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a b s t r a c t 

How can independent system operators (ISOs) take advantage of probabilistic solar forecasts to lower genera- 

tion costs and improve reliability of power systems? We discuss one three-step approach for doing so, focusing 

on how such forecasts might help the California Independent System Operator (CAISO) prepare unexpected net 

load ramps, where net load equals gross demand minus wind and solar production. First, we enhance an existing 

solar forecasting system to provide well-calibrated hours-ahead probabilistic forecasts. We then relate the degree 

of uncertainty reflected in the forecasted prediction intervals (independent variables) to error distributions for 

net load ramp forecasts for the CAISO real-time market (dependent variable) using machine learning and quan- 

tile regression. Projected ramp forecast errors conditioned on solar uncertainty are translated into flexible ramp 

requirements that therefore reflect real-time meteorological and solar conditions, improving on typical ISO pro- 

cedures. Detailed descriptions are provided on the quantile regression and kth-nearest neighbor categorization 

methods for accomplishing that translation. Finally, a multiple time-scale look-ahead market simulation model is 

applied to a 118-bus IEEE Reliability Test System, modified to represent the CAISO generation mix and demand 

distributions. The model runs quantify how solar-conditioned ramp requirements can, first, decrease operating 

costs by reducing requirements compared to often conservative unconditional methods and, second, decrease 

generation scarcity events and consequently improve reliability by increasing flexibility requirements at times 

when unconditional forecast-based requirements understate actual ramp uncertainty. Solar-conditioned ramp re- 

quirements are found to reduce generation operating costs by about 2% for the test system (which would be 

equivalent to over $100 million per year for a CAISO-size system). 
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. Introduction 

Variable renewable generation is rapidly expanding in California and

lsewhere, both in the form of behind-the-meter rooftop solar, and as

rid-scale development of wind and solar resources [ 1 ]. As a result, the

hort-term variability in system net load that must be met by dispatch-

ble thermal, hydro, and storage resources is also growing quickly [ 2 ].

t is widely recognized that improvements in solar forecasts can signifi-

antly reduce operating costs, improve system reliability, and even save

apital costs in the long run [ 3 ]. Here, we focus on the value of a par-

icular enhancement to solar forecasting technology: the development

f probabilistic forecasts that not only predict a median or expected
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mount of solar insolation or power production, but also characterize

he uncertainty around that central value. In particular, we describe a

ew approach for using probabilistic solar forecasts to improve the def-

nition of requirements for operating reserves, and illustrate it with an

pplication to procurement of flexible ramp product for the CAISO sys-

em. 

The CAISO and other North American ISOs buy operating reserves

f various types to accommodate this variability for the California mar-

et on various time scales [ 4 ]. Among these reserves are 30-minute

eplacement reserves, 10-minute spinning and non-spinning reserves,

egulation-up, and regulation-down, with the last two handling unex-

ected variations on a sub-5-minute scale. These are acquired in the day-

head CAISO market, with adjustments possible in its real-time market
tember 2022 
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which is part of the western US- and Canada-wide Energy Imbalance

arket (EIM), whose other entities only procure or sell real-time en-

rgy in the EIM). The real-time market includes two separate but linked

arkets, one with 15-minute intervals that can allow commitment of

hort-start generation units, and a subsequent dispatch-only market with

-minute intervals. 

In addition to the operating reserves mentioned above, the CAISO

as developed a new real-time product in 2016 called the flexible ramp

roduct (FRP). FRP, which is the focus of our application, is designed to

osition supply and storage resources in each time interval of the EIM to

easibly accommodate unexpected deviations in net load ramp from that

nterval to subsequent intervals either in the downward or upward di-

ection (designated “FRD ” and “FRU, ” respectively), and to compensate

esources for any resulting foregone energy revenues [ 5–7 ]. Finally, the

AISO is proposing a day-ahead product called the imbalance reserve

roduct that will not only procure resources that could be needed to

eet real-time FRP needs, but also accommodate deviations between

ay-ahead and real-time net load forecasts with a predetermined relia-

ility of 95% [ 8 ]. 

Operating reserves can be expensive to procure, amounting to almost

200 million for the CAISO in 2020 (out of the total energy and ancillary

ervices cost of $8 billion), or about $1/MWh [ 9 ]. Consequently, ISO

ngineers and the research community have paid significant attention

o the general issues of what types, amounts, and locations of reserves

o procure. Optimizing those procurement decisions must strike a bal-

nce between the costs of reserving capacity (e.g., costs of contracting

uel ahead of time in case it is needed, and the wear-and-tear and fuel

ost of keeping extra capacity on stand-by), and the benefits in terms

f improved reliability (avoiding voluntary or involuntary curtailment

f load) and reduced fuel and other variable costs of expensive peak-

ng generation that would otherwise be called upon during periods of

carcity [ 10 ]. 

A crucial input to calculating the desired amount of reserves is the

egree of uncertainty in net load. This uncertainty depends upon time

f day, season, and especially meteorological uncertainty that in turn

ranslates into uncertainty in solar insolation, wind, stream flows, and

emperature-dependent loads. Probabilistic forecasts of these quantities

n appropriate timescales (e.g., 12-36 hours ahead for day-ahead power

arkets and minutes to hours ahead for real-time markets) can inform

stimates of the magnitude of net load uncertainty that needs to be

overed by reserves (e.g., [ 11 ]). Li and Zhang [ 12 ] summarize several

pproaches to using probabilistic forecasts to inform operating reserve

rocurement. The most common one is for “situational awareness ”, in

hich system operators informally consult these forecasts when adjust-

ng reserve requirements. More formal “dynamic reserve ” approaches

hat are under consideration use statistical models, such as quantile re-

ression, to condition net load uncertainty on weather conditions or the

mounts of variable renewables, and then to set the reserve require-

ents based on a maximum tolerable probability of net load exceeding

he reserves [ 13 ]. Due to the exceptionally rapid growth in solar gen-

ration, increasing attention is being paid to using probabilistic solar

orecasts to inform operating reserve procurement, but there is a lack

f systematic methods to integrate such forecasts into operations and

cheduling routines [ 12 ]. 

Here we focus on the potential for using probabilistic solar forecasts

o set ramp product requirements for the CAISO system, which has the

argest solar penetration of any U.S. ISO-based market. 1 Presently, in
1 See also [ 13 ], who propose alternative approaches for using probabilistic 

orecasts for reserves sizing for the CAISO, emphasizing approaches based on 

enerating sets of scenarios of potential solar generation and then calculating 

mplied reserve requirements. Our methodology also differs from the CAISO’s 

roposed use of quantile regression to set FRP requirements [ 5 ] in our use of 

ndependent variables that represent the degree of solar uncertainty (e.g., the 

idth of the central 50% prediction interval between the 25th and 75th per- 

entiles of solar insolation), rather than just expected solar and wind output. 

i  
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2 
rder to decide on how much of the two types of ramp products (FRD

nd FRU) to procure, the CAISO considers the distribution of ramp fore-

ast errors in the relevant time interval over the previous few weeks.

y creating a histogram of those errors, the 2.5% and 97.5% percentiles

an be estimated; the CAISO uses these percentiles to define the MW of

uncertainty component ” in the down- and up-directions to be acquired.

he net down- and up-requirements for ramp in a given period are then

efined as the expected ramp forecast adjusted down and up to account

or those two uncertainty components, respectively. 

Fig. 1 , adapted from CAISO documentation, illustrates the defini-

ion of FRP for the 15-minute EIM market. The y- axis shows the MW

uantity of energy and flexible capacity to be provided by the market,

nd the x- axis is time. Supply, storage, and demand-side resources sub-

it bids (MW quantity and $/MWh prices) to a given market run 52.5

inutes prior to the start of the so-called “binding ” interval (covering

ime t to t + 15), for which financially binding schedules for those re-

ources will be optimized and settled at the prices calculated by the

arket process. The optimization simultaneously optimizes short-start

nit commitment and dispatch for the binding interval along with sev-

ral subsequent “advisory ” 15-minute intervals. Advisory schedules are

ot financially binding, but serve a “look ahead ” purpose to ensure that

esources are positioned in the binding interval so that net loads in later

ntervals are efficiently met. The solid line in the figure shows the fore-

ast made at t-52.5 of energy demand in each interval (here, the binding

nterval plus the subsequent three advisory intervals). Finally, the fig-

re shows, as dashed lines, how much resource capacity needs to be

cheduled to meet FRU and FRD requirements in the advisory intervals.

or example, the type and amount of resources scheduled in the binding

nterval [t,t + 15] have to be able to feasibly move over 15 minutes to

eet the forecast net load in the first advisory interval [t + 15,t + 30] plus

he 97.5 th percentile error (the upper dashed line) in the case of FRU,

nd minus the 2.5 th percentile error (the lower dashed line) in the case

f FRD. This constraint is also imposed in each advisory interval, with

hat interval’s resource schedule having sufficient flexibility to meet the

ange of possible ramps defined by those errors in the next advisory

nterval, as illustrated. 

The requirements for ramp product are enforced by soft constraints

n the CAISO real-time market’s resource optimization software, in the

orm of demand curves for MW of FRD and FRU in each interval. These

emand curves reflect the understanding that the incremental value of

he product declines as more is procured, but that there is not a fixed

equirement or threshold below which a product has a high value (re-

ected in a large violation penalty in the market software) and above

hich it has no value. Further, the CAISO recognizes [ 5 ], as does most of

he industry [ 13 ], that defining requirements independent of informa-

ion on weather and renewable energy production conditions will result,

nder some meteorological conditions, in overly conservative require-

ents well in excess of the actual need in a given day, thus inflating

osts. Meanwhile, under other conditions when uncertainty is greater,

rocurement will be too little, exposing the system to risks of inadequate

exibility reserves and undesirably high probabilities of load balance vi-

lations. Since solar generation variability is a major source of net load

ncertainty, it is logical to expect that forecasts of the net load ramp

ncertainty components shown in Fig. 1 could be usefully conditioned

n weather and renewable conditions [ 5 ], especially solar uncertainty. 

In this paper, we summarize the procedures and some of the results

f a research project directed at translating probabilistic solar forecasts

nto weather-conditioned projections of FRP needs for the CAISO sys-

em (for details, see [ 14 ]). Among these results are an updated Watt-

un solar forecasting system, models linking probabilistic solar fore-

asts to system netload ramp uncertainty, and a comparison of system

osts resulting from the revised requirements with the costs under the

resent CAISO unconditioned histogram approach for a IEEE 118-bus

ystem modified to include a generation mix similar to the CAISO sys-

em ( Fig. 2 ). The rest of the paper is organized into three parts: develop-

ent of probabilistic solar forecasts from the Watt-Sun forecasting sys-
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Fig. 1. Schematic of definition of the two 

components (uncertainty and forecast net 

load change) of CAISO flexible ramp prod- 

uct requirements (FRU = flexible ramp up, 

FRD = flexible ramp down), based on 2.5 th and 

97.5 th percentiles of recent ramp forecast er- 

rors in the same time interval. Note that the re- 

quirements are defined for all intervals in the 

15-minute real-time market (binding interval, 

and subsequent advisory intervals in the multi- 

interval optimization). (Source: Adapted by au- 

thors from [ 6 ]). 

Fig. 2. Organization of analysis of solar 

forecast-based FRP requirements. 
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em ( Section 2 ); quantile regression- and machine learning-based mod-

ling of the relationship of solar forecast uncertainty to forecast errors

or CAISO real-time load ramps, yielding solar uncertainty-conditioned

amp requirements ( Section 3 ); and production cost-based assessment of

ost savings and reliability improvements for the test system ( Section 4 ).

hat section carefully identifies the sources of cost savings that result

rom using solar uncertainty-informed requirements for ramp product.

inally, Section 5 concludes the paper. 

. Probabilistic solar forecasting 

We have taken advantage of IBM’s big-data platform Physical Ana-

ytics Integrated Repository and Services (PAIRS) [ 15,16 ] and quantile

egression of forecast errors (one for each class of weather conditions

dentified by artificial intelligence [ 17 ]) to generalize the Watt-Sun so-

ar forecasting system [ 15 ] to generate probabilistic forecasts. PAIRS cu-

ates terabytes of numerical weather prediction (NWP) models and his-

orical data, including the high-resolution GOES-R imagery (NOAA L2

roduct’s cloud optical depth). By blending multiple NWPs and imagery

ata using deep learning methods and quantile regressions to obtain a

et of critical percentiles, we developed a big data-driven probabilistic

orecasting system, whose flow chart is shown in Fig. 3 . The system has

een implemented for 10 observation sites each in the CAISO and Mid-

ontinent ISO footprints for global horizontal irradiance (GHI) forecasts.

HI represents the overall amount of shortwave solar radiation received

t ground level. A prototype raster-based system using the GOES-R im-

gery has also been developed to create GHI irradiance forecasts on a 3

m pixel grid covering locations without direct observations. 

Fig. 4 shows an example of Watt-Sun probabilistic forecasts of GHI,

llustrating (from left to right) a sunny day, a partly cloudy day, and two

ery cloudy days. The graphs show that, in this case, the sunnier days

ot only have a higher median (green line), but also less uncertainty

measured by the width of the prediction interval between, for instance,

he 25 th and 75 th percentiles, shown in orange and red, respectively). 

Based on P-P plot scores, the Watt-Sun probabilistic forecasts are

etter calibrated than baseline persistence and High-Resolution Rapid

efresh (HRRR) bias-corrected forecasts ( Fig. 5 ). A P-P score measures
3 
he total deviation (mean absolute value) of a plot of predicted versus

mpirical error cumulative distributions from the perfect (45 o ) calibra-

ion line (the total area between the two lines in each figure). 

Figs. 6 and 7 provide further evidence of the quality of calibration of

robabilistic Watt-Sun. Fig. 6 shows actual GHI and Watt-Sun’s reported

robability distributions for the fifteen-minute interval centered on 1:30

.m. local time for Dec. 2019 for the Topaz, CA site. There are 28 days

f data, of which 9 days have values falling above the 50 th percentile.

hether this could happen by chance can be assessed by a, e.g., 𝜒2 

Chi-squared) test; if the test does not reject the hypothesis that the

bservations were drawn from the shown distribution, then it would be

oncluded that the model is well-calibrated for that period. (Such a test

or a set of daily observations for one particular time is reasonable if

t is assumed that errors from day to day are independent, which is a

trong assumption.) The plot shows how the prediction intervals change

rom day-to-day; for instance, Dec. 1-8 were cloudy days with more solar

ncertainty (lower medians and wider intervals) while Dec. 9-20 were

unnier (higher medians, narrower intervals). Plots like Fig. 7 , which is

n example binning of the observed GHI for all daylight hours in one

onth (red) compared to the 5%/20%/25%/25%/20%/5% expected

requencies, provide visual evidence of a good calibration, as its 𝜒2 value

hat indicates that the two distributions are not significantly different. 

. Using probabilistic solar forecasts to create solar-conditioned 

equirements for flexible ramp product 

.1. Weather dependence of net load ramps 

As stated above, the CAISO introduced ramp products in its real-time

arkets that procure generation “ramping ” capacity so that potential

et load ramp uncertainty can be managed feasibly. The purpose is to

educe the frequency of generation scarcity events and real-time price

pikes. Specifically, the up- and down-FRP (FRU and FRD, respectively)

ddress both expected ramps from one real-time interval to the next,

lus an uncertainty component representing possible positive and neg-

tive errors, respectively, in net load forecasts. Presently, to determine

he uncertainty component, the CAISO uses histograms of net load fore-
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Fig. 3. Flow chart showing probabilistic Watt- 

Sun development of probabilistic forecasts of 

solar irradiance (GHI). 

Fig. 4. Site-specific probabilistic global horizontal ir- 

radiance (GHI) forecasts (April 2-5, 2019, Topaz Cali- 

fornia solar site, 5th, 25th, 50th, 75th, and 95th per- 

centiles), Probabilistic Watt-Sun 1.0 system. 
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ast errors on an hourly basis, considering all errors in that hour from

he previous 40 days (if the day is a weekday) or 20 days (if the day is a

eekend) [ 6 ]. After the construction of histograms, the upper and lower

ounds of the 95% confidence interval are used as the up- and down-FRP

equirements, respectively, for that hour. The 95% confidence interval

or accounting for uncertainties is a well-accepted industry standard that

trikes a balance between reliability and economics. We term these “un-

onditional ” or “solar independent ” FRP requirements. 
4 
A reasonable expectation is that the forecast error tends to be greater

uring a partially cloudy day, while being lower in a sunny or com-

letely overcast day. However, by constructing histograms of forecast er-

ors purely from historical data, the CAISO’s unconditional method does

ot reflect the latest weather information and often leads to overestima-

ion of ramp uncertainty under sunny weather conditions and underesti-

ation under partly cloudy conditions. As clearly depicted in Fig. 8 , be-

ow, CAISO’s requirements in two close days (8/7/19 and 8/12/19) are
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Fig. 5. Example P-P for Probabilistic Watt-Sun 

1.0 forecasts (P-P Plot score = 0.054) and HRRR 

bias-corrected forecasts from High-Resolution 

Rapid Refresh (HRRR) system [ 18 ] (P-P Plot 

score = 0.086), May 2019, Topaz California site. 

Fig. 6. Data for χ2 calibration test. Dec. 2019 

actual GHI and Watt-Sun probabilistic forecast 

quantiles, 1:30 local time, Topaz site (Note, 

Dec. 10, 19, 31 values missing). 

Fig. 7. One month’s expected number of expected GHI 

observations by bin (fractile ranges) versus observed 

(daylight hours only), illustrating quality of calibra- 

tion. 

5 
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Fig. 8. Top: realized net load forecast errors (red) compared with the uncertainty components of CAISO’s estimated FRP requirements (upper blue line is FRU, lower 

blue line is FRD) from two days in August 2019 (cloudy (left) and sunny (right)). The bottom curves show the CAISO’s real-time forecasts of system-wide solar power 

production, consistent with those types of days. 

Fig. 9. Quantile regression results (11 a.m.-2 p.m. May 2019) for upward (over- 

forecast) CAISO errors in real-time load forecasts ( y- axis, normalized scale), as 

function of GHI 50% confidence interval width ( x axis). From top, the blue 

dashed lines are the results for linear quantile regression estimates of the 90th, 

75th, 50th, and 25th percentiles of load forecast errors. 
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is the difference between 1) the highest binding interval forecast from the 5- 

minute market among the three 5-minute intervals in period [t + 15,t + 30] (not 

shown in Fig. 1 ) and 2) the first advisory interval forecast made for the 15- 

minute interval [t + 15,t + 30] in the previous 15-minute market run (i.e., whose 

binding interval was [t,t + 15]), shown as the second orange dot on the solid 
lmost identical since the histograms are similar. However, as the blue

ines in the figure show, the weather conditions in these two days are

otally different: the bottom of the left figure presents a lower and fluc-

uating profile of system-wide solar power, suggesting relatively cloudy

eather, while the lower right profile shows a smooth and stable output,

onsistent with sunny conditions. Consequently, the need for FRP is very

ifferent on those two days: greater uncertainties in cloudy days should

ontribute to higher FRP requirements, while sunny weather should be

 reason for lower FRP requirements due to reduced uncertainty. If the

ame amount of FRP is procured in both days, the cloudy day might

ave a high probability of FRP shortage, and hence a risk of capacity

hortages, while the market efficiency would be reduced in the sunny

ay due to over-procurement. 

In order to improve upon current industry practice of weather-

nconditioned reserve requirements, we used quantile regression and

 machine learning method (kth nearest neighbor (kNN) classification)

o relate the 95% confidence intervals in net load forecast errors to

ncertainty in forecasted GHI in order to create solar-conditioned FRP

equirements. These methods are summarized in the next two subsec-

ions. Fig. 9 illustrates that there is a strong dependence of up-ramp

ncertainty (positive errors, shown on the y-axis) 2 on the width of the
2 The upward ramp forecast error for a given interval is calculated by the 

ollowing procedure which is unique to the CAISO. Consider the ramp forecast 

etween intervals [t,t + 15] and [t + 15,t + 30] in Fig. 1 . The upward ramp error 

o

n

f

h

m

6 
5th-75th percentile prediction interval (shown on the x-axis), the latter

erived from the Watt-Sun probabilistic forecasting system (from solar

orecast data such as Figs. 4 and 6 ). 

.2. Using quantile regression (QR) to link solar forecasts to FRP needs 

The QR method [ 19 ], which we used to obtain the relationships

hown as dashed lines in Fig. 9 , can be viewed as an advanced ver-

ion of histogram method used by the CAISO. QR boosts the prediction

erformance of the baseline histogram method by integrating the lat-

st weather information, including but not limited to probabilistic solar

orecasts, into estimates of flexible ramping requirements that the power

rid needs to address net load uncertainty. Specifically, in contrast to

he baseline method where a histogram of unconditional historical net

oad forecast errors are referred to when calculating ramp needs, the

eather-informed QR method relies on an estimated posterior distribu-

ion of net load forecast errors given the inputs of meteorological and

ther variables (especially the forecast probability distribution of solar

rradiance) at a future interval. The posterior distribution of net load

rrors is thus conditioned on the information input (for instance, if the

alue of the x-axis in Fig. 9 is relatively high, i.e., a relatively large

alue of the width of the prediction interval defined by the 25th-75th

ercentiles of GHI), as the blue dashed lines in Fig. 9 show. 

Mathematically, QR estimates the vector of coefficients 𝛽q for each

ine in Fig. 9 (one line for each quantile q considered) by choosing 𝛽q 

hat minimizes Eqn. (1) , below. Define y i as the value of the indepen-

ent variable for the i -th observation (the forecast error for net ramp,

s explained in Footnote 2, above, or just its positive component, as in

he case of upward errors as in Fig. 9 ), and let x i be the vector of in-

ependent variables corresponding to observation i . For instance, in a

ultivariate QR with two input variables, we could have x i 0 = 1 to allow

or an intercept, x i 1 = median predicted solar GHI, and x i 2 = width of

he 25th-75th percentiles-based prediction interval for GHI. Linear pro-

ramming is then used to accomplish the minimization shown below: 
range line in Fig. 1 . Thus, this is the difference between two forecasts, and 

ot between a forecast and actual net load. A positive error indicates that the 

orecast closer in time to actual operations (the binding interval forecast) is 

igher than was anticipated in the earlier market run, and so the system has to 

eet a steeper ramp in net load than anticipated. 
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3 Specifically, “oversupply ” for any particular 15 minute real-time market in- 

terval is measured by the amount that the FRU requirement procured in interval 
𝑀 𝐼 𝑁 

𝛽𝑞 

∑
𝑖 
𝑞 𝑀 𝐴𝑋 

(
0 , 𝑦 𝑖 − 𝛽𝑞 𝑥 𝑖 

)
+ 

∑
𝑖 
( 1 − 𝑞 ) 𝑀 𝐴𝑋 

(
0 , − 𝑦 𝑖 + 𝛽𝑞 𝑥 𝑖 

)
(1)

In words, one starts with an assumed value of a quantile q between

 and 1 (e.g., q = 0.9 would yield the coefficients 𝛽0.9 defining the rela-

ionship between the 90th percentile and the input variables, which is

he top blue dashed line in Fig. 9 ). The first term in (1) is the sum of

he differences (weighted by q ) between the observed value of y i and

he predicted value 𝛽q x i only for i in which the observed value exceeds

hat is predicted. The second term is instead 1- q times the sum of those

ifferences for i where instead the observed value is below the predicted

alue. By weighing the first term q/ (1- q ) times as much as the second

erm, QR attempts to find the relationship (a line in the case of Fig. 9 ,

r, more generally, the hyperplane) that results in fraction q of the ob-

ervations lying below the relationship. 

In this study, load and weather forecast variables (also known as clas-

ifiers) are used as regressors in our QR models to predict distributions

f upward and downward net load errors at future intervals. Since, the

AISO is interested in setting the FRP down and up requirements at the

.5th and 97.5th percentiles, respectively, in theory we could do two QR

egressions, one for q = 0.025 and one for q = 0.975. However, when

 relatively small sample is used, such as the last 30 days, the resulting

elationships are unstable because few observations occur in these tails.

or this reason, we use more stable QR relationships obtained for inter-

ediate rather than extreme values of q , and then assume normality to

xtrapolate tail percentiles. Thus, in the case of upward errors our QR

elationships are estimated for q = 0.5 and 0.9. Then a normal distribu-

ion is calibrated to those values (by obtaining the implied mean and

tandard deviation), and then the desired 97.5th percentile is extrapo-

ated using that distribution. For downward errors, instead q = 0.1 and

.5 are used in the same fashion, with the 2.5th percentile estimated by

alibrating a normal distribution to those percentiles. 

The independent variables we used in the QR are constructed as fol-

ows. First, two solar variables are considered. For a selection of up to

0 solar sites across the state of California, 2 hour-ahead probabilistic

HI forecasts over selected sites with 15-min resolution are used to cal-

ulate GHI m 

and GHI w . The former denotes the average (across sites) of

he 50th percentile (median) of probabilistic forecasts of GHI. Its value

s of particular interest to the procurement of FRP, as an inverse-U re-

ationship between net load uncertainty and median GHI m 

is revealed

y our analysis of the data: it is observed that net load forecasts errors

f a particular time interval are smaller when the value of GHI m 

of the

orecast interval is near its high or low extremes. Meanwhile, net load

ncertainty tends to be highest when GHI m 

is intermediate. The sec-

nd input, GHI w is defined as the average (over sites considered) of the

5th-75th prediction interval width, and measures the 2-hour-ahead un-

ertainty in ground-level solar radiation within a given 15-min interval.

s Figs. 8 and 9 indicate, solar uncertainty is a useful predictor to deter-

ine the amount of FRP procurement. In addition to probabilistic solar

orecasts, 15-min wind forecast and load forecasts from the real-time

AISO energy market are other two independent variables we consid-

red for to estimate FRP needs, as those variables are linearly related to

et load (i.e., net load is total load minus wind and solar power). 

To summarize, the following steps are used to estimate and apply

R models predict FRP-up requirements. (Analogous steps are used for

RP-down requirements.) 

1 Training Data. For a given day, training data (net load forecast errors

y i and independent variables x i , as defined above) are pooled by

hour of the day for the previous N days of the same type (e.g., we

considered N = 30 in the case of weekdays). Thus, the models are

updated daily in a rolling fashion. 

2 Training. QR relationships are estimated by solving Eqn. (1) for q =
0.5 and 0.9, yielding two relationships for each daylight hour. 

3 Determine the FRP Requirements. FRP-up requirements for a given

hour are estimated by inserted the forecast values of x for that hour
i 

7 
in the two estimated QR relationships, yielding estimated 50 th and

90 th percentiles for net load error in the upward direction. From

those values, the 97.5 th percentile is extrapolated by assuming a nor-

mal distribution for the net load forecast error. The latter percentile

is the amount of FRP that can then be used to define the FRP re-

quirement in the fifteen-minute market optimizations for that hour.

For simplicity, our FESTIV-based simulations in Section 4 assume

fixed requirements that can be relaxed at a fixed per MW penalty;

in reality, the CAISO defines a “demand curve ” for FRP that has an

increasing marginal penalty for larger deviations from the require-

ment. 

.3. Using kth-nearest neighbor classification to link solar forecasts to FRP 

eeds 

In addition to the QR method illustrated in Fig. 9 , various specifica-

ions of a machine learning approach (based on the kth-nearest neigh-

or (kNN) classification method [ 20 ]) were also tested with different

ombinations of GHI variables at various solar generation sites in the

AISO. Examples of GHI variables considered include median, 50% con-

dence interval width, and volatility in 50% prediction intervals from

5-minute to 15-minute market interval. The kNN-based method is a

on-parametric classification approach, and it can be viewed as a direct

xtension of the CAISO’s original implementation, since both methods

ely on historical data. In both methods, the upward and downward FRP

equirements at a certain time interval are given by the predictive dis-

ributions of errors in upward and downward net load forecasts, respec-

ively. The difference, however, is that the kNN-based method constructs

osterior (weather-conditioned) histograms by using probabilistic solar

orecasts. 

A brief summary of our application of the kNN-based method to FRP

equirements estimation is given below, and more details can be found

n [ 21 ]. 

1 Characterize the weather conditions : Given probabilistic solar irradi-

ance forecasts during a time interval, the kNN-based method uses

a set of numerical classifiers to characterize the weather conditions

during that interval. 

2 Find similar historical days and construct weather-conditioned distribu-

tions of net load forecast errors : We then find historical intervals with

similar weather conditions to the target interval, where the similar-

ity of a pair of time intervals is represented by Euclidean distances

between two numerical classifiers. After sufficient similar historical

days are identified, we construct histograms using net load forecast

errors from these days and then fit cumulative density functions for

upward and downward errors. 

3 Determine the FRP requirements : The kNN-based method then deter-

mines the up- and down-FRP requirements based on the 95% confi-

dence intervals of the cumulative density functions. 

The performance of the kNN-based method relies heavily on the nu-

erical classifier and the number of closest neighbors. Our study sug-

ests that performance is also sensitive to the size of validation set,

hich consists of 𝑁 previous days [ 21 ]. Fig. 10 compares the out-of-

ample performance of kNN-based models that estimate ramp require-

ents relative to the unconditional method for February 2020, which

re trained with data starting in January 2020. We use the probability

f FRP shortage to assess the reliability levels of the FRP requirements,

hich measures the frequency of actual net load forecast errors exceed-

ng the FRP requirements during the evaluated period. The amounts of

versupply are calculated by summing up excess FRP requirements over

ctual net load forecast errors over the evaluated period, and are used to

easure the economic performance. 3 The figure displays trade-offs be-

ween reliability levels and oversupplies in the form of Pareto frontiers
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Fig. 10. Pareto diagram showing performance of two 

sets of kNN-based machine learning requirements for 

FRU for February 2020, based on probabilistic solar 

forecasting data from each of five solar production 

sites in the CAISO in January 2020. Performance is 

compared to the CAISO baseline histogram method, 

which is not conditioned on weather. The markets rep- 

resent performance under alternative estimations from 

more conservative (upper left, showing more require- 

ments and lower likelihood of reserve shortage, re- 

sulting from using larger validation sets, starting from 

N = 30 previous days at the extreme upper left) to less 

conservative (lower right, resulting from using smaller 

validation sets, starting from N = 5 at the extreme lower 

point). 
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or the case of 2-dimensional classifiers as we vary the size of validation

ets. 

The circular point in Fig. 10 represents the baseline set of require-

ents using the CAISO’s unconditional histogram method. Points lying

o the southwest of the baseline indicate improvements (reductions) in

oth shortage of reserves (an index of reliability, y axis) and oversup-

ly of FRP (x axis), hence these are better solutions than the original

mplementation. The colored lines represent the performance of two

achine-learning based models derived from data from either one or

ve solar production sites in the CAISO. A set of points results from ad-

usting the parameters of each model to yield more (upper left) to less

lower right) conservative requirements. By “conservative ”, we mean

arger MW flexible ramp-up requirements and therefore lower probabil-

ty of actual ramp errors lying outside the requirement, but higher ramp

roduct procurement cost. 

In Fig. 10 , most of the kNN points fall southwest of the baseline

ethod, suggesting that the solar forecasting-based method can both

educe average procurement requirements while improving average re-

iability levels. Therefore, the user can tune the method to emphasize ei-

her FRP oversupply reduction or reliability improvements. For instance,

he figure shows that the best of the two Pareto curves (Site 2) can re-

uce FRP oversupply to meet the present reliability performance (just

nder 8%, as shown on the x axis) by a fifth (from 325 to 250 MW, the

ifference between the baseline and the orange curve, measured at 8%

eliability). Alternatively, oversupply could be maintained at about 320

W while reducing the frequency of reserve shortage from 8% to 6%. 

Ultimately the solar forecast-based requirements used in the simula-

ions of the next section consisted of the kNN results based on the lat-

st weather information. To select the optimal parameters for the kNN-

ased method–i.e., classifiers and the number of nearest neighbours–we

esigned a multi-objective optimization algorithm to dynamically select

he parameters [ 21 ]. 

Fig. 11 gives an example of a set of FRU (left) and FRD (up) require-

ents for the CAISO resulting from this method (blue) that were used in

he simulation of the next section, contrasting them to the FRU and FRD

equirements respectively based upon the CAISO baseline unconditional

istogram method (red) (downloaded from [ 22 ]). By definition, the re-

uirements differed only during daylight hours, because those are the

nly times with solar forecast information. The results show that for this
t,t + 15] (dot at end of first upper dashed line, Fig. 1 ) is in excess of the amount 

ctually needed to meet the binding interval net load forecast in the following 

nterval [t + 15,t + 30]. 

o  

n  

e  

t  

a  

c  

8 
articular day, the solar-informed method increases ramp up require-

ents relative to the baseline, especially during late afternoon hours,

n order to enhance system reliability, while ramp down requirements

re reduced through most of the day. This suggests that the probabilistic

olar forecasts are consistent with greater risks of decreased solar pro-

uction later in the day, but show smaller than typical risks of increased

roduction throughout daylight hours. We next describe our analysis of

he implications of these changed requirements for system production

osts and FRP procurement costs. 

. Production cost assessment of benefits of solar forecast-based 

exible ramp product requirements 

Our simulation of the benefits of solar-conditioned FRP requirements

onsidered the IEEE 118-bus reliability test system [ 23,24 ] with alter-

tions to reflect California ISO generation mix and demand conditions.

n this application, we used requirements developed using the kNN

ethod of Section 3.3 . The size of the modified 118-bus system is ap-

roximately one-tenth of the CAISO in terms of load, and was altered to

eflect 2017 renewable penetration (solar penetration of 1.2 GW, pro-

iding about 10% of the system’s annual energy). The test system also in-

luded steam units (0.9 GW), combustion turbines (1.8 GW), combined

ycle plants (2.4 GW), hydro plants (1 GW), and wind (0.6 GW). The de-

ailed generator and network data can be found at https://github.com/

REL/FESTIV _ MODEL/tree/master/Input/SF2 _ JHUprime _ input/ . Loca-

ions of wind and solar facilities in the 118-bus system are shown in

ig. 12 . Wind and solar capacity factors are based on CAISO data. Due to

ata and high-performance computing facility availability, we focused

n operations during a few selected days (March 9-30, 2020). 

We considered three scenarios in this analysis to identify the bene-

ts of better FRP requirements. Scenario 1 is the ‘baseline’ simulation

hat is based the current unconditional FRP methodology, using avail-

ble historical data on ramp requirements from the CAISO (e.g., red

ines, Fig. 11 ). Scenario 2 is the ‘conditional FRP’ scenario in which

RP requirements are updated based on the kNN method summarized

n Section 3.3 to develop more efficient ramping requirements based on

robabilistic solar power forecasts (e.g., blue lines, Fig. 11 ). The differ-

nces in production costs between Scenarios 1 and 2 describe the impact

f using solar-conditioned FRP. Scenario 3 is the ‘perfect’ forecast sce-

ario which models system operations if the operator has perfect knowl-

dge of the system (i.e., zero netload forecast errors). The difference be-

ween Scenario 3 and any of the other scenarios’ production cost gives

 quantitative measure of “uncertainty induced ” costs. Those are the in-

reases in costs that occur under uncertainty, which are the expenses of

https://github.com/NREL/FESTIV_MODEL/tree/master/Input/SF2_JHUprime_input/
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Fig. 11. Flexible ramp requirements for exam- 

ple day during March 2020 from CAISO base- 

line unconditional method (red) versus kNN 

method (blue) for including solar uncertainty 

information in requirements. Left: FRU require- 

ments; right: FRD requirements. 

Table 1 

Summary of FESTIV simulation results for CAISO-like IEEE 118 Bus System, March 9-30, 

2020. 

Index\Scenario: 1 (Baseline) 2 (Solar-Informed FRP) 3 (Perfect Info) 

Production Cost [$M] 23.445 23.049 23.002 

Uncertainty Cost [$M] 0.443 0.048 0 (by definition) 

Renewable Curtailment [GWh] 69.1 63.9 63.3 

Fig. 12. Sites for solar and wind power plants in the modified 118-bus system. 

The orange/blue/green colors of nodes, respectively, indicate buses with solar 

PV power plants, wind power plants, or both wind and solar connected to them. 

The spatial representation of the 118-bus system is based on Fig. 1 of Ref. [ 25 ]. 
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Fig. 13. Distribution of production cost reductions from using solar forecast- 

conditioned FRP requirements for 22 sample days in March 2020 compared to 

the CAISO baseline method, based upon 118-bus IEEE RTS ‘CAISO-like ” system 
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eneration commitment and dispatch changes to procure ramp product

nd to adjust resource schedules to correct for forecast errors, including

nexpected real-time generation costs that occur if not enough ramp is

vailable to meet actual needs. 

In addition, if system reliability (as measured, for instance, by ex-

ected unserved load) differs among the scenarios, this is also captured

n the production costs, which include the value of lost load in the

odel’s objective function. However, in all our simulations, there was

o unserved demand, so the different FRP requirements in Scenarios 1

nd 2 did not affect reliability. 

All the analysis was performed using the FESTIV (Flexible Energy

cheduling Tool for Integrating Variable generation) [ 26 ] FESTIV is a

roduction cost model that commits and dispatches day-ahead and real-

ime energy, procures reserves and ramp product, and simulates forecast

rrors between day-ahead and real-time, as well as real-time forecast

rrors that occur in the rolling real-time market processes. 
9 
Table 1 shows that the FRP requirements based on probabilistic so-

ar forecasts (Scenario 2) are highly successful, reducing uncertainty-

elated costs by almost 90% (from $443K to $48k) in a 22-day period in

arch 2020. Most of these benefits occurred in a one-week period mid-

onth ( Fig. 13 ). Use of those requirements decreased production costs

y about 2% of total operating costs. Since actual energy and operating

eserve costs of the CAISO system amount to about $8 billion/year, as

oted above, if extrapolated to an entire system the size of the CAISO

or one year, the savings would amount to over $100 million. However,

uch an extrapolation is only suggestive of the benefits of FRP, because

esults may be very different in other months and for a larger system. 

We now examine the simulation results in detail to identify how the

olar-informed FRP requirements of Scenario 2 improved system oper-

tions. A large share of the benefits of the solar-conditioned method

Scenario 2) arose in this case due to reduced FRP requirements for

ome intervals, leading to reduced commitment of conventional gener-
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Fig. 14. Real-time dispatch of four impacted 

generators on March 16, 2020, under baseline 

FRP requirements (Scenario 1, left) and solar 

conditioned requirements (Scenario 2, right), 

illustrating that insufficient FRP-up in baseline 

case resulted in inadequate headroom in inter- 

vals two and three, necessitating real-time com- 

mitment of a costly fifth large generator in the 

fourth interval (time 19.75). 
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Fig. 15. Actual dispatch of all thermal generation in “CAISO-like ” IEEE 118- 

bus system under baseline (unconditional) FRP requirements (red) and solar 

conditional requirements (blue). The reduced thermal production in the solar 

conditioned case indicates that the system can accommodate increased utiliza- 

tion (reduced curtailment) of solar output. 
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tion and turning off of large generators with spinning capacity. This

nabled the system to accommodate more solar output and reduce

urtailment. 

Fig. 14 illustrates this impact by comparing the dispatch of four par-

icular thermal generators in the evening of March 16, 2020, under

cenario 1 (baseline unconditional FRP requirements) and Scenario 2

solar-uncertainty conditioned FRP requirements) (left and right sides

f figure, respectively). The blue areas are the real-time energy produc-

ion, and the orange areas are the “head room ” that can accommodate

nexpected upward ramps in the net load. The baseline scenario (left)

as relatively low evening FRU requirements, so the day-ahead mar-

et believes that it has sufficient excess undispatched capacity on-line

o meet the solar to thermal handoff in the evening. In real-time, how-

ver, the ramp-up turned out to be higher than expected (for instance,

ue to less solar output than expected), and this was reflected in the

mall amounts of “head room ” (orange areas) in the second and third

5-minute intervals in the left side of Fig. 14 . When this happened, the

eal-time market detected that available capacity was depleted in those

ntervals, and so a larger (fifth) generator was then committed in the

eal-time market’s short-term unit commitment procedure. As a result,

he four generators back down slightly in the fourth and fifth inter-

als to accommodate the minimum operating capability of the newly

ommitted generator. By contrast, the larger FRU requirements in the

olar-conditioned ramp scenario (Scenario 2) calculations (e.g., Fig. 11 )

orce commitment in the day-ahead market of an additional smaller

enerator outside of the set of four generators considered in Fig. 14 .

his additional commitment leaves sufficient headroom to accommo-

ate the larger than expected up-ramp in net load in real-time. The ex-

ra headroom shown as the orange areas in the second and third in-

ervals in the right-side figure eliminate the need to commit the larger

fifth) generator we committed in the baseline scenario (Scenario 1).

he result is significant cost-savings, as shown above for this day in

ig. 13 . 

The solar-conditioned FRP requirements also provided other benefits

y providing more capacity in some other intervals by procuring more

RP and avoiding generation scarcity, particularly during the evening

amping intervals as solar production tapered off. In some days, smaller

enerators were committed by the day-ahead model, which turned out

o yield a lower minimum thermal production (in particular, a lower

um of Pmin levels for on-line generators) (e.g., Fig. 15 ). This allowed

he system to deploy rather than curtail solar production in some hours,

aving production costs. 

We note that systems of different sizes or with more or less genera-

ion flexibility could change the above quantitative conclusions. Also,

he results for winter or summer conditions in the CAISO might be

uantitatively different. However, we conjecture that the qualitative im-

rovements seen by the use of solar conditioned FRP requirements are

ikely to still apply; this should be confirmed by future research. 
10 
. Conclusions 

As solar and wind capacity is added to power systems, the need

or —and cost of —operating reserves grows. Furthermore, it is reason-

ble to expect that the potential benefits of conditioning reserve require-

ents on weather and, especially, solar and wind operating conditions

ill increase as well. In this paper, we have used probabilistic solar

orecasts from the probabilistic Watt-Sun forecasting system to create

olar-conditioned requirements for the California Independent System

perator’s newest type of operating reserves, called the flexible ramp

roduct. 

We provide details on two methods to relate solar forecast uncer-

ainty (prediction interval width) to upward and downward uncertainty

n 15-minute ramps: quantile regression and a k th -nearest neighbor-

ased methodology. Based on the 2.5 th and 97.5 th percentiles of the re-

ulting solar-adjusted conditional probability distributions of ramp un-

ertainty, we can define requirements for the flexible ramp product. Us-

ng the k th -nearest neighbor-based requirements, we then estimate the

conomic and reliability benefits from using those requirements rather

han the CAISO baseline (unconditional histogram system) method. This

s done by production costing simulations of a modified 118-bus IEEE

eliability Test System, whose generator mix characteristics and load

hapes resemble the California system. Those simulations indicate a po-

ential production cost reduction of 2% for this system from using solar
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ncertainty-conditioned forecasts, savings which arise from more effi-

ient unit commitment and reduced solar curtailment. 
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