning problem. Two-stage stochastic programming can be used in various fields, such as supply chain planning, process design, and operation and infrastructure planning. The most important advantage of this technique is the ability to find optimal solutions for large-scale planning problems [37]. To this end, different scenarios are generated by using Monte Carlo simulations (MCS). A Gaussian distribution is employed for generating several scenarios, and a 5% standard deviation is applied to generate each scenario. The two-stage stochastic programming model divides all the design variables into two groups. The first-stage variables, which are called “here and now variables,” are deterministic parameters, which do not change in different probabilistic scenarios during the planning horizon. The second-stage variables, which are called “wait-and-see variables,” include the rest of variables that are flexible in probabilistic scenarios [38]–[40]. In this article, the first-stage variables include imported energy to μEHs from IENGDS, imported energy to IENGDS from the upstream network and gas wells, and investment decisions, i.e., the optimal sizes and locations of μEHs. The second-stage variables include operational decisions of μEHs and IENGDS during the planning horizon. Fig. 4 shows the variables of the hierarchical two-stage stochastic programming problem in each stage.

![Fig. 4. Variables in the two-stage stochastic programming framework.](image)

III. NUMERICAL STUDIES

A test IENGDS, that consists of the IEEE 33-bus electricity network and the Belgian 20-node natural gas system, is adopted for numerical studies. It is assumed that the IENGDS operator needs to determine the optimal locations of three different μEHs, i.e., the optimal electricity network buses and natural gas nodes for connecting μEHs; the μEH operator is responsible for the optimal component capacities and daily operation schedules of μEHs. To evaluate the effectiveness of the proposed model, three cases are defined and compared.

- **Case 1: (Proposed Optimal Case):** By following the proposed framework, the μEHs components and daily operations are first optimized by the μEH operator, and then the optimal μEHs locations are determined by the IENGDS operator. Both the capacities of μEHs components and the μEHs locations are optimized in this case.
- **Case 2:** The capacities of μEHs components and the natural gas nodes connecting μEHs are the same as those in Case 1; however, the electricity network buses connecting μEHs are different from those in Case 1. Case 2 is designed to show the importance of optimal electricity network buses in the procedure of optimal locating of μEHs.
- **Case 3:** The electricity network buses are the same as those in Case 1, while different natural gas nodes are considered.

In summary, Table II shows the Case studies. Cases 2 and 3 are in line with previous works [21], [23], [24], [26] that optimal μEH sizing and placement were determined in single-level optimization problems from a single operator’s viewpoint.

The model of the μEH planning-step is solved using the interior point optimizer (IPOPT) solver that is a nonlinear programming (NLP) solver. The IENGDS planning step is solved using the basic open-source nonlinear mixed integer programming (BONMIN) solver that is a mixed-integer nonlinear programming (MINLP) solver [11], [41]. It should be mentioned that, since our proposed model is a planning problem, computational speed is not our first priority in comparison with accuracy and optimality. Thus, integer variables have been added to the proposed model. The problems are solved under the global algebraic modeling system (GAMS) environment, using a core i7, 3.7-GHz processor, and 48-GB RAM.

A. Assumptions

The planning horizon is assumed to be 10 a. The investment costs of μEH components are summarized in Table III. It should be mentioned that the economic life of μEH components is more than 10 a [42]–[45]. Thus, the economic life of μEH components in the proposed model is more than the planning horizon of this study, and we can ignore the end-of-life prices and replacement costs. The electricity tariff, i.e., the price of selling electricity from the upstream network to the IENGDS operator, is assumed to be a three-step time-of-use (TOU) tariff as illustrated in Fig. 5.

The gas tariff is constant during the day in each season, which is assumed to be $80/MWh, $50/MWh, $80/MWh, and $110/MWh for spring, summer, fall, and winter in year 1, respectively, by following [24]. Energy tariffs from the μEH operator are $10 more than those from the IENGDS operator. It should be mentioned that electricity and natural gas tariffs are increased by 7% and 5% annually, respectively. These values show the increase rate of energy tariffs during the planning horizon. Moreover, each 1 MWh is considered to be 3412 cubic feet (cf) of the natural gas system.

Figs. 6 and 7 show the base electricity and heat demands in different seasons [24]. In addition, Tables IV–VI present the load coefficients for μEHs energy demands, electricity demand at each bus, and gas demand at each node in the IENGDS, respectively [30]. It should be mentioned that: 1) The energy demands of μEHs at each hour are obtained by multiplying the

<table>
<thead>
<tr>
<th>Components</th>
<th>Investment cost ($/kW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHP</td>
<td>750</td>
</tr>
<tr>
<td>Boiler</td>
<td>300</td>
</tr>
<tr>
<td>Electrical storage</td>
<td>500</td>
</tr>
<tr>
<td>PV panel</td>
<td>1000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Case 1</th>
<th>(Proposed Optimal Case)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case 2</td>
<td></td>
</tr>
<tr>
<td>Case 3</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Load coefficients for different seasons</th>
<th>Case 1</th>
<th>Case 2</th>
<th>Case 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spring</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Summer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fall</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Winter</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| SEIFOSSADAT et al.: HIERARCHICAL MICROENERGY HUB SIZING AND PLACEMENT | 7 |

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on January 21, 2022 at 04:31:08 UTC from IEEE Xplore. Restrictions apply.
Fig. 5. Hourly wholesale electricity tariff in different seasons in year 1 [24].

Fig. 6. Base electricity demand in different seasons [24].

Fig. 7. Base heat demand in different seasons [24].

TABLE IV
LOAD COEFFICIENT FOR μEH DEMANDS IN YEAR 1 [30]

<table>
<thead>
<tr>
<th>μEH</th>
<th>Electricity demand (MW)</th>
<th>Heat demand (MW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.35</td>
<td>0.4</td>
</tr>
<tr>
<td>2</td>
<td>0.4</td>
<td>0.5</td>
</tr>
<tr>
<td>3</td>
<td>0.5</td>
<td>0.5</td>
</tr>
</tbody>
</table>

TABLE V
LOAD COEFFICIENT FOR ELECTRICITY DEMANDS OF IENGDS BUSES IN YEAR 1 [30]

<table>
<thead>
<tr>
<th>Bus</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>p_{Load_{el}}^{(MW)}</td>
<td>0.1</td>
<td>0.09</td>
<td>0.12</td>
<td>0.06</td>
<td>0.06</td>
<td>0.2</td>
<td>0.2</td>
<td>0.06</td>
<td>0.06</td>
</tr>
<tr>
<td>p_{Load_{el}}^{(MW)}</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>p_{Load_{el}}^{(MW)}</td>
<td>0.06</td>
<td>0.045</td>
<td>0.06</td>
<td>0.06</td>
<td>0.12</td>
<td>0.06</td>
<td>0.06</td>
<td>0.06</td>
<td>0.06</td>
</tr>
<tr>
<td>Bus</td>
<td>18</td>
<td>19</td>
<td>20</td>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>p_{Load_{el}}^{(MW)}</td>
<td>0.09</td>
<td>0.09</td>
<td>0.09</td>
<td>0.09</td>
<td>0.09</td>
<td>0.09</td>
<td>0.42</td>
<td>0.42</td>
<td></td>
</tr>
<tr>
<td>Bus</td>
<td>26</td>
<td>27</td>
<td>28</td>
<td>29</td>
<td>30</td>
<td>31</td>
<td>32</td>
<td>33</td>
<td></td>
</tr>
<tr>
<td>p_{Load_{el}}^{(MW)}</td>
<td>0.06</td>
<td>0.06</td>
<td>0.12</td>
<td>0.06</td>
<td>0.2</td>
<td>0.15</td>
<td>0.21</td>
<td>0.06</td>
<td></td>
</tr>
</tbody>
</table>

TABLE VI
LOAD COEFFICIENT FOR GAS DEMANDS OF IENGDS NODES IN YEAR 1 [30]

<table>
<thead>
<tr>
<th>Node</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_{Load_{gas}}^{(kW)}</td>
<td>4.94</td>
<td>5.46</td>
<td>2.41</td>
<td>3.91</td>
<td>3.28</td>
<td>5.63</td>
<td>3.62</td>
<td>3.22</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Node</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C_{Load_{gas}}^{(kW)}</td>
<td>4.37</td>
<td>2.93</td>
<td>3.33</td>
<td>4.54</td>
<td>4.19</td>
<td>3.28</td>
<td>3.26</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fig. 8. Mean output power from the 1-kW PV panel in different seasons [46].

The load coefficient in Table IV with the base electricity and heat demands; 2) the electricity demand of the electricity network at each bus is calculated by multiplying the load coefficient in Table V with the base electricity demand; 3) the natural gas demand at each node of the natural gas system is calculated by multiplying the load coefficient in Table VI with the base heat demand on a heat-to-gas conversion ratio (which is 0.95% in this article). Furthermore, the load coefficients of electricity, heat, and gas demands are increased by 7%, 5%, and 5% annually, respectively.

The conversion efficiency of the boiler is assumed to be 75%, and the ESS has a charging and discharging efficiency of 95%.

The output power of the 1-kW PV panel also varies in each season, and Fig. 8 shows the profiles of the mean PV power output in different seasons [46].

The IENGDS system configuration parameters are adopted from [30]. It is assumed that the IENGDS operator can determine candidate locations for μEHs installation in consultation with the μEH operators. Consequently, the IENGDS operator nominates several buses and nodes for installing each μEH, considering...
the viewpoint of the μEH operator. Therefore, the exact location is determined by solving the proposed optimization problem. Table VII lists the candidate buses and nodes of IENGDS. According to Table VII, each μEH can choose one of the candidate buses and nodes to connect to IENGDS.

TABLE VII
CANDIDATE BUSES AND NODES FOR EACH μEH PLACEMENT

<table>
<thead>
<tr>
<th>Electricity network bus</th>
<th>Natural gas node</th>
</tr>
</thead>
<tbody>
<tr>
<td>μEH1</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td>12</td>
<td>14</td>
</tr>
<tr>
<td>26</td>
<td>16</td>
</tr>
<tr>
<td>μEH2</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>13</td>
</tr>
<tr>
<td>29</td>
<td>17</td>
</tr>
<tr>
<td>33</td>
<td>10</td>
</tr>
<tr>
<td>μEH3</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>3</td>
</tr>
<tr>
<td>17</td>
<td>20</td>
</tr>
<tr>
<td>24</td>
<td>13</td>
</tr>
</tbody>
</table>

TABLE VIII
OPTIMAL CAPACITIES OF μEH COMPONENTS (KW)

<table>
<thead>
<tr>
<th>CHP</th>
<th>Boiler</th>
<th>ESS</th>
<th>PV</th>
</tr>
</thead>
<tbody>
<tr>
<td>μEH1</td>
<td>255</td>
<td>301</td>
<td>1007</td>
</tr>
<tr>
<td>μEH2</td>
<td>306</td>
<td>173</td>
<td>1173</td>
</tr>
<tr>
<td>μEH3</td>
<td>422</td>
<td>312</td>
<td>1296</td>
</tr>
</tbody>
</table>

B. Simulation Results

By optimizing the sizes of μEHs, it is found that the investment costs of μEH1, μEH2, and μEH3 are 1.1 million, 1.3 million, and 1.5 million, respectively. The operation costs of μEH1, μEH2, and μEH3 are 3.8 million, 3.3 million, and 4.9 million, respectively, during the planning horizon. Table VIII presents the optimal capacities of μEH components. Since the electricity and heat demands in μEH3 are higher than those in μEH1 and μEH2, the optimal capacities of the CHP, boiler, ESS, and PV panels are also larger. Moreover, the optimal capacities of the CHP, ESS, and PV panels in μEH2 are more than those in μEH1, due to the higher electricity demand in μEH2 compared to μEH1. However, the optimal capacity of the boiler in μEH2 is smaller than that in μEH1, due to the lower heat demand in μEH2 compared to μEH1. It is also observed from Tables IV and VIII that in the μEHs, the capacity of CHP is increased with the increasing electricity demand. This is partially due to that CHPs generate heat and power simultaneously, and they play a key role in supplying the electricity and heat demands during the high tariff hours.

Fig. 9 shows the optimal electricity network buses and the optimal natural gas nodes for installing the μEHs in Case 1 (optimal case). The operation cost of IENGDS is 118.6 million during the planning horizon. It is found that the total operation cost is increased by 367000 and 110000 in Cases 2 and 3, respectively, compared to the optimal case. It is observed that the optimal locations of μEHs are selected at the buses that are closer to the substation of the electricity network, due to the reduced power losses compared to installing μEHs at the end of IENGDS. Fig. 10 compares the power line losses at a peak load hour (i.e., hour 20) of a typical summer day in different years, between Case 1 and Case 2. Please note Case 3 has the same electricity network bus connections (i.e., same power losses) as Case 1. It is observed that Case 1 has 4% and 27.5% less power loss than Case 2 in Year 1 and Year 10, respectively. Thereby, the operation condition and total cost are improved at the IENGDS with the optimal μEH placement.

Fig. 11 compares the voltage profile between Cases 1 and 2, during a typical summer day at peak load hour (i.e., hour 20) in year 1. Moreover, Table IX presents the voltages at buses 16, 17, 18, 31, 32, and 33 for a typical summer day at peak load hour in different years in Cases 1 and 2. It can be seen that the voltage profile in Case 1 is improved in comparison with Case 2. For example, at bus 33, the voltage amplitude is improved by 0.3%, 0.8%, and 0.2% in the optimal case compared to Case 2 in year 1, year 5, and year 10, respectively.

Fig. 12 presents the total imported active power to the substation from the upstream network in each season in year 1, year
TABLE IX
VOLTAGE AMPLITUDE AT BUSES 16, 17, 18, 31, 32, AND 33 AT THE PEAK LOAD HOUR FOR A TYPICAL SUMMER DAY IN YEAR 1, YEAR 5, AND YEAR 10 (P.U.)

<table>
<thead>
<tr>
<th>Year</th>
<th>Bus Number</th>
</tr>
</thead>
</table>
| 1 | 16 0.936 0.935 0.937 0.918 0.916 0.917
| 5 | 17 0.916 0.915 0.917 0.916 0.916
| 10 | 31 0.906 0.905 0.903 0.903 0.903
| 1 | 32 0.936 0.935 0.937 0.918 0.916 0.917
| 5 | 33 0.916 0.915 0.917 0.916 0.916
| 10 | 33 0.906 0.905 0.903 0.903 0.903 |

Fig. 12. Total imported active power to the substation from the upstream network in different seasons in year 1, year 5, and year 10.

Fig. 13. Purchased electricity from the upstream network for a typical summer day in year 10.

It can be seen that the imported energy from the upstream network in Case 1 is always less than that in Case 2. For example, the total imported active power to the substation in the summer season in Case 1 is 8.53, 42.77, and 297.14-MW less than that in Case 2 in year 1, year 5, and year 10 in the same condition, respectively. Moreover, by annual comparison of results, it is shown that the imported electrical power in Case 1 is 36.23, 128.96, and 658.45 MW less than that in Case 2 in year 1, year 5, and year 10, respectively. Thus, the results verify the importance of μEH placement in the IENGDS, especially for the final year. Therefore, the purchased energy is reduced in Case 1 during the planning horizon compared to Case 2.

Fig. 14. Imported natural gas from two gas wells (GW1 and GW2) for a typical winter day in year 1.

Besides the electrical distribution network, the optimal locations of μEHS could also improve the operation of the natural gas system. Fig. 14 compares the imported natural gas from gas wells in Case 1 (optimal case) and Case 3, during a typical winter day in year 1. Please note that the Case 2 has the same natural gas node connections (i.e., same imported natural gas) as Case 1. It should be mentioned that according to the results, imported natural gas from gas well 1 in Case 1 is more than that in Case 3, because μEHS are connected closer to the gas well 1 in the Case 1 compared to the Case 3. However, according to the assumptions, gas well 2 has more capacity compared to gas well 1. Thus, Case 1 receives less natural gas from two gas wells compared to Case 3. For example, according to Fig. 14, it can be seen that the total received natural gas from gas wells during the selected winter day in Case 1 is 0.7-kcf less than that in Case 3.
through the pipeline 8–9 exceeds its intended capacity of 50 kcf. Accordingly, in Case 1, the natural gas system operates in an optimal and feasible condition, i.e., the pressures of gas nodes are between the minimum and maximum allowable pressure of each node, during the whole planning horizon.

It is worth noting that there are marginal gaps for variables in NLP and MINLP problems. If values of marginal gaps are close to zero, then optimal conditions are provided in the problem. Simulation results show that marginal gaps of variables in both steps are close to zero. Therefore, computational efficiency is acceptable. Moreover, according to [47], the BONMIN solver can guarantee global optimal solutions for the proposed planning model in the IENGDS.

IV. Conclusion

This article presented a hierarchical planning model to design the optimal capacity of μEHs components and the optimal locations of μEHs in an IENGDS. The impacts of seasonal climate changes on energy demands and prices were considered during the planning horizon, and the uncertainties in demands and renewable energy generation were quantified and managed with a two-stage stochastic programming framework.

The effectiveness of the planning model was evaluated on an IENGDS that consists of an IEEE 33-bus distribution system and a Belgian 20-node natural gas system, with three difference scenarios. The results showed that in the optimal case: 1) The total line losses at a peak load hour could be reduced by up to 27.5%; 2) the total purchased electricity from the upstream network could be reduced by up to 3.5%; 3) the total imported natural gas from gas wells could be reduced by 103 kcf in winter days; 4) the IENGDS could operate in an optimal condition without potential electricity network congestion or natural gas pressure violations during the planning horizon. Therefore, the optimal case in the hierarchical planning problem shows that the performance of IENGDS such as line losses, energy usage, and cost can be improved compared to other cases during the planning horizon. Because in the other cases, the μEHs are installed only with the opinion of the μEH operators, and concerns of the IENGDS operator are not considered. As future works, more interaction between μEHs and IENGDS for selling surplus energy of μEHs to the distribution system, reconfiguration of IENGDS components and the optimal placement of μEHs to the distribution system, reliability indices in the objective function of the IENGDS planning-step could be considered in the problem.

REFERENCES

