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Abstract

The maintenance of wind farms is one of the major factors affecting their profitability.

During preventive maintenance, the shutdown of wind turbines causes downtime

energy losses. The selection of when and which turbines to maintain can significantly

impact the overall downtime energy loss. This paper leverages a wind farm power gen-

eration model to calculate downtime energy losses during preventive maintenance for

an offshore wind farm. Wake effects are considered to accurately evaluate power out-

put under specific wind conditions. In addition to wind speed and direction, the influ-

ence of wake effects is an important factor in selecting time windows for maintenance.

To minimize the overall downtime energy loss of an offshore wind farm caused by pre-

ventive maintenance, a mixed-integer nonlinear optimization problem is formulated

and solved by the genetic algorithm, which can select the optimal maintenance time

windows of each turbine. Weather conditions are imposed as constraints to ensure the

safety of maintenance personnel and transportation. Using the climatic data of Cape

Cod, Massachusetts, the schedule of preventive maintenance is optimized for a simu-

lated utility-scale offshore wind farm. The optimized schedule not only reduces the

annual downtime energy loss by selecting the maintenance dates when wind speed is

low but also decreases the overall influence of wake effects within the farm. The por-

tion of downtime energy loss reduced due to consideration of wake effects each year

is up to approximately 0.2% of the annual wind farm energy generation across the case

studies—with other stated opportunities for further profitability improvements.
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1 | INTRODUCTION

The U.S. Department of Energy's Wind Vision report expects that wind power should supply up to 20% of all U.S. electricity demand by 2030 and

up to 35% by 2050, which includes 2% of the nation's total electricity generation in 2030 and 7% in 2050 from offshore wind power.1 By 2050,

in the coastal and Great Lakes states, which consume almost 80% of U.S. electricity, offshore wind farms are expected to contribute approxi-

mately 14% of the projected new electricity generation.2 Compared with winds over land, offshore winds have larger strength and greater
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uniformity. Therefore, offshore wind farms can provide a higher and smoother rate of electricity generation than those land-based. The coastlines

and lakeshores of the United States are capable of providing extensive and accessible offshore wind energy resources. By 2020, the Block Island

wind farm and the Coastal Virginia wind farm were the two operating offshore wind projects in the United States. In March 2021, the Biden

administration announced a set of actions that will accelerate the development of offshore wind energy. The Vineyard Wind project, the first

commercial scale offshore wind farm in the United States, was approved by the federal government in May 2021, which is a significant leap in

harnessing powerful offshore winds and reducing carbon emissions.

In order to keep wind turbines in consistent working conditions with reliable power output, regular and responsive maintenance is normally

needed. Operation and maintenance (O&M) costs are significant components of the overall economy of wind projects, especially for offshore

wind farms. For the same installed capacity, offshore O&M costs generally reach two to three times higher than those of onshore, primarily due

to accessibility issues. For some European offshore wind farms, O&M costs vary from 18% to 23% of the total cost of a wind project.3 It was

estimated by the researchers from the U.S. National Renewable Energy Laboratory that O&M account for 34.3% of the total levelized cost of

energy for fixed-bottom offshore wind turbines.4 Therefore, careful and well-considered maintenance strategies are critical to the profitability

and success of offshore wind projects.

1.1 | Operation and maintenance of offshore wind farms

A variety of decision support models have shown that O&M have a great influence on the economy of wind projects. Novel maintenance

strategies have been constantly proposed to increase the reliability of turbines and reduce cost.5–7 Opportunistic maintenance is one of the

emerging concepts, which groups different types of maintenance activities of multiple turbines together to reduce costs.8–12 Life cycle cost is an

important measure used to assess the efficiency of turbine maintenance strategies.13 To reduce this cost, prognostic health management is widely

incorporated to determine turbine conditions and plan timely maintenance.14,15 Aging models and degradation models of turbine components are

also used to establish thresholds for starting maintenance activities, such as repairs and replacement.16–18 Other key issues affecting the effi-

ciency of wind farms, including the effects of wind velocity,19 component-level repairs,20 turbine system failures,21 and personnel availability,22

have been investigated by researchers as well.

Accessibility and logistics are important factors in the selection of maintenance strategies for offshore wind farms. Since vessels are the most

common mode to carry maintenance personnel and wind turbine parts to offshore sites, the routing and scheduling of a vessel fleet have been

studied by several research groups. The determination of optimal fleet size and mix of vessels,23,24 the timing of jack-up vessel campaigns,25 the

optimal use of a maintenance fleet in terms of vessel capabilities and fleet size,26 the optimal scheduling of crew transfer vessels using network

planning method,27 and the optimal scheduling of multiple crew transfer vessels from multiple bases to multiple sites28 have been performed in

the context of offshore wind farms.

The reduction in power caused by turbine shutdown for maintenance has been investigated with respect to time schedules, vessel routes,

technician assignments, and turbine failures.29–31 The purpose of this study is to investigate how to reduce energy loss of offshore wind farms

subject to wake effects during preventive maintenance. Wake effects have been seriously considered in location selection for wind farms,32 wind

farm layout optimization,33 reduction of fatigue loads on wind turbines,34 and estimation of available power during curtailment.35 The optimiza-

tion of maintenance schedule has taken wake effects into account initially by Zhang et al.36 The coupling between maintenance and wake effects

was investigated using randomly generated stochastic sampling wind speed and direction by Ge et al37 and Yin et al.38 However, the reduction in

power generation caused by wake effects during maintenance has not been thoroughly studied in practice. To bridge this gap, the current study

investigates how an optimized maintenance schedule reduces downtime energy loss due to wake effects using real climatic data. In this determin-

istic approach, the energy saving due to consideration of wake effects in maintenance planning can be accurately evaluated.

1.2 | Preventive maintenance

Wind turbine maintenance includes three major categories of actions:

1. Preventive Maintenance: Regularly performed to support a turbine in satisfactory operating condition, which reduces the probability of

failures.

2. Predictive Maintenance: Performed when some indicators show that a turbine tends to fail.

3. Reactive Maintenance: Performed after a turbine experiences problems or has stopped working.

Preventive maintenance activities include systematic inspection, detection, and correction of incipient failures, which are essential to keep

efficient operation of wind turbines. Preventive maintenance is normally carried out twice a year, and each maintenance event requires 2 to 3 days
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of downtime per turbine.39 To reduce the power fluctuation of a wind farm, only a limited number of turbines in a wind farm are generally

maintained at the same time. The downtime energy losses caused by the shutdown of turbines are principally determined by wind conditions. It is

desirable to perform preventive maintenance when shutdown will result in the least reduction in energy generation. For offshore wind farms,

accessibility is a critical factor influencing their maintenance schedules. Site weather conditions, including wind speed, wave height, and skin tem-

perature, should satisfy the safety standards for maintenance personnel.40 To safely transport maintenance personnel and turbine parts, the oper-

ation of vessels also requires weather conditions to meet specific standards.

The three types of maintenance are not fully independent from each other. This paper focuses on the schedule optimization of preventive

maintenance alone. During the scheduled time windows for preventive maintenance, predictive or reactive maintenance might also need to be

performed. Combined scheduling of these three types of maintenance together will provide more opportunities to reduce expenses and conse-

quently improve the profitability of wind farms.

1.3 | Wake models

Wind turbine wakes are caused by the momentum deficit and increased level of turbulence created by turbines in a wind farm, which can result in

a reduction in power generation and unsteady loads on other turbines.41 Caused by wake effects, the power supply of a wind farm is considerably

less than the simple product of the power extracted by a stand-alone turbine and the number of identical turbines in the farm.42 Since wake

recovers at some distance downstream, power deficiency of turbines in wakes generally declines as turbine spacing increases.43,44 However, the

distances between turbines in a wind farm cannot be sufficiently large for complete wake recovery. Several methods can be used to reduce over-

all wake effects,45–47 which have to be taken into account to accurately evaluate the total power generation of a wind farm.

Many studies have been dedicated to the development of wake models with different levels of fidelity and computational efficiency. These

models can be generally classified into three categories48: (i) low-fidelity engineering wake models based on fundamental fluids principles,

(ii) medium-fidelity wake models using modified RANS (Reynolds-averaged Navier-Stokes) or variations of the actuator disk model, and

(iii) high-fidelity CFD (computational fluid dynamics) wake models.

Engineering wake models demand low computational cost to simulate macroscopic average effects of wakes. Based on the assumption of

self-similar velocity deficit profiles, the Park wake model was proposed to derive downstream wake velocity.49 The Larsen wake model uses first-

and second-order approximations of the RANS equations.50 The Frandsen wake model modifies the wind velocity profile to consider downstream

distance.51 Bastankhah and Porté-Agel proposed a single-Gaussian distribution to approximate the wake velocity in far wake,52 and it was later

improved using a double-Gaussian distribution.53,54

The medium-fidelity dynamic wake meandering model55 and Fuga wake model56 numerically solve simplified RANS equations to evaluate

wake deficit, turbulence, and meandering. Another branch of medium-fidelity wake models includes some variations of the actuator disk

model.57,58

High-fidelity CFD wake models consider computationally expensive approaches,59 such as the RANS equations, large-eddy simulations, or

direct numerical simulation. Two major developers of CFD software in the area of wind farm modeling are EllipSys3D60 and OpenFOAM.61,62

The high-fidelity CFD wake models simulate small scales at extremely high computational cost. Therefore, they are often used as a reference

for tuning and validating low-fidelity wake models.63,64 Engineering wake models are particularly suitable for optimization problems, which involve

a large number of iterations, such as wind farm layout planning65,66 and control-oriented wake steering.67 To facilitate optimization, machine

learning and surrogate modeling can be used to develop fast data-based wake models with reasonably high accuracy.68–70 Before reaching an

optimal solution for the schedule optimization problem formulated in Section 3 using the genetic algorithm, approximately 10,000 evaluations of

a wake model are required. Therefore, a low-cost engineering wake model is employed to evaluate the power generation of an offshore wind farm

in this study.

The remainder of this paper is organized as follows. Section 2 describes the power generation model used to evaluate the energy production

of a wind farm, which takes wake effects into account. Section 3 formulates a schedule optimization problem to select optimal time windows for

turbine maintenance. Section 4 presents a case study of maintenance schedule optimization for a utility-scale offshore wind farm. Concluding

remarks are presented in Section 5.

2 | WIND FARM POWER GENERATION

2.1 | Wake effects

The impact of four analytical wake models, the Jensen model,49 the Larsen model,50 the Frandsen Model,51 and the Ishihara Model,71 on the esti-

mation of wind farm power output was investigated by Tong et al.72 Any of the models can provide satisfactory estimation of energy generation
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considering wake effects. This study uses the Frandsen wake model, which employs the control volume concept to relate thrust and power

coefficients to velocity deficit.

At a distance s downstream behind a turbine with a diameter D, the diameter Dwake of the wake front is expressed as

Dwake ¼ð1þ2αsÞD,
where s¼ s=D:

ð1Þ

The parameter α is the wake spreading constant, which is determined by the formula

α¼ 0:5

ln zH
z0

� � , ð2Þ

where zH and z0 are the average hub height of turbines and the average surface roughness of wind farm region, respectively.

If the wind approaches a turbine at velocity U, the velocity Uwake in the wake is expressed as73

Uwake ¼ 1� 2a

ð1þ2αsÞ2
 !

U: ð3Þ

where a is the induction factor, which can be determined from the coefficient of thrust. The coefficient of thrust is one of the design characteris-

tics of a turbine rotor.

2.2 | Wind farm power generation model

In this paper, a wind farm power generation model adopted from earlier work in wind farm layout optimization is used.74–76 This model evaluates

the power generated by a given number of wind turbines with specified locations in a wind farm subject to a given wind condition. It is suitable

for the evaluation of wind farm power generation under various maintenance schedules. This power generation model uses the Frandsen wake

model described in Section 2.1 to calculate the power output of the entire wind farm influenced by wake effects. Site wind speed and direction

are inputs to the model to calculate power generation.

The total power Pall generated by N turbines is the sum of the power generated by individual turbines, which can be expressed as

Pall ¼
XN
i¼1

Pi: ð4Þ

To evaluate downtime energy loss of a wind farm during preventive maintenance, the energy generated by the farm when all turbines are

operating and that when the turbines not being maintained are operating should be calculated under the wind conditions in the maintenance time

interval. The difference between these two energy outputs is the downtime energy loss. When a set, S, of M turbines are shut down for mainte-

nance, these M turbines are not taken into account in the power generation model; only the power generated by the operating turbines is

summed up. The wake effects of the non-operating turbines (under maintenance) are not considered. The power generated by all operating tur-

bines (without the M turbines) is

Poperating ¼
X
8i =2 S

Pi: ð5Þ

The power loss is given by

Ploss ¼Pall�Poperating: ð6Þ

During a maintenance time window from tstart to tend, the energy loss can be expressed as

Eloss ¼
ðtend

tstart

PlossðtÞdt: ð7Þ

1106 ZHANG ET AL.
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In order to accurately evaluate the energy loss Eloss by integration, a continuous record of wind speed and direction should be provided for

the calculation of power output at any time. Since continuous climatic records are normally unavailable at offshore farm site, hourly averaged

wind speed and direction are used to calculate energy loss.

In this study, the scheduling of preventive maintenance is investigated using an hourly time frame. The starting and ending time of mainte-

nance, tstart and tend, can be represented by numbers of hours counted from the beginning of a year. The total energy loss during the interval from

tstart to tend is the sum of hourly energy losses EðkÞloss, k¼ tstart,…,tend, which is given by

Eloss ≈
Xtend

k¼tstart

EðkÞloss: ð8Þ

The minimization of the annual energy loss Eloss caused by preventive maintenance is the objective of the schedule optimization problem for-

mulated in Section 3.

3 | OPTIMIZATION PROBLEM OF MAINTENANCE SCHEDULING

3.1 | Analyses of schedule optimization

In this study, the optimization of maintenance schedule is investigated for a 1 year's time span. According to the wind turbine manufacture's

manual, preventive maintenance is normally performed twice a year for each turbine.39 Weather and sea conditions in the region where a

wind farm is located are the primary considerations for choosing the time windows for scheduled maintenance.77 Since spring and autumn

are generally comfortable seasons for maintenance personnel to enter offshore site and perform maintenance, it is sensible to arrange the

first maintenance in spring and the second in autumn.78 These two maintenance intervals are not overlapped. Each of the two times of

maintenance is performed within a specified time interval. In each interval, it typically takes two to three consecutive days to finish the

maintenance activities for one turbine.79 The requirement of three consecutive days is a prevailing practice. This continuity might be inter-

rupted, especially when maintenance personnel encounter extreme weather conditions or unexpected difficulties. When such interruptions

occur, the maintenance of one turbine can be completed within a time frame of more than 3 days, allowing one or more interruptions. It is

expected that this relaxation will result in the arrangement of more maintenance work on the days with lower wind speed, thereby reducing

downtime energy loss. In this study, the restriction of three consecutive days is enforced to satisfy the common requirement of maintenance

personnel.

Limited capacity of labor force, varying wind conditions, and wake effects are the three reasons why schedule optimization is needed to

reduce energy loss during maintenance. If labor force is sufficient to perform maintenance for all turbines in a wind farm concurrently, the

best time is when wind speed is the lowest in spring interval or autumn interval. The limited capacity of labor force constrains the number of

turbines that can be maintained concurrently. Moreover, the shutdown of all turbines in a wind farm at the same time for maintenance results

in days of undesirable disruption of power supply. In order to keep the work within the capacity of the labor force and avoid disruption of

power supply, schedule optimization is needed to spread out maintenance activities of different turbines over spring interval or autumn inter-

val. If wind conditions are constant during each maintenance interval, neglecting wake effects, the shutdown of any turbine at any time

results in the same amount of power reduction. Varying wind conditions provide the opportunity to reduce downtime energy loss by opti-

mally scheduling maintenance activities at the time when wind speed is low. Wind conditions basically determine when to maintain wind tur-

bines. If wake effects are ignored, given the same topography and wind conditions, each turbine of the same type will produce the same

amount of power regardless of its location. In this situation, it is pointless to choose turbines for maintenance based on their locations. Opti-

mization can weaken the influence of wake effects by selecting the turbines at suitable locations, and consequentially reduce downtime

energy loss.

Since preventive maintenance is performed twice a year for each wind turbine, there are 2N maintenance starting time parameters for a wind

farm comprising N turbines. The two maintenance starting time parameters for the ith turbine are denoted as ti and tNþi. They are represented by

numbers of hours counted from the beginning of a year, which are integers. The maintenance of each turbine is constrained within a specified

time interval. The earliest and the latest available time to start the first maintenance for the ith turbine are, respectively, denoted as tearliesti and

tlatesti . For the second maintenance, they are denoted as tearliestNþi and tlatestNþi . These time variables are also expressed as numbers of hours counted

from the beginning of a year. During each time interval of maintenance, each turbine is shut down for a specified number of days, which include n

consecutive hours. On any day inside each time interval, there can be no turbine, one turbine, or multiple turbines shut down for maintenance.

The wind speed and wind direction during these maintenance days are inputs to the power generation model described in Section 2.2, used to cal-

culate downtime energy loss.

ZHANG ET AL. 1107
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3.2 | Constraints for weather conditions and labor force

At an offshore wind farm site, at any time t during maintenance, the relevant weather conditions include

• vwindðtÞ (unit: m/s): The wind speed at t.

• vgustðtÞ (unit: m/s): The wind gust at t.

• TairðtÞ (unit: K): The air temperature at t.

• hwaveðtÞ (unit: m): The significant wave height at t.

Site accessibility and maintenance feasibility of offshore wind farms are significantly constrained by weather conditions. Wind speed, wind

gust, air temperature, and significant wave height at offshore site should satisfy safety requirements. When wind speed is higher than 20 m/s, it is

not allowed to climb up turbines.40 For category B vessels to transport maintenance personnel to an offshore site, wind speed should be lower

than 20.7 m/s (Beaufort force 8), wind gust should be less than 21 m/s, and significant wave height should be lower than 4 m.80 According to

guidelines for working outdoors, the highest and the lowest air temperatures allowed for outdoor maintenance are 26�C and �26�C, respec-

tively.81,82 Since preventive maintenance seldom requires cranes or jack-ups, the operation conditions for these tools are not considered.

During maintenance, personnel are exposed to outdoor wind. The rate of heat loss from the human body is the combined effect of low

temperature and blowing wind. Wind chill temperature describes how cold skin feels due to the combination of these two types of influences. Its

value can be calculated using the formula recommended by the U.S. National Weather Service.83 Air temperature is converted from Celsius to

Fahrenheit using

Tair_Fahrenheit ¼ Tair_Celsius�9
5

� �
þ32: ð9Þ

Wind speed is converted from meters per second to miles per hour using

vwind_mph ¼2:23694�vwind_m=s: ð10Þ

Wind chill temperature in Fahrenheit is calculated by

TWindChill_Fahrenheit ¼35:74þ0:6215�Tair_Fahrenheit�35:75�v0:16wind_mphþ0:4275�Tair_Fahrenheit�v0:16wind_mph: ð11Þ

Wind chill temperature in Celsius (converted from TWindChill_Fahrenheit) is also constrained between 26�C and �26�C, the same as the rec-

ommended highest and lowest values for working outdoors.

In order to ensure the safety of maintenance personnel during working hours, weather conditions are required to satisfy the lower and upper

bounds described below.

• vlowerwind and vupperwind (unit: m/s): The lower and upper bounds of wind speed.

• vlowergust and vuppergust (unit: m/s): The lower and upper bounds of wind gust.

• Tlower
air and Tupper

air (unit: K): The lower and upper bounds of air temperature.

• Tlower
WindChill and Tupper

WindChill (unit: K): The lower and upper bounds of wind chill temperature.

• hlowerwave and hupperwave (unit: m): The lower and upper bounds of significant wave height.

Determined by the starting time of maintenance, ti and tNþi, and the n consecutive hours of maintenance duration, a set of Q days are

selected for preventive maintenance. On each maintenance day (j�Q), maintenance personnel start working from tj and continue working for m

hours. During these m hours, weather conditions should satisfy their constraints.

The number of turbines maintained concurrently on the jth day in Q is Hj. Multiple turbines may be maintained on the same day. The number

Hj should be less than or equal to the maximum number G of turbines that can be maintained concurrently limited by the capacity of maintenance

personnel.

3.3 | Formulation of the optimization problem

Before the formulation of the optimization problem is presented, its design variables, objective, and parameters are listed below.

1108 ZHANG ET AL.
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• t1, … tN, tNþ1, … t2N: The design variables, which are the maintenance starting time for each turbine in the two maintenance intervals. The value

N is the total number of wind turbines. In each interval, there are N starting time. Since there are two intervals, there are totally 2N starting

time. The time t is expressed as the number of hours counted from the beginning of a year.

• Eloss: The objective of optimization, which is the total annual downtime energy loss due to shut down of turbines during preventive maintenance.

• i: The number used to denote different turbine in a wind farm. Its range is from 1 to N.

• tearliesti : The earliest available time to start the first maintenance for the ith turbine.

• tlatesti : The latest available time to start the first maintenance for the ith turbine

• tearliestNþi : The earliest available time to start the second maintenance for the ith turbine.

• tlatestNþi : The latest available time to start the second maintenance for the ith turbine.

• Q: The set of days selected for preventive maintenance.

• j: The number used to donate one of the selected maintenance days (j�Q).

• tj: The time to start working on the jth maintenance day.

• m: The number of consecutive working hours on each maintenance day.

• vwindðtÞ: The wind speed at time t.

• vlowerwind : The lower bound of wind speed.

• vupperwind : The upper bound of wind speed.

• vgustðtÞ: The speed of wind gust at time t.

• vlowergust : The lower bound of wind gust.

• vuppergust : The upper bound of wind gust.

• TairðtÞ: The air temperature at time t.

• Tlower
air : The lower bound of air temperature.

• Tupper
air : The upper bound of air temperature.

• TWindChillðtÞ: The wind chill temperature at time t.

• Tlower
WindChill: The lower bound of wind chill temperature.

• Tupper
WindChill: The upper bound of wind chill temperature.

• hwaveðtÞ: The significant wave height at time t.

• hlowerwave : The lower bound of significant wave height.

• hupperwave : The upper bound of significant wave height.

• Hj: The number of turbines maintained concurrently on the jth day.

• G: The maximum number of turbines that can be maintained concurrently, limited by the capacity of maintenance personnel.

For a given year, to minimize downtime energy loss due to preventive maintenance, the schedule optimization problem is formulated as

follows:

min
t1, :::tN ,tNþ1,…t2N

Eloss ð12Þ

subject to

tearliesti ≤ ti ≤ t
latest
i , i¼1,…,N

ð13Þ

tearliestNþi ≤ tNþi ≤ t
latest
Nþi , i¼1,…,N ð14Þ

vlowerwind ≤ vwindðtÞ≤ vupperwind , t� ½tj,tjþm�1�, j�Q ð15Þ

vlowergust ≤ vgustðtÞ≤ vuppergust , t� ½tj ,tjþm�1�, j�Q ð16Þ

Tlower
air ≤ TairðtÞ≤ Tupper

air , t� ½tj,tjþm�1�, j�Q ð17Þ

Tlower
WindChill ≤ TWindChillðtÞ≤ Tupper

WindChill, t� ½tj,tjþm�1�, j�Q ð18Þ

hlowerwave ≤ hwaveðtÞ≤ hupperwave , t� ½tj,tjþm�1�, j�Q ð19Þ

0<Hj ≤G, j�Q ð20Þ

ZHANG ET AL. 1109
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The schedule optimization problem minimizes downtime energy loss by selecting optimal maintenance time windows. Constraints (13)

and (14) require the two maintenance processes of each turbine to start within specified time intervals. The weather conditions during working

hours from tj to tjþm�1 on maintenance day j�Q should satisfy constraints (15), (16), (17), (18), and (19). Constraint (20) specifies that the num-

ber of turbines being maintained should be within the capacity of maintenance personnel.

The design variables of the optimization problem are integers. The objective function and some of the constraints are nonlinear. The optimi-

zation problem is therefore a mixed-integer nonlinear programming problem. Since the computational cost to evaluate the annual energy genera-

tion of a wind farm is considerable, an exhaustive search to the optimal solution requires prohibitively expensive computational cost. The

discontinuous non-differentiable nonlinear objective function and constraints make it unsuitable for gradient-based approaches to solve such a

complex problem. More efficient approaches to solve the optimization problem are preferred. Evolutionary algorithms are a class of population-

based heuristic optimization methods. The genetic algorithm84 is the most widely used in this class. Its procedure of optimization mimics the

process of natural selection, such as inheritance, mutation, and crossover. A population of candidate solutions are repeatedly modified until the

optimal solution is reached. The genetic algorithm can efficiently solve mixed-integer nonlinear programming problems with discontinuous non-

differentiable nonlinear objective function and constraints. There can be multiple local optima for the schedule optimization problem. The genetic

algorithm can escape from local optima, and search for a globally optimal solution with acceptable computational cost. Therefore, the genetic

algorithm is adopted to solve the optimization problem of maintenance scheduling. Particle swarm optimization, ant colony optimization, and com-

binatorial Bayesian optimization solvers could also be potentially used to solve mixed-integer nonlinear programming problems.

Since the starting time for the first maintenance, t1, :::tN, and the starting time for the second maintenance, tNþ1,…t2N, are two separate sets

of design variables, the optimization problem can be divided into two separate ones. One of them only includes t1, :::tN as design variables and

optimizes the schedule of the first maintenance. The other only includes tNþ1,…t2N as design variables and optimizes that of the second mainte-

nance. Under readily satisfied conditions regarding personnel availability and the number of turbines, this optimization separation can be correctly

assumed.

The time span of each maintenance interval is mainly determined by the number of turbines and the capacity of maintenance personnel. Each

interval should be sufficiently long for the personnel to perform maintenance for all turbines. To optimize maintenance schedule using the formu-

lation presented in this section, the weather for the whole upcoming maintenance interval should be known. Indeed, it is challenging to accurately

forecast the weather for such a long period of time, for example, 1 to 2 months. It is still possible to use the weather forecast, combined with past

climatic records, to minimize the downtime energy loss during preventive maintenance. Assuming air temperature, wind speed, wind direction,

and wave height could be forecast for a maintenance interval with an acceptable accuracy, the schedule of preventive maintenance can be opti-

mized. Today, advanced meteorological models running on supercomputers can forecast 12-day weather with sufficient accuracy. If personnel are

able to complete the maintenance of all turbines within 12 days, the schedule optimization presented in this paper can take advantage of long-

range weather forecasts and reduce downtime energy loss in practical maintenance planning.

4 | CASE STUDY

In 2010, the Cape Wind project was granted the first commercial offshore lease in the United States. The wind farm was designed to comprise

130 Siemens 3.6 MW offshore wind turbines.85 The site for the Cape Wind is located at Horseshoe Shoal in Nantucket Sound of Cape Cod in

Massachusetts, as shown in Figure 1. Although the project was terminated, the study of its O&M will benefit other commercial offshore wind

farm projects. This wind farm is used in this study to show that schedule optimization of preventive maintenance can decrease downtime energy

losses by alleviating the influence of wake effects.

The schedule optimization presented in this paper can be applied to the preventive maintenance of any offshore wind farm with any layout.

The layout of turbines used in this case study is chosen for the purpose of demonstration. The locations of the 25 turbines with their assigned

numbers are shown in Figure 2.

In this case study, the preventive maintenance is performed twice a year, and it takes 3 days to finish the maintenance of each turbine. Con-

sidering the climate at Cape Cod, the first maintenance interval is scheduled in March, and the second is in September.

The primary factors that determine the length of each maintenance interval are the number of turbines and the capacity of maintenance per-

sonnel. Each interval should include adequate number of days for the personnel to perform maintenance for all turbines. Assuming all mainte-

nance personnel work everyday at full capacity, the smallest required number of days is the shortest maintenance interval. A longer interval can

relieve the personnel from working pressure and provide the opportunity to reduce downtime energy loss by arranging maintenance to the days

when wind speed is relatively low. The aim of this case study is to demonstrate that an optimized schedule of preventive maintenance considering

wind conditions and wake effects can meaningfully reduce downtime energy loss. It is necessary for each interval to include an appropriate num-

ber of days that no turbines are under maintenance using an optimized schedule. The wind conditions of the days with no turbine, few turbines,

or a large number of turbines under maintenance can be analyzed to show how wind speed, wind direction, and wake effects affect the selection

of turbines for maintenance. Considering these factors, 1 month is a reasonable length of time to perform maintenance for 25 turbines in the
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offshore wind farm. This case study selects the 60th–92nd and the 240th–272nd days in a year as the two maintenance intervals. The starting

date for the first maintenance is constrained inclusively between the 60th and the 90th days in a year. The second starting date is constrained

inclusively between the 240th and the 270th days. The length of each maintenance interval can be specified by setting the starting time and end-

ing time of the two maintenance intervals, which are constraints (13) and (14) of the optimization problem presented in Section 3. Different sizes

of wind farms and various maintenance strategies require different length of maintenance intervals. Other factors affecting the selection of the

length of a maintenance interval include transportation, logistics, and agreement with maintenance service providers, which are not explicitly con-

sidered in the formulation of optimization problem in this paper.

The climatic conditions at Cape Cod are used to calculate energy production and assess site accessibility. To optimize the maintenance sched-

ule of an offshore wind farm in a given year, the site weather conditions for that year should be obtained. Due to unavailability of weather fore-

casts, recorded historical hourly climatic data are used. The historical weather data at Cape Cod can be downloaded from the NOAA National

Data Buoy Center.87 The weather conditions during the 60th–92nd and the 240th–272nd days of 2010, 2011, 2015, 2016, and 2019 are reason-

ably well documented. The annual schedule of preventive maintenance is optimized using the climatic data of each of these 5 years.

F IGURE 1 Map of Cape Wind.86

x(m)

F IGURE 2 Locations of 25 wind turbines.

ZHANG ET AL. 1111

 10991824, 2023, 11, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/w

e.2815, W
iley O

nline L
ibrary on [17/10/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



On each maintenance day, maintenance personnel work from 9 a.m. to 5 p.m. EST. The number of turbines maintained concurrently on each

day is constrained not to exceed 11 because of limited labor force. The maintenance of each turbine can only be performed within a time frame

of three consecutive days when site weather conditions during working hours satisfy constraints (15) to (19).

4.1 | Optimization results

The minimization of downtime energy loss and the analyses of how wake effects influence the selection of turbines for maintenance are per-

formed for 2010, 2011, 2015, 2016, and 2019. The optimization results for these 5 years are presented in Table 1. For the purpose of concise-

ness, only the details and analyses of results for 2019 are presented in this paper. The generated data for all of the 5 years are archived at the

address specified in the section of Data Availability Statement at the end of this paper.

The minimization of downtime energy loss is performed by selecting optimal maintenance time windows for turbines. The genetic algorithm

iterates through generations to minimize annual downtime energy loss. Each generation contains a population of candidates. The minimum value

of a generation is the lowest annual downtime energy loss of the population, while the mean value is the average of the population. Figure 3

shows the minimum values and the mean values of annual downtime energy loss considering wake effects in the generations before reaching the

optimal result for 2019.

This case study aims to show how the downtime energy loss of an offshore wind farm subjected to wake effects can be minimized by opti-

mizing maintenance schedule. In order to quantitatively assess the amount of downtime energy saved due to consideration of wake effects, two

forms of optimization are performed and their results are compared. The first form considers wake effects, and uses the power generation model

described in Section 2.2 to evaluate the energy production of the entire wind farm. The second form of optimization completely ignores wake

effects, and the energy generation of a wind farm is simply the sum of each turbine evaluated using its power curve. Both forms use the same

TABLE 1 Optimization results for five different years considering wake effects.

Year
Number of
Generations

Minimized

energy loss

First

average

Saved

energy Saved
percentage

Annual

power Equivalent
hours

Percentage of
annual energy

Saved

money
(MWh) (MWh) (MWh) (MW) (USD)

2010 143 5:189�103 7:700�103 2:511�103 32.61% 55.49 45.25 0.52% 5:60�105

2011 126 6:194�103 8:269�103 2:075�103 25.09% 54.08 38.37 0.44% 4:63�105

2015 318 6:017�103 8:019�103 2:002�103 24.97% 52.02 38.48 0.44% 4:47�105

2016 265 5:228�103 7:831�103 2:603�103 33.24% 57.49 45.27 0.52% 5:81�105

2019 291 6:103�103 8:283�103 2:180�103 26.32% 55.57 39.23 0.45% 4:87�105
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F IGURE 3 Minimization of annual downtime energy loss in 2019 using the genetic algorithm.
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formulation of schedule optimization presented in Section 3. The only difference is whether wake effects are taken into account in evaluating

wind power.

After both forms of optimization are performed, two optimized maintenance schedules are achieved, respectively considering and ignoring

wake effects. Please note that the second form of schedule optimization ignores wake effects, but, after the second optimized schedule is

obtained, the evaluation of downtime energy loss using the second schedule should consider wake effects. The values of downtime energy loss

for these two different optimized schedules need to be calculated taking wake effects into account. The difference of these two values is the

annual downtime energy loss reduced due to the consideration of wake effects in the schedule optimization.

Both forms of optimization (considering and ignoring wake effects) are performed for five different years. Their results are separately pres-

ented in Tables 1 and 2. The two tables have the same layout.

• Column 1: Which year the optimization of maintenance is performed for.

• Column 2: How many generations the genetic algorithm has iterated before reaching the optimal solution presented in column 3.

• Column 3: The minimized downtime energy loss corresponding to the optimal maintenance schedule.

• Column 4: The average downtime energy loss of the first generation of the genetic algorithm, using a random maintenance schedule.

• Column 5: Compared with the average downtime energy loss of the first generation (column 4), how much energy the minimized (column 3)

has saved.

• Column 6: The percentage that represents the ratio of the saved energy (column 5) to the average of the first generation (column 4).

• Column 7: The annual average power generated by the entire wind farm using the optimal maintenance schedule.

• Column 8: How many hours of annual average power (column 7) are equivalent to the saved energy (column 5).

• Column 9: The percentage that represents the ratio of the saved downtime energy (column 5) to the annual energy production of the wind farm.

• Column 10: How much money is equivalent to the saved energy (column 5), evaluated using the price of 22.32 cents per kWh, which is the

price of residential electricity in Massachusetts in January 2021.

Observed from Table 1, considering wake effects, approximately 25% to 33% of downtime energy loss is reduced in each year through the

optimization of maintenance schedule, compared with the average energy loss of the first generation using a random maintenance schedule. The

annual saved downtime energy is equivalent to approximately 40 hours of average power produced by the entire wind farm. The price of the

annual saved energy through optimization is in the neighborhood of half a million US dollars.

Table 2 shows the results if wake effects are ignored in the process of schedule optimization. The saved downtime energy for each year if

wake effects are ignored is less than their corresponding values in Table 1 when wake effects are considered. The difference is the energy saved

annually due to consideration of wake effects, which is shown in the second column of Table 3. In Table 3, the value of annual saved energy due

to consideration of wake effects (column 2) is measured by its equivalent hours (column 3) of average power produced by the entire wind farm,

the percentage of annual energy production (column 4), and the cost of electricity fee (column 5). The annual downtime energy loss reduced due

to consideration of wake effects is approximately 5 to 16 hours of wind farm power generation, which is 0.07% to 0.19% of the annual farm

energy production. It saves approximately 70,000 to 190,000 USD of electricity fee annually, which is a considerable amount of profit.

The turbines under maintenance on each day during the spring interval and autumn interval in 2019 are shown in Tables 4 and 5. Column

1 shows the number of days counting from the beginning of the year. The daily average wind speed is given in column 2. The turbines selected

for maintenance are listed in column 3. Column 4 presents the 11 turbines with lowest daily energy productions assuming all turbines are operat-

ing, ordered from the lowest to higher. Column 5 evaluates the daily downtime energy loss due to preventive maintenance. The wind speed and

the number of turbines maintained on each day during the spring interval and autumn interval in 2019 are plotted in Figure 4A,B. The optimized

maintenance schedules of the other 4 years are presented in the file archived at the address specified in the section of Data Availability Statement

at the end of this paper. Since low wind speed generally generates low wind power, it reduces downtime energy loss to maintain turbines during

TABLE 2 Optimization results for five different years ignoring wake effects.

Year
Number of
Generations

Minimized
energy loss

First
average

Saved
energy Saved

percentage

Annual
power Equivalent

hours
Percentage of
annual energy

Saved
money

(MWh) (MWh) (MWh) (MW) (USD)

2010 225 5:966�103 7:700�103 1:734�103 22.52% 55.40 31.30 0.36% 3:87�105

2011 212 6:548�103 8:269�103 1:721�103 20.81% 54.04 31.85 0.36% 3:84�105

2015 255 6:870�103 8:019�103 1:149�103 14.33% 51.93 22.13 0.25% 2:56�105

2016 345 5:553�103 7:831�103 2:278�103 29.09% 57.46 39.65 0.45% 5:08�105

2019 367 6:917�103 8:283�103 1:366�103 16.49% 55.48 24.62 0.28% 3:05�105
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TABLE 3 Downtime energy reduced due to consideration of wake effects for five different years.

Year

Saved energy

Equivalent hours Percentage of annual energy

Saved money

(MWh) (USD)

2010 7:77�102 14.00 0.16% 1:73�105

2011 3:54�102 6.55 0.08% 0:79�105

2015 8:53�102 16.40 0.19% 1:90�105

2016 3:25�102 5.65 0.07% 0:73�105

2019 8:14�102 14.65 0.17% 1:82�105

TABLE 4 Turbines maintained during the spring interval in 2019.

Day

Wind speed

Turbines under maintenance Turbines with least energy production

Energy loss

(m/s) (kWh)

60 2.2 1, 4, 7, 10, 11, 17, 24 19, 25, 13, 16, 18, 23, 21, 15, 11, 9, 24 4:753�104

61 8.6 1, 4, 7, 10, 11, 17, 24 22, 14, 20, 17, 21, 12, 11, 3, 25, 24, 10 4:596�105

62 3.2 1, 4, 7, 10, 11, 17, 24 19, 16, 13, 25, 15, 18, 9, 7, 11, 21, 14 1:379�105

63 8.0 None 13, 25, 19, 11, 16, 18, 15, 14, 21, 9, 10 0

64 7.3 None 16, 15, 9, 19, 13, 18, 25, 23, 11, 4, 7 0

65 8.7 None 15, 19, 16, 25, 13, 9, 18, 23, 4, 14, 21 0

66 8.5 25 15, 25, 19, 13, 16, 14, 4, 21, 18, 24, 7 8:281�104

67 7.3 25, 6, 8 15, 16, 19, 25, 13, 9, 18, 23, 4, 11, 5 2:208�105

68 3.1 25, 6, 8, 14, 18 16, 15, 11, 18, 9, 13, 23, 19, 25, 7, 14 8:593�104

69 9.0 6, 8, 14, 18 12, 22, 14, 11, 20, 24, 17, 10, 18, 8, 21 2:141�105

70 4.7 14, 18, 5 9, 16, 7, 15, 11, 4, 2, 10, 18, 13, 23 9:194�104

71 5.3 5, 2, 9, 13, 23 15, 19, 16, 25, 13, 18, 9, 14, 4, 23, 21 2:596�105

72 3.6 5, 2, 9, 13, 23, 12 16, 19, 13, 15, 9, 7, 18, 25, 11, 23, 10 1:149�105

73 3.8 2, 9, 13, 23, 12 5, 7, 10, 3, 9, 6, 2, 11, 14, 15, 8 8:676�104

74 8.7 12 7, 10, 6, 5, 3, 17, 14, 13, 11, 8, 12 8:002�104

75 6.7 None 15, 16, 9, 13, 19, 7, 18, 11, 25, 4, 5 0

76 8.3 None 15, 16, 19, 25, 13, 9, 18, 23, 4, 5, 14 0

77 6.5 16, 21 16, 19, 15, 25, 13, 9, 18, 23, 11, 21, 5 1:389�105

78 3.9 16, 21, 15, 19 15, 16, 13, 19, 9, 25, 18, 23, 11, 7, 4 1:288�105

79 4.0 16, 21, 15, 19 15, 7, 9, 16, 5, 13, 10, 11, 19, 18, 14 1:027�105

80 6.0 15, 19 12, 11, 5, 10, 14, 7, 3, 6, 8, 17, 13 1:194�105

81 9.2 None 19, 25, 16, 13, 15, 18, 9, 21, 11, 23, 24 0

82 12.4 None 15, 25, 19, 16, 13, 9, 18, 4, 14, 23, 21 0

83 8.8 None 16, 9, 15, 23, 11, 18, 13, 2, 4, 19, 7 0

84 5.1 None 11, 18, 14, 13, 25, 16, 20, 22, 15, 19, 21 0

85 5.7 3, 20 22, 20, 17, 11, 24, 14, 18, 23, 25, 21, 12 9:905�104

86 6.1 3, 20 22, 20, 17, 14, 11, 24, 12, 25, 21, 18, 13 9:964�104

87 5.7 3, 20, 22 5, 7, 10, 14, 3, 15, 4, 9, 11, 13, 6 1:471�105

88 6.6 22 7, 5, 10, 4, 15, 9, 11, 14, 2, 16, 13 6:848�104

89 3.6 22 5, 7, 10, 11, 14, 3, 9, 6, 15, 13, 17 3:068�104

90 8.9 None 15, 7, 19, 4, 16, 10, 13, 9, 2, 14, 5 0

91 9.2 None 19, 15, 25, 16, 13, 18, 9, 21, 23, 14, 5 0

92 4.9 None 19, 13, 25, 16, 18, 15, 11, 7, 9, 5, 21 0

Sum 2:817�106
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the time of low wind speed. The optimized schedules for all the 5 years verify that the optimal time windows for maintenance are generally on

the days of low wind speed.

4.2 | Classification of turbines under maintenance

The days with relatively large numbers of turbines under maintenance are chosen to investigate how the distribution of hourly wind speed and

direction affects the optimal selection of turbines for maintenance. In each of the two maintenance intervals in 2010, 2011, 2015, 2016, and

TABLE 5 Turbines maintained during the autumn interval in 2019.

Day

Wind speed

Turbines under maintenance Turbines with least energy production

Energy loss

(m/s) (kWh)

240 5.0 1, 9 5, 11, 12, 7, 8, 3, 10, 6, 14, 17, 2 7:434�104

241 5.9 1, 9 5, 7, 11, 10, 14, 13, 18, 15, 16, 9, 17 1:068�105

242 6.2 1, 9, 3, 15 15, 16, 19, 13, 25, 9, 18, 7, 23, 4, 5 2:304�105

243 3.9 3, 15, 7, 12, 23 19, 16, 13, 25, 18, 15, 11, 9, 23, 21, 7 1:469�105

244 5.0 3, 15, 7, 12, 23, 11 22, 20, 14, 12, 17, 11, 21, 24, 25, 18, 10 2:571�105

245 5.1 7, 12, 23, 11 5, 10, 11, 12, 3, 7, 14, 6, 8, 17, 13 1:547�105

246 5.1 11, 2 18, 19, 11, 16, 25, 13, 23, 20, 21, 7, 14 8:604�104

247 5.7 2, 13 5, 7, 10, 11, 3, 6, 14, 12, 9, 8, 17 1:092�105

248 5.7 2, 13, 5, 6, 8, 20 25, 20, 11, 22, 18, 14, 19, 21, 23, 17, 13 2:995�105

249 8.0 13, 5, 6, 8, 20 14, 21, 22, 3, 20, 25, 12, 17, 10, 18, 8 2:464�105

250 12.6 5, 6, 8, 20 19, 16, 25, 13, 15, 18, 9, 23, 7, 11, 21 1:013�105

251 8.1 25 15, 16, 9, 13, 19, 25, 23, 18, 11, 4, 7 7:133�104

252 4.9 25, 21, 24 22, 14, 12, 20, 11, 25, 24, 17, 21, 18, 13 1:282�105

253 3.9 25, 21, 24 12, 11, 8, 20, 17, 22, 1, 13, 6, 14, 18 7:194�104

254 8.5 21, 24 5, 7, 10, 3, 9, 14, 15, 2, 6, 11, 8 1:664�105

255 7.5 None 16, 9, 11, 15, 23, 13, 18, 7, 10, 19, 2 0

256 8.6 None 22, 20, 17, 14, 11, 21, 24, 25, 12, 10, 3 0

257 7.8 None 5, 12, 11, 7, 10, 14, 3, 8, 22, 6, 17 0

258 6.2 17 15, 16, 9, 7, 13, 4, 11, 19, 18, 10, 5 6:216�104

259 5.2 17 19, 25, 16, 13, 18, 23, 11, 15, 21, 20, 14 4:331�104

260 6.6 17 19, 25, 16, 18, 22, 13, 20, 21, 23, 24, 17 6:503�104

261 9.0 None 22, 20, 17, 14, 21, 11, 24, 25, 10, 3, 8 0

262 7.6 10, 14 23, 20, 22, 25, 19, 18, 24, 17, 21, 11, 13 1:313�105

263 4.5 10, 14, 4, 16, 18, 19 15, 16, 13, 9, 19, 25, 11, 18, 23, 7, 4 2:117�105

264 3.8 10, 14, 4, 16, 18, 19 15, 16, 19, 13, 25, 9, 18, 23, 11, 7, 5 1:871�105

265 5.2 4, 16, 18, 19 7, 9, 4, 11, 10, 15, 2, 16, 18, 13, 19 1:726�105

266 9.0 None 16, 7, 9, 11, 2, 4, 15, 10, 18, 23, 19 0

267 6.8 None 15, 16, 9, 13, 11, 19, 18, 23, 7, 4, 25 0

268 6.1 None 16, 19, 15, 9, 25, 13, 18, 23, 11, 21, 7 0

269 6.4 22 7, 15, 9, 16, 11, 4, 10, 2, 13, 18, 19 6:078�104

270 5.3 22 19, 16, 13, 25, 15, 18, 7, 9, 11, 23, 21 5:084�104

271 6.0 22 7, 10, 4, 15, 9, 11, 5, 14, 2, 13, 16 5:065�104

272 7.1 None 22, 16, 20, 15, 11, 25, 19, 13, 18, 9, 23 0

Sum 3:286�106
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2019, 4 days are chosen to study the selection of turbines. The locations of the turbines under maintenance on the selected days, as well as wind

roses, are shown on figures. For the purpose of conciseness, only the figures for 2019 are presented in this paper. The figures for other years can

be found in the file archived at the address specified in the section of Data Availability Statement at the end of this paper.

F IGURE 4 Two maintenance intervals in 2019. (A) Spring interval in 2019. (B) Autumn interval in 2019.

F IGURE 5 Locations of the turbines under the first maintenance in Spring 2019. (A) The 61st day in 2019. (B) The 72nd day in 2019. (C) The
73rd day in 2019. (D) The 78th day in 2019.
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Figures 5A to 6D show the turbines under maintenance on the eight days specified by the titles of these figures. The turbines represen-

ted by red crosses and labeled with red numbers are under maintenance. The operating turbines are represented by black dots and labeled

with black numbers. Wind roses are circular charts used to characterize the wind speeds, directions, and frequencies over a specified period

of time at a location. It composes a number of spokes coming out from the center point of a wind rose. The length of each spoke indicates

the amount of time that the wind blows from the direction that the spoke is located. Colors along the spokes represent the categories of

wind speed.

As long as wind speed is not zero, any wind turbine generates a wake. The strength, direction, and coverage of the wake are determined by

turbine dimensions and wind conditions. In a wind farm, depending on the coverage of wakes, the wake generated by a turbine might influence

its downstream ones, and at the same time the turbine might be influenced by its upstream wakes. Since wind direction changes, the relative loca-

tion (upstream or downstream) between any two turbines in wind flow might vary at different time. At a specific time, supposing all turbines in a

wind farm are running, depending on wind direction and turbine locations, the turbines can be generally classified into three categories as shown

below. The classification of a turbine is determined by the comparison between the collective wake influence of its upstream ones and the

strength that its own wake affects downstream ones.

• Category I: The turbines mainly affected by the wakes of upstream ones.

• Category II: The turbines mainly producing wakes on downstream ones.

• Category III: The turbines both affected by the wakes of upstream ones and producing wakes on downstream ones.

F IGURE 6 Locations of the turbines under the second maintenance in Autumn 2019. (A) The 244th day in 2019. (B) The 248th day in 2019.
(C) The 263rd day in 2019. (D) The 265th day in 2019.
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Turbines near the boundary of a wind farm are likely to be classified into Category I or II, when wind direction is near perpendicular to the

boundary. For example, when wind blows from east to west, the wake of turbine 8 does not influence any other turbine since it is on the west

boundary of the wind farm, and it might be in the wakes of other upstream turbines. In this situation, it belongs to Category I. When wind direc-

tion is from west to east, turbine 8 is not in the wake of any other turbine, and its wake might influence others. Accordingly, it belongs to Cate-

gory II. The situations of the turbines surrounded by others are complicated. Each of them might be influenced by the wakes produced by

multiple upstream turbines, and its own wake might impact others in its downstream. Depending on the strength of others' wakes and its own,

the turbine might belong to any of the three categories.

Observed from the daily wind rose maps, most maps have one dominant wind direction, and a few have two. The daily dominant wind direc-

tion primarily determines which category a turbine belongs to on that day. On different days, it is very likely that the dominant wind direction

changes, and consequently the category that a turbine belongs to also changes. As shown in Figures 5B,C and 6A, turbine 12 is under mainte-

nance on the 72nd, 73rd, and 244th days in 2019. On the 3 days, the dominant wind directions shown in their wind rose maps are different. On

the 72nd day, wind blows dominantly from northwest and sometimes from southwest. Turbine 12 is generally in the upstream and generates

wakes on other turbines. Therefore, it belongs to Category II. On the 73rd day, wind blows from south to north. Turbine 12 is in the downstream

of the turbines located in the south of the wind farm, and it is also in the upstream of the turbines located in the north. So, it belongs to Category

III. On the 244th day, wind blows dominantly from northeast. Turbine 12 is in the downstream of several turbines, and there is no turbine in its

downstream. Hence, it belongs to Category I.

If the first category of turbines are under maintenance, their shutdown generally leads to less reduction in power output of the entire wind

farm than the others. If the second category of turbines are shut down, the energy generation of other turbines in their wakes will increase. The

shutdown of the third category of turbines will benefit from both less impact on power generation and increasing power of others in their wakes.

Based on careful observation, Table 6 classifies the turbines under maintenance shown in Figures 5A to 6D into the three categories. The

classification of the turbines under maintenance on typical days in 2010, 2011, 2015, 2016, and 2019 is shown in a table in the file archived at

the address specified in the section of Data Availability Statement at the end of this paper. The classification is based on the major roles of the

turbines. After observation of the selection of turbines for maintenance in all 5 years, it is found that on the days with few turbines under mainte-

nance, these turbines mostly belong to Category I or Category II, while on the other days with large numbers of turbines under maintenance, the

majority of them belong to Category III.

The discussion of how wake effects affect the selection of turbines for maintenance is based on careful observation of the optimization

results. Future research should explore how wind conditions quantitatively affect the selection of turbines for maintenance considering

wake effects. Criteria should be created to classify the turbines based on precise calculation of interactions between them due to wake

effects.

5 | CONCLUDING REMARKS

This study developed an approach to optimally schedule preventive maintenance of an offshore wind farm influenced by wake effects. A schedule

optimization problem was formulated to select time windows for turbine maintenance. Its objective is to minimize annual downtime energy loss

due to preventive maintenance. Site accessibility and maintenance feasibility are constrained by site weather conditions. In order to accurately

evaluate downtime energy losses, the power generation model used in this study takes wake effects into account. The schedule optimization was

performed for a simulated utility-scale offshore wind farm using historical climatic records. The optimal selection of when and which turbines to

maintain is mainly determined by wind conditions. Results showed that the downtime energy loss was significantly reduced through the schedule

TABLE 6 Classification of turbines under maintenance on typical maintenance days in 2019.

Day Category I Category II Category III

61 24 1, 4 7, 10, 11, 17

72 2, 9 12 5, 13, 23

73 2 23 9, 12, 13

78 15, 16, 19 None 21

244 3, 12 7, 15, 23 11

248 None 2 5, 6, 8, 13, 20

263 4, 16, 19 None 10, 14, 18

265 4, 16, 19 None 18
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optimization. For the offshore wind farm used for the case study, compared with the downtime energy loss using a random maintenance sched-

ule, the optimized schedule reduced downtime energy loss by approximately 30% annually. This reduction accounts for about 0.5% of annual

energy production, and is equivalent to a profit increase of around half million US dollars. A portion of these energy gains were attributed to

reduction in overall wake effects by optimally selecting turbines for maintenance, in response to changing wind speed and direction. This portion

of energy loss reduced due to consideration of wake effects in each year is approximately 0.07% to 0.19% of the annual energy production.

Future research should consider other factors influencing the selection of turbines for maintenance, such as routing of a vessel fleet, scheduling

of crew members, and transportation of spare parts. A next-level optimization of maintenance schedule, subject to these additional constraints,

could be implemented to further explore reduction of downtime losses and improve profitability.
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