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Energy Trading in Local Electricity Markets With
Behind-the-Meter Solar and Energy Storage

Li He

Abstract—Distributed energy resources, especially residential
behind-the-meter photovoltaics (BTM PV), have been playing in-
creasingly important roles in modern smart grids. Residential net-
load, which is closely tied with customers’ gross load consumption
and weather, is usually the only data available for the market
operator in a local electricity market (LEM). This paper seeks to
design customized prices for an LEM that consists of an agent, BTM
PV, energy storage (ES), prosumers, and consumers. The LEM
agent who owns a community-scale ES system is responsible for
operating the market, determining the internal price, and facilitat-
ing the energy sharing within the community. A hierarchical energy
trading infrastructure is considered, where the LEM agent acts as
the mediator between the external utility grid and customers. A
two-stage decision-making framework, including both look-ahead
ES scheduling and real-time customized price design, is developed
for the agent’s profit maximization. Besides, the impacts of netload
forecasting and BTM PV disaggregation are also investigated. The
customer’s consumption behavior is modeled as a utility maxi-
mization problem. Compared with the benchmark uniform price
design, it is found that the customized pricing scheme could further
improve the LEM agent’s profit by 4% to 130%, depending on the
weather conditions and seasonal load patterns.

Index Terms—Behind-the-meter solar, customized price design,
energy sharing, energy storage, local electricity market.

1. INTRODUCTION

ITH the increasing penetration of distributed energy
W resources (DERs) over the past decade, such as behind-
the-meter (BTM) rooftop photovoltaic (PV) panels, electricity
markets are undergoing a significant transition, from traditional
centralized management to a decentralized, bottom-up, and lo-
calized framework. The fast-growing installation of solar panels
creates a potential to feed massive negawatt power [1] back
into the grid, raising unexpected challenges to power system
reliability. Community solar [2] has shown to be an innovative
local electricity market (LEM) to address this challenge, which
is gaining popularity across the U.S. in recent years. Allowing
neighbors to share their excess PV generation, unused energy
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storage (ES) capacity, and spare roof space, etc., this novel
transactive business mode could benefit prosumers, consumers,
and power grids by reducing the local community’s reliance on
the utility grid, fully utilizing customers’ flexibility to participate
in demand response (DR), achieving a better generation-load
balance, and mitigating unexpected energy crises.

Extensive explorations have been conducted on designing and
evaluating peer-to-peer (P2P) markets, LEM and demand-side
management, among which game theory has been widely used
to address the interaction between different stakeholders. For
example, a Nash equilibrium-based game-theoretic approach
has been used to validate how energy is traded among peers
within a microgrid or community during the bidding process [3],
[4]. A leader-follower game [5], [6], [7] has been used to model
the interaction between the market agent and customers, since
a trustful third-party stakeholder like an agent is needed to
manage and allocate the LEM and supply local customers. In
addition to non-cooperative games, in order to understand the
potential cooperative behaviours between multiple participants
in an LEM, a cooperative game has also become a prevailing
approach that focuses on predicting which coalitions to form,
what joint actions the groups should take, and the resulting col-
lective payoffs. For example, Refs. [8], [9], [10] used cooperative
games to determine how to share PV and ES with cooperators.
Besides, Paudel et al. [11] proposed different game-theoretic
models for P2P trading among prosumers and consumers, such
as a non-cooperative game among sellers, an evolutionary game
of buyers selection, and a Stackelberg game between buyers and
sellers.

In addition to game-theoretic approaches, many other meth-
ods have also shown to be effective to address the pricing
and demand-side management problem in LEM. For example,
auctions [12], [13] are a common method to involve both buyers
and sellers to clear the market. A continuous double auction was
introduced in [14], which focused on a prediction-integration
adaptive bidding strategy that all prosumers and consumers
can perform informed trading. Guerrero et al. [15] proposed
a decentralized P2P energy trading platform based on a continu-
ous double auction considering a physical low-voltage network
constraint, where agents with zero intelligence plus bidding
strategies were considered. Other methods such as machine
learning-based decision-making [16], [17], model predictive
control [18], dynamic programming [19] etc. have also been
explored in LEM.
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Most of the methods mentioned above mainly focus on the
design of a unique price, i.e., a uniform pricing rate is applied
to all customers. In a realistic retail market, however, residen-
tial customers have different daily routines and consumption
preferences, and price discrimination [20] for customers has
recently been explored in the market design, especially in dereg-
ulated energy markets. For example, utility companies have
already offered customers different energy plans, such as flat
rate, time-of-use (ToU), real-time price (RTP), discriminated
price, reimbursed renewable, free night/weekend, feed-in tariff
(FiT) [21], etc. It is found from the literature that the pricing
model plays a crucial role in an LEM, which directly impacts
the participants’ incentives of price-based DR. However, there
still exist research gaps in the existing literature that need to be
bridged.

Although accurate forecasting is desired in system operations,
even with state-of-the-art forecasting models, the errors still exist
in both demand and generation sides. To manage the uncertainty
in both transactive and non-transactive markets, methods such
as two-stage optimization [16], [22] and energy storage (ES)
scheduling [7], [23] have been explored in the literature. Some
existing works have also shown the effectiveness of multi-stage
energy dispatches, e.g., Ref. [24] helps the market operator to
adaptively incorporate the real-time observations into the dataset
and update future decision-making to mitigate the forecasting
uncertainty. Besides, the correlation among the agents within
the LEM could also be leveraged to improve the forecasting
accuracy and promote the profitability, since local customers
might share similar solar power generation profiles and daily
consumption patterns. In addition, the real-time updated infor-
mation in the market could also be leveraged to improve the
future decision-making.

This study is a more comprehensive extension of our previous
work presented in [25]. In our earlier work, we simply assume
that the agent has perfect information of customers’ load, PV
power generation, and consumption preferences. While in the
current study, a deep learning model is leveraged to forecast
customers load and PV power generation, which is more rea-
sonable and practical. The study herein provides an alternative
method to estimate the consumption flexibility of the customer
for cases where only the aggregated netload is available, while
the BTM PV installation and generation is invisible. Two main
research gaps still exist in effective pricing schemes before
LEMs (with high DER penetration) could be widely established.
First, it is important to consider a number of critical factors
in the pricing strategy of an LEM, such as the energy sharing
ability, demand management flexibility, BTM solar capacity of
different customers, and robustness to uncertainties. Second,
although BTM solar forecasting and BTM disaggregation have
been extensively studied with flourishing smart meter data and
advancement in machine learning, there still exist research
gaps on how to leverage the forecasting and disaggregation
results in market operations. Effective and accessible fore-
casting and disaggregation models without relying heavily on

challenging-to-obtain data and private information are desired.
To address these challenges and bridge the research gap, the
main contributions of this paper could be summarized as:

1) A multi-input single-output (MISO) LSTM model is lever-
aged for improving the forecasting accuracy, by which the
spatial relationships between different households and the
community are indirectly considered. Customers’ BTM
solar generation and gross consumption patterns are dis-
aggregated to analyze their consumption preferences and
load flexibility. A price discrimination scheme is devel-
oped to fully incentivize flexible customers to consent to
the maximum energy sharing flexibility.

2) A two-stage decision-making framework for the LEM
agent, including both the look-ahead ES scheduling and
real-time scheduling updating, is developed. Specifically,
stage one is modeled as a cost minimization problem
using the aggregated netload forecasts to optimize the
ES scheduling, with the aim of mitigating the negawatt
fed back to the grid. Stage two is modeled as a revenue
maximization problem to further improve the customers’
energy management and the LEM agent’s profit.

The rest of the paper is organized as follows. Section II de-
scribes the proposed LEM, consisting of agent’s ES scheduling,
customized price design, and customer consumption models.
Section III describes the netload forecasting and BTM PV
disaggregation methods. Section IV shows a case study with
10 customers to evaluate the performance of the LEM price
design. Concluding remarks and future work are discussed in
Section V.

II. OVERALL LEM FRAMEWORK AND METHODOLOGY

The overall structure of the proposed LEM is introduced in this
Section. The LEM consists of an agent (who owns a community-
scale ES system) and A energy sharing customers (including
N, prosumers with BTM PV panels and N, pure consumers,
N, UN. = N).Each customer can only act as either a buyer V,,
or a seller V; at one time, similarly, NV, U N, = N The market
works in an agent-based trading mode: the market agent trades
with all customers with internal customized prices; besides, the
market agent is also responsible for balancing the supply and
demand in the LEM with the external grid under utility prices
(i.e., ToU and FiT prices in this work). The agent possesses a
centralized ES at the aim of mitigating the over-generation PV
of the community.

A. Decision-Making Process

The LEM decision-making consists of two major steps: look-
ahead ES scheduling and real-time prices design, which are
briefly described as follows.

1) Stage I — Look-ahead ES scheduling: The LEM agent
first determines the ES capacity scheduling based on the
aggregated netload of the community to promote the self-
consumption of solar generation and maximize its profit.
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Fig. 1. Hierarchical decision-making for the LEM agent and customers.

Since the state of charge (SoC) of ES is time-coupled, it
is more reasonable to determine the ES scheduling in a
look-ahead manner.

2) Stage 2 — Real-time customized price design: The LEM
agent designs customized pricing schemes for different
customers to fully incentivize the customers’ sharing
elasticity. The agent and customers are assumed to act
rationally and strategically to pursue their own interests,
i.e., maximizing their profit/utilities in this work. Since
the trading in LEM occurs in each hour, the customized
price design and energy consumption occur in a real-time
manner.

In this two-stage framework, the agent decides the ES schedul-
ing in a look-ahead manner. Otherwise, the ES schedules would
completely depend on the current information. For example, the
agent may fully discharge ES when the PV output is limited
if it failed to forecast an upcoming price hike, however, it is
more economical to discharge the buffered energy in the sub-
sequent time slots. Besides, with the two-stage framework, the
forecasting accuracy could be further improved with shorter lead
time and more information the agent could obtain as the market
operates. The overall process of two-stage decision-making for
the LEM agent and customers is illustrated in Fig. 1, by connect-
ing the components and models to be introduced in Sections II
and III.

B. ES Capacity Scheduling

The primary goal of the LEM agent’s ES scheduling is to
promote renewable consumption and mitigate negawatt power
in the LEM. The objective function of the agent is modeled
as minimizing the trading cost C' with the external utility grid,
since the energy sharing within the LEM (i.e., from prosumers
to buyers) does not impact the aggregated netload of the LEM.

S

H
minC =[xt (VL' +a',0) "7 (VL' +a',0)" |
t=h

(1)
N
NL' = (1 —pl) 2

i=1

—A- Orate S xt S A- Crate (3)
SOCmin S SOCt S Socmax (4)
SoCtt +zt.n, 2t >0
t __ ’ [
00" = { SoCt' 4 atfy,  at <0 )

We define (-)™ = max(-,0),and (-)~ = min(, 0). The parame-
ter H is the optimization window (i.e., 24 h), and h is the current
time slot. The parameter C' denotes the trading cost with the
utility grid from the current time A to future H. The parameter
N L denotes the aggregated netload of the community at time ¢,
which is load minus PV generation in this work. The parameters
[ and p stand for the gross load and BTM PV generation,
respectively, and the subscript ¢ denotes the index of customer.
The parameter x* represents the battery charging/discharging
schedule, and 7 is the (dis-)charging efficiency. The parameter
A is nominal capacity of the ES. The terms of —A/C}.qz. and
A/Cate are the lower and upper bounds of the (dis-)charging
energy in each time slot, respectively, and C}.,¢ is the maximum
(dis-)charge rate of the ES. The parameter SoC" is the SoC of
the ES at the end of time slot ¢; SoC,,;, and SoC,,. are the
lower and upper limits of the ES, respectively.

C. Agent’s Customized Prices Design

In a deregulated electricity market, customers are allowed
to freely choose their desired pricing schemes. Building upon
this, a customized price design framework is further proposed
to fully incentivize customers’ flexibility in energy sharing. If
consumers act rationally and strategically to pursue their own
self-interest, i.e., maximizing their utilities in this work, then
the problem falls squarely in the realm of game theory, and
in particular, choose the best action by responding to different
prices designed by the retailer. A successful price-based DR
program should be designed to attract the interest of customers
to participate in, through the provision of incentives to impact
their original behaviour while at the same time minimizing their
discomfort. To make the customized prices attractive, the LEM
agent should ensure that the customers gain more benefits com-
pared with the previous pricing scheme. In this way, consumers
are willing to accept the customized price, since they can achieve
higher utilities or lower costs with the customized price. In this
work, the following constraint is implemented as:!

T <Ap <As <7 (6)

The buying prices A, refer to the solar buy-back rate for sellers
N5, while the selling prices A4 refer to the energy charge for
buyers AV, and Aj, < A is to ensure the agent’s profit. Besides,
Ap and A prices are constrained by the utility price, i.e., the FiT
() and ToU ().

't should be noted that the prices and consumption hold V¢ € [h, H] for
(2)—(12), and the superscript ¢ of all time-dependent parameters is omitted in

(6)-(12).

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on June 16,2023 at 07:42:39 UTC from IEEE Xplore. Restrictions apply.



110 IEEE TRANSACTIONS ON ENERGY MARKETS, POLICY, AND REGULATION, VOL. 1, NO. 2, JUNE 2023

Based on the discussion above, the real-time profit maximiza-
tion of the customized prices design is formulated as:

le ® FEy — ZX})@ES —7msAE, AE >0
Z)»SQEb*Z)vbQEs *’/TfAE, AFE <0

(N
where E} and E s denote the total demand set from buyers
{[li = pi],i = 1 : N}y } and supply set fromsellers {[p; — l;],i =
1 : N} inside the community, respectively. The parameters A 5
and A, denote customized prices set for buyers and sellers,
respectively. The parameter A E' denotes the imbalance between
supply and demand, which is defined as:

max P = {

AE=YEy—» E.+u (8)

The imbalance needs to be mitigated with the utility grid, and
x is a known number which is already obtained from (1). A
positive A E denotes that the agent has to purchase power, and a
negative value denotes feeding negawatt back to the grid. Since
the ground truth FEp and Eg, including individual [; and p;,
are not available for the LEM agent, the customized prices are
determined based on the netload forecasts and disaggregation,
which will be introduced in Section III.

D. Customers Consumption Model

In this work, all customers are assumed to act rationally and
strategically to pursue their own interest, i.e., aiming to find an
optimum gross consumption scheduling (/) by responding to
different prices (A) across a predefined optimization window H.
The customers’ objective could be to minimize the daily cost [3],
[8], minimize the inconvenience of DR [26], or maximize the
satisfaction level of consumption [7]. In this paper, the utility
function from [16] is adopted, which describes the customers’
consumption preferences as two parts: the satisfaction from
consuming energy and the cost of trading energy.

kiln(1 +1;) — as(l;

— i), li > pv;
ko In(1+ L) — 2o (ls ©)

max U; = {

—pi), Li <pv;
For consumers, p = 0.1In (9), k; In(1 4 ;) is the utility achieved
by the customer ¢ through consuming energy [. The logarithm
In(-) function has been widely used in economics for modeling
the preference of users due to its close relation to fair DR [7].
And (1 + e) is a typical modified form to avoid —oo. A greater
value of k indicates a higher consumption willingness. Besides,
it is derived from (9) that a higher selling price A, will result
in a higher consumption for a buyer (I; > pv;), while a higher
buying price A, will encourage a seller (I; < pv;) to trade more
energy by adjusting consumption.

To solve (9), we find that the customers’ decision variables ()
are dependent on the prices (A) designed by the market agent.
Thus for any given price A, or A, at each hour, the customer ¢
will adapt its optimal consumption [ as the best response to A

for maximizing its utility U;, which is calculated as:
I} = argmax U;(k;, l;, pvi, Ay As)

o ki/)\s—l, lZZP’UZ
Cki/a =1, 1 < pu;

As for the consumption preference parameter k, we consider
two different values, namely, i) the ground-truth %, which re-
mains as private information and is only accessible to customers
themselves, and ii) the estimated 12:, which is the agent’s inferred
value based on the estimation. For example, in Refs. [27], [28],
the price-consumption response data was leveraged to estimate
the consumers’ preference. In this work, the customer’s ground-
truth k is calculated based on the original gross load and the
utility prices (i.e., ToU and FiT). Specifically, the customers are
assumed to have adapted their original gross consumption as the
best response to the original pricing scheme [29]. And the private
ground-truth & of customer is obtained by reverse-engineering
(10) with its real gross load, PV generation, and utility prices,
which is calculated as:

(10)

L )Ls(l;f + 1), l,’ 2 pU;
v )»b(l;»k + 1), ll < pv;

However, customers’ real load and PV generation data are not
available to the agent, and the agent needs to disaggregate the
gross load and PV generation via the only accessible data, i.e.,
netload, which will be introduced in the next section.

If a customer’s behavioural characteristics, together with the
appliance identification, could be obtained, then the customer’s
residential daily patterns could be leveraged for more accurate
DR modeling. In this work, the appliances information is not
available due to limited data availability. To streamline the
model, the following constraint has been added to the gross load.

(1)

li, S [lmwu lma.’c] (12)

where [I,,I" ]is the range of customer i’s electricity con-
sumption, which can be extracted from historical usage.
Convergence Analysis: The optimal solution obtained from
(10) holds when it is located within the consumption constraint
(12). Otherwise, the optimal solution [} will always lie on the
boundary due to its strict concavity. Thus, each customer has
an existing and unique best response to any price designed by
the agent. Besides, there are no coupled constraints between
customers, thus each customer’s response is independent with
others. By substituting (10) into (7), the Hessian matrix of P is
negative definite, thus there also exists a maximum profit in a
bounded region 7, 4], indicating that the agent has an a unique
pricing strategy to maximize its profit. A similar proof process
could be found in Ref [7], where the authors proposed to prove
the existence and uniqueness of the Stackelberg Equilibrium.

III. NETLOAD FORECASTING AND BTM PV DISAGGREGATION

In the previous section, we introduced the customers’ con-
sumption model. However, since customers’ gross load [ and
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Fig. 2. Gross load and netload curves of (a) 1 customer, and (b) 10 customers
in a week.

BTM PV data p in (9) are unavailable to the retailer, it is chal-
lenging to accurately analyse the customers’ ground-truth gross
consumption behaviors. To address this challenge, we propose to
disaggregate the only accessible data (i.e., netload) into BTM PV
generation and gross load. Since the solar generation p cannot
be used for DR, the consumption flexibility only derives from
the gross load. We first propose a forecasting-assisted pricing
model that could help the LEM agent to predict the aggregated
as well as individual netload in the market. Then we use the
historical netload dataset to estimate the maximum generation
and then disaggregate the netload into BTM PV generation
and gross load. After disaggregation, the k is calculated by
reverse-engineering (9), then the customized price for individual
household is determined.

A. Long Short-Term Memory Netload Forecasting

Long short-term memory (LSTM) is an artificial recurrent
neural network architecture with feedback connections, which
is capable of processing single data points as well as entire data
sequences. To better capture the temporal dependencies of a time
series, LSTM introduces different gates which could regulate the
gradient flow of the network. Such characteristic is ideal for load
forecasting since the customers’ consumption has been proven
to follow certain routines due to strong temporal relations. A
common LSTM unit is composed of a memory cell ¢, an input
gate i, an output gate o, and a forget gate f. The cell remembers
values over arbitrary time intervals and the three gates regulate
the flow of information into and out of the cell. The detailed
LSTM formulations could be found in [30].

The aforementioned traditional LSTM is also referred to
the traditional single-input single-output (SISO) model, which
means only time-series load consumption of the selected house-
hold is used as input to predict its future load. Only temporal
dependencies are consider in the SISO model. This paper adopts
a multi-input single-output (MISO) LSTM [31] for netload
forecasting, by which the spatial relationships between different
households within the LEM and the community aggregated
netload are indirectly considered. Fig. 2 presents the gross load
and netload curves of 1 customer and the aggregation of 10
customers. It can be seen that the BTM PV has a significant
impact on the netload curves, which makes it a duck curve. Due
to customers’ various consumption behaviors, itis challenging to
accurately forecast individual gross load, as shown in Fig. 2(a).

Power (kW)

0o 2 4 6 8§ 10 12 14 16
Time (h)

Fig. 3. Netload curves of prosumer 1 in January 2018.

However, such volatility can be mitigated by aggregated fore-
casting, since the aggregated curve is smoother and more stable
compared with individual curves, as shown in Fig. 2(b).

In this work, the individual and aggregated netload are gener-
ated separately. The reason to separate two different forecasts is
that the agent needs more accurate aggregated netload forecasts
to determine the look-ahead capacity scheduling of the central-
ized ES. Besides, individual netload is also desired to design
customized price for each customer. More precisely, in this work
each individual customer’s netload forecasts are generated in
parallel using the aforementioned SISO LSTM model without
additional input from peers, due to various consumption behav-
iors and weak correlations. To improve the forecasting accuracy
of the aggregated netload, historical netload profiles of addi-
tional household are simultaneously fed into the MISO LSTM
model. The normalized Root Mean Square Error (nRMSE) is
calculated to evaluate the accuracy of the proposed netload
forecasting.

1 n no 2
nRMSE = \/Zk=1 (U6 — Yn) 13)
Ymax — Ymin

n

where ¢ and y;, denote the forecasted netload and actual net-
load, respectively, and n denotes the number of data points. The
normalization is based on the difference between the maximum
and minimum values.

B. BTM PV & Gross Load Disaggregation

The essential reason of BTM disaggregation is that the netload
is the only data that the LEM agent can collect from customers.
BTM disaggregation can improve the accuracy of gross con-
sumption behavior analysis of customers with inaccessible BTM
PV generation data. Fig. 3 shows a typical prosumer’s netload
curves in a month. There are three prerequisites in estimating
the BTM PV generation by only leveraging the historical netload
curves.

1) The netload curves contain consumption noises due to
some periodic appliances (e.g., router, freezer, and refrig-
erator) in the household.

2) The gross consumption never drops to zero, thus there
exists a power floor for the netload curve, which occurs in
an unoccupied case or no activities.

3) The observed negative netload should never exceed the
maximum clear-sky PV generation.
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Specifically, we propose to leverage a method that only re-
quires the historical netload data and a standardized PV gen-
eration fraction pgq by following [32]. In a community, the
neighbors with PV panels show similar output trends due to
strong spatial correlations while only vary in the multitude. And
those un-monitored BTM PV generation can be estimated by:

Pi = Pstd * Gmaz.i (14’)

where pg:q 1S the monitored standardized PV generation and
G mae 18 the estimated maximum generation. The standardized
BTM PV generation is obtained by scaling the available capacity
into 1 kW, which indicates the trend of solar generation in the
LEM area over the day. While the ground-truth PV capacity
(G naz) of each prosumer is unavailable for the LEM agent. This
standardized information could also be altered with other data
such as weather features, location, panel information, observable
PV generation, sky images, etc., if available to the agent.

For each prosumer ¢ € I at time ¢ € H on all available days
D, find the minimal netload value nl~ (¢):

n = 1 ; 1
nl; (t) de%l,ltréH nl;(d,t) (15)
The minimal netload set is obtained as:
nl;” = [nl; (1),nl;(2),...,nl; (H)] (16)

Then the nl; ~ reflects the netload when the maximum difference
between the gross load and BTM PV generation occurs. How-
ever, individual nl;~ does not necessarily imply same results
for other prosumers in the LEM. The maximum generation day
d™ is calculated by matching nl;~ with the netload curves in
D by finding the minimal error. Without loss of generality,
d* is determined via a majority voting among all prosumers
N,. After determining the maximum generation day d*, the
minimal hourly nocturnal netload data (i.e., gross load without
solar generation) on d™ is used as the power consumption floor
and consumption noise €. The hypothesis from [33] is that if
the BTM PV generation is near its maximum potential (e.g.,
clear sky generation) and the energy consumption is low (e.g.,
when a house is unoccupied or no human activities), the best
fit lower bound could be estimated by a few data points. By
subtracting the power consumption floor and consumption noise
€ from the minimal netload set nl; , the maximum BTM PV
generation can be estimated after denoising using a Lowess (i.e.,
locally weighted scatter plot smooth) method to get a smooth
output curve of clear-sky solar generation. After obtaining the
maximum generation capacity of each prosumer G,;,4,.; and the
standardized PV generation fraction pg4, the BTM generation
p; could be estimated using (14). The Mean Absolute Percent
Error (MAPE) is leveraged to evaluate the accuracy of the
proposed disaggregation method.

Uk — Yk

1 n
MAPE = = Z ”

n
k=1

a7

where g, and y;, denote the estimated and ground-truth output,
respectively, and n denotes the length of time. A lower MAPE

indicates a higher accuracy in disaggregation. The calculation is
based on gross load desegregation due to MAPE’s intolerance
to zero PV generation.

IV. CASE STUDIES

To evaluate the effectiveness of the proposed LEM, the
following scenarios are selected for comparison: (i) Baseline:
represents the scenario with ToU and FiT prices adopted in [8].
(ii) SP: represents the scenario with single (uniform) hourly price
design, which is developed from [7], and (iii) CP: represents the
scenario with customized hourly price design. It is important
to note that the focus of this paper is not to develop the most
accurate netload forecasting and BTM PV disaggregation meth-
ods. Other cost functions, ToU/FiT prices, load/PV datasets,
forecasting models, BTM PV disaggregation methods, and ES
parameters are also compatible with the proposed framework.

A. Experiment Setup

The developed LEM is evaluated with a case study containing
10 customers (7 prosumers with PV panels and 3 pure con-
sumers) in Austin, Texas.? The netload with a 1-hour resolution
over 12 months from January 2018 until December 2018, is
selected in our case studies. The ground-truth PV generation
is only used for evaluating the disaggregation accuracy. The
missing or abnormal data (approximately 5%) is interpolated
using neighboring observation.

The LSTM model adopts a deep learning structure with one
hidden layer with 200 hidden units, an initial learning rate of
0.005, a dropout rate of 0.2, and the maximum number of epochs
of 150. The training algorithm, adaptive moment estimation
(Adam), is leveraged to update the training net.

The ToU and FiT price schemes are similar with those in [7],
which are also illustrated in Fig. 6(a) as heatmaps. The on-peak
hours are 10:00 to 15:00 and 18:00 to 21:00, with a rate of 13.8
¢/kWh. The flat hours are 7:00 to 10:00, 15:00 to 18:00, and
21:00 to 23:00, with a rate of 8.6 ¢/kWh. The remaining hours
are set as off-peak hours with a rate of 3.7 ¢/kWh. The FiT holds
aconstant rate as 3.5 ¢/kWh for all hours. For the ES parameters,
we consider a maximum C,.q¢. of 0.5, SoC' € [0.05, 0.95] with
an initial minimal value 0.05, and 7 = 0.95. The ES capacity is
chosen to be 40 kWh in this work.

The netload data of the 10 customers (referred as c1-c10,
in which ¢5, ¢8, and c10 are pure consumers without BTM
PV) and the aggregated netload are shown in Fig. 4(a)—(k).
All the prosumers have similar daily diurnal curves with vary-
ing capacities due to strong spatial correlations. Besides, the
negative netload curves also correspond to different BTM PV
installation capacities. It is observed that the profiles have evi-
dent various nocturnal patterns, indicating different consump-
tion preferences of customers. Among the 10 customers, c4
and c9 have the highest load level during nocturnal times, with
approximately 6 kW. The customers of cl, c6, c7 and c9 have

2[Online]. Available: https://www.pecanstreet.org/dataport/
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Fig. 4. Hourly statistics of customers’ (a)—(k) and aggregated (Agg) netload
in January 2018. The box represents the middle 50%, with the median as the
black line in the box. The whisker lines indicate the maximum and minimum
values of the data. The outliers are illustrated as grey bubbles.

TABLE I
ACCURACY OF NETLOAD DISAGGREGATION, MAPE(%)

cl c2 c3 c4 c6 c7 c9
10.12 13.76 1932 6.38 10.71 1244 9.53

Agg
1.31

the highest negawatt during diurnal periods, with a maximum
of approximately —4 kW. Regarding the variability in netload,
most customers prefer to consume energy between 20:00 and
24:00, some customers also have morning consumption peaks,
while customer 5 has no obvious periodicity compared to other
customers. The aggregated netload shows a typical duck curve
with negawatt power, which constitutes the motivation of our
work.

B. BTM PV Disaggregation Results

Since solar feature time series has strong seasonal patterns,
the gross load disaggregation and netload forecasts are gen-
erated monthly. Using the estimated maximum generation of
each prosumer and standardized PV generation, the BTM PV
generation could be extracted, since this step does not require any
forecasting information. The netload disaggregation accuracy is
summarized in Table I. Due to the variability in netload, the ac-
curacy also varies among different prosumers. It is observed that

T
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Fig. 5. One-week BTM PV generation of ¢l from netload disaggregation.

TABLE II
CORRELATION MATRIX BETWEEN THE AGGREGATED NETLOAD AND NETLOAD
OF EACH CUSTOMER

Agg cl c2 c3 c4 c5 c6 c7 c8 c9 cl0
Agg 1.0 092 092 084 086 036 094 091 0.10 0.86 0.12
cl 092 10 091 076 073 021 094 091 -0.07 074 -0.05
c2 092 091 1.0 077 074 032 09 086 -0.01 076 0.01
c3 084 076 077 1.0 067 025 078 0.73 0 0.68 -0.01
c4 08 073 074 067 1.0 034 075 073 008 0.67 0.13
c5 036 021 032 025 034 1.0 027 023 012 028 023
c6 094 094 091 078 075 027 1.0 091 -003 075 0.02
c7 091 091 086 073 073 023 091 1.0 002 072 0.05
c® 010 -0.07 -0.01 0 008 0.12 -003 012 10 007 025
9 086 074 076 068 067 028 075 072 0.01 1.0 0.11
cl0 012 -0.05 0.01 -001 0.3 023 002 005 025 0.1 1.0

Note: The high correlation coefficients (>0.9) are marked in colors,
and only upper triangular is marked. The grey cells highlight the
correlation between three pure consumers.

the aggregated accuracy is better compared with individual dis-
aggregation, due to the high data availability, i.e., ground-truth
netload and standardized PV generation. Fig. 5 also presents the
BTM PV generation of cl from netload disaggregation in the
first week of January 2018.

C. Netload Forecasting Results

As introduced in Section III-A, the individual netload forecast
is generated using the SISO LSTM model, while the aggregated
netload forecast is obtained using the MISO LSTM model.

The forecasting setting follows [31] and the data spilt is
0.7/0.2/0.1. The last day of testing set is used to evaluate the
LEM performance. Compared with [31], a modification is made
in our work; instead of feeding all households’ netload data
into MISO LSTM, we just pick out the most correlated ones. A
Pearson correlation matrix based on the training data is shown
in Table II. It is seen that the aggregated netload and some
prosumers’ netload are highly correlated. Besides, there also
exist some strong correlations between some prosumers due
to highly correlated BTM PV generations and similar weather
features. However, the correlations between pure consumers 5,
8, and 10 are relatively weak, indicating various consumption
preferences of consumers. This observation also holds to indi-
vidual prosumers’ gross load.

Though the forecasting model is capable of generating fore-
casts at multiple forecasting horizons, only 1-day-ahead (1DA)
and 1-hour-ahead (1HA) load forecasts are generated in this
study. The forecasting results are summarized in Table III
Generally, 1HA forecasting outperforms 1DA forecasting at
individual levels, thus it is better to design the real-time cus-
tomized prices using 1HA data. Similarly, considering member
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TABLE III
FORECASTING ERRORS [%] SUMMARY

Customer cl c2 c3 c4 c5
nRMSE-IDA 1596 1336 17.25 1874 4047
nRMSE-1THA  7.58  6.64 1439 11.43 24.63

Customer c6 c7 c8 c9 cl0
nRMSE-IDA 1736 16.07 29.93 1829 28.36
nRMSE-1HA 729 854 1429 9.75 1840

Agg nRMSE-w/o 17.78 6.91

Agg nRMSE-w-1 29.53 7.26

Agg nRMSE-w-2 IDA 2859 1HA 6.55

Agg nRMSE-w-4 24.99 5.94

Agg nRMSE-w-6 26.88 7.57

Note: w/o refers to the case of SISO, w-x refers to
the case of MISO, and x is the number of extra
customers’ data as multi-inputs (ranking in
descending order by correlation coefficients).

(a) 3.7 8.6 13.8 8.6 13.8 86 3.7

T‘_)U Prices
FiT ¢/kWh

13.8

5
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©
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[=N = e R e S

Time

Fig. 6. The customized energy sharing prices of 10 customers on Jan 31.
(a) ToU/FiT price, (b) customized price (CP), and (c) single uniform price (SP).
The x-axis denotes the time, and y-axis represents price schemes for different
customers. The color stands for the price (¢/kWh). Positive values denote the
internal selling prices designed for buyers, and negative values denote solar
buy-back rates for sellers within the LEM.

customers’ time series as additional inputs in the MISO-LSTM
could also improve the 1HA forecasting accuracy. We have
found that adding 4 extra customers’ data with the highest corre-
lation yields the best performance for IHA aggregated netload
forecasting. However, for 1DA aggregated forecasting, since the
aggregated level is more predictable, adding extra individual
inputs may cause over-fitting problems. This observation also
validates the results in [31]. Thus the look-ahead ES capacity
scheduling will be determined using 1DA aggregated netload
forecasting.

D. Market Performance

1) Price Schemes: Fig. 6(a) shows the ToU/FiT price
schemes; Fig. 6(b) and 6(c) present CP and SP design for the
10 customers, respectively. Positive values denote the internal
selling prices designed for buyers, and negative values denote
solar buy-back rate for sellers within the LEM.

TABLE IV
UTILITIES ($) OF CUSTOMERS AND BENEFIT ($) OF THE AGENT, JAN 31, 2018

Customers’ Utility ($)

CP SP Baseline CP N Baseline
cl 43695 43541 4.3531 c6 53813 53782 5.3766
c2 3.92558 39187 3.9182 c7 8.8368  8.8162 8.8152
c3 47803  4.7557 4.7549 c8 12,6109 12.3000 12.2943
c4  25.1207 22.8676 22.8623 | ¢9 14.7221 14.7091  14.7065
c5 48512  4.6530 4.6494 | c10 9.3840  8.9681 8.9624

Agent’s Profit ($)
Baseline w/ forecasting: 3.3439 Baseline w/ ground-truth: 4.1889
SP w/ forecasting: 4.6783 SP w/ ground-truth: 6.1727
CP w/ forecasting: 9.4534 CP w/ ground-truth: 10.8574

The infeasible range of the internal designed prices is [—3.5,
3.7] ¢/kWh, i.e., buy-back rates lower than FiT and selling rates
higher than ToU are unacceptable for customers. Otherwise, the
customers may switch to other retail agents or directly trade with
the external utility grid. During 0:00-8:00 and 17:00-24:00,
the internal price is same with the utility ToU/FiT price due to
no/low BTM PV generation. The price transition from positive
to negative values indicates the role of the customer is changed,
from buyers to sellers, and vice versa.

The LEM agent designs different customized pricing schemes
to encourage customers to participate in energy sharing, thereby
maximizing its profit with the assistance of ES. By comparing
Fig. 6(a)—(c), there exists a potential price discrimination with
CP in the LEM, since each customer’s flexibility in the energy
sharing is different. It is observed from Fig. 6(b) that, the CP
design varies for different customers at each hour during 8:00-
15:00. For example, the customers of c2, c6, and c9 are offered
better selling rates lower than ToU during 8:00-9:00, and c9
is offered a better buy-back rate in the next hour. C4 only acts
as a seller during 10:00-14:00, with the shortest time internal
among all prosumers, which also corresponds with the netload
data shown in Fig. 4(d). As a result, during 9:00-10:00 and
14:00-15:00, c4 is offered significantly better rates compared
with the ToU price due to its higher sharing flexibility. In 15:00—
16:00, c3 and c7 are offered higher buy-back rates, and cl, c2,
and c3 are offered higher rates in the next hour.

It is seen from Fig. 6(c) that with the SP design, the hourly
buy-back rate is identical to all sellers in each hour, and similarly,
a unique selling price also applies to all buyers. Most sellers
are offered with selling prices that are same with FiT, since
their excess energy has to be sold due to higher PV generation
and lower consumption; otherwise, the excess energy has to be
curtailed. In the SP price design case, not all customers’ sharing
elasticity and DR are fully utilized, while the CP case could
promote the customers’ energy management and help achieve a
higher profit for the LEM agent.

2) Economical Analysis: Table IV summarizes the 10 cus-
tomers’ utilities and the agent’s profit under the two pricing
schemes and the baseline. The grey color highlights the pure
consumers without PV panels. Compared with the baseline, both
CP and SP cases yield higher utilities. As the result shows, CP
significantly increases the LEM agent’s profit without reducing
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Fig.7. The LEM agent’s profit in the last day of each month (Jan 1stis selected
to differ from the aforementioned case).

customers’ consumption satisfaction. Since the agent monopo-
lizes the LEM and collects most of the benefits, the proposed
LEM design framework is beneficial for the agent to sustain.
Besides, most customers are seen to have slightly higher utilities
with the CP design scenario. Among all customers, c4 earns
the highest increase in the utility due to higher flexibility and
received offer in the CP design, as shown in Figs. 4(d) and 6(b).
Although accurate forecasting is desired in system operations,
the errors are still unavoidable even with state-of-the-art fore-
casting models. However, the errors could be mitigated through
multi-timescale decision-making, where real-time observation
of the market and other useful datasets could be incorporated
to update the agent’s future decision-making. Also, even with
the perfect forecasting information, i.e., ground-truth data of
customers, the agent is expected to earn a higher profit, as shown
in Table IV. Compared with the SP design, it is seen that the
CP design is more beneficial for the LEM agent, no matter
either forecasting model or ground-truth data is applied. For
consumers, since they are always short of electricity and have
to purchase energy from others, their market power is relatively
low. Similarly, for some excess prosumers, they also have low
market power and have to sell their energy, otherwise the surplus
energy will be curtailed. While for self-sufficient prosumers,
such as c4, the CP case benefits them the most due to their
higher sharing flexibility.

In addition to aforementioned cases, a monthly analysis is
performed to evaluate the LEM, as shown in Fig. 7. The last day
in each month (except Jan., Jan. 1stis selected to differ from the
aforementioned case) is selected to calculate the LEM agent’s
profit. The weather conditions in these 12 days are divided into
3 categories: 1) clear-sky, including Mar., May, Jun., and Aug.,
ii) partially-clear, including Feb., Jul., and Sep., and iii) cloudy,
including the remaining months Jan. 1st, Apr., Oct., Nov., and
Dec. As seen from the figure, when the local community has
more solar generation (i.e., clear-sky and partially-clear days),
the CP design significantly outperforms SP. Even if there is no
excess negawatt energy for sharing, the LEM agent with the SP
case still earns higher profits by fully incentivizing customers’
sharing flexibility with ES arbitraging. For example, CP further
improves the LEM agent’s profit by 4% on Apr 30, when there
is almost no energy sharing due to cloudy weather condition
and high load demand. While on Mar. 31, the profit percentage
increase rises up to 130% due to sunny weather condition
and low demand. The LEM welfare is expected to be further
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20:00  24:00

16:00

0 - 1 -
0:00 4:00 8:00 12:00

0
0:00 4:00 8:00

12:00
Time

16:00  20:00  24:00

Fig. 8.  State of Charge (SoC) of the ES. (a) Jan. 31, (b) 365 days, (c) K-means
clustering of 365 days, K = 4.

promoted with the increase of market participants, ES capacity,
and BTM PV installation. To extend the proposed framework to
a large market consisting of thousands of consumers, clustering
methods could be leveraged to group the consumers with similar
consumption preferences, which has been explored in Refs. [29],
[34].

E. ES Profiles

The SoC profile of ES is shown in Fig. 8. More specifically,
Fig. 8(a) shows the SoC profile on Jan. 31, (b) shows the profiles
throughout the year 2018, and (c) shows the K-means clustering
(K = 4) result of year 2018.

As seen from the figures, from 0:00 to 7:00 (off-peak hours)
and 18:00 to 21:00 (on peak hours), the ES works in a similar
pattern in all four clusters. The ES will arbitrage from the utility
grid during morning off-peak hours until 7:00, and release stored
energy until night on-peak period ends. For Cluster 1, the ES
mainly works in a straightforward way, i.e., buffering energy for
night on-peak hours. Cluster 2 works similarly in an arbitraging
mode, buffering energy in low price periods and discharging
in on-peak hours. The difference between Clusters 1 and 2 is
that Cluster 1 has no incentive to discharge too much of its
stored energy in the afternoon due to sufficient PV generation,
while Cluster 2 has to discharge due to limited surplus energy
to be shared. Clusters 3 and 4 work in a similar mode while
only varying in amount, i.e., arbitraging in the morning off-peak
hours, then discharging part of its stored energy in morning flat
hours. Thereafter, the ES fully charges again with the excess
solar generation from excess prosumers, arbitrages before night
on-peak starts, and then discharges in night peak hours until
reaching its minimal capacity.

F. Scalability Analysis

Our LSTM forecasting simulations were conducted on a
workstation with an Intel Xeon E5-2603 2.50 GHz CPU,

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on June 16,2023 at 07:42:39 UTC from IEEE Xplore. Restrictions apply.



116 IEEE TRANSACTIONS ON ENERGY MARKETS, POLICY, AND REGULATION, VOL. 1, NO. 2, JUNE 2023

TABLE V
COMPUTATIONAL TIME WITH DIFFERENT NUMBERS OF CONSUMERS

Number of consumers 10 50 100 200
Computation time (s) 4.04 6.90 9.97 20.32

16.0 GB RAM, and an NVIDIA TITAN V GPU. The LSTM
forecasting is implemented in MATLAB2020b using deep learn-
ing Toolbox, and it takes about 25 seconds to obtain the aggre-
gated netload forecasts, which is applicable for look-ahead ES
scheduling. Market simulations were executed on a laptop with
an Intel Core i7-6600 U 2.8 GHz CPU and 16.0 GB RAM. At
the RT pricing stage, the model works in a centralized manner,
and the LEM agent only needs to forecast the 1HA netload for
each customer.

To extend the proposed framework to a large market con-
sisting of thousands of customers, clustering methods could be
leveraged to group the consumers with similar load patterns,
which has been explored in Refs. [29], [34]. In this section,
additional case studies with more customers are conducted to
show the scalability of our proposed method. Due to limited
data availability, extra customer’ netload data is generated by
multiplying a random factor ranging from 0.5 to 1.5 using the
current dataset. The computational cost of real-time pricing is
summarized in Table V. It is found that even with 200 customers,
the computation cost is approximately 20 seconds, which is
acceptable in the (1HA) RT LEM operation, since only the
customers who consent to higher flexibility will be selected to
be provided with customized incentives. However, too many
rates option will compromise the market efficiency, which is not
practical in realistic market operation, thus it is more reasonable
to design limited options for customer groups.

V. CONCLUSION

This paper proposed a customized price design scheme
to address challenges in excess behind-the-meter (BTM) PV
generation and energy trading in a local electricity mar-
ket (LEM). A two-step decision-making strategy was devel-
oped, including look-ahead energy storage (ES) scheduling
and real-time customized prices design. The impacts of aggre-
gated/individual netload forecasting and BTM disaggregation
on LEM were also explored. The results of a case study with 10
customers showed that compared with the single uniform pricing
strategy, the customized prices could increase the LEM agent’s
profit by 4% to 130%, while also maintaining the customers’
consumption satisfaction.

The proposed LEM with customized pricing strategies could
be further extended in multiple directions. First, the proposed
LEM could be readily applied with other netload/solar fore-
casting models or disaggregation methods. Second, the dataset
in the current study only contains the aggregated netload in
the household. If customers’ appliance identification could be
obtained, more accurate forecasts could be generated for the
LEM price design. Third, other entities and market schemes
could also be considered in the LEM, such as distributed energy

resources owners, third-party owned energy storage, market bid-
ding stakeholders, and cooperative trading mode. Lastly, another
direction is privacy-preserving LEM design. Approaches such as
private structure and pricing method, game theory, blockchain,
distributed algorithm, federated learning, etc., could be poten-
tially leveraged for promoting information security and privacy
in LEM.
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