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Abstract
In this study, we consider the problem of speaker recognition in
a non-stationary room/channel mismatched condition. In such
circumstances, cepstral coefficients are affected in a way that
the short-term stationarity assumption, on which conventional
feature normalization methods are based on, may not be valid.
We observe that the empirical mode decomposition (EMD) ap-
plied to the cepstral feature stream can partially separate out the
non-stationary channel components, if present, into its residual
signal and other lower order intrinsic mode functions (IMFs),
which leads us to develop a filtering scheme based on this de-
composition. The proposed method works in the time domain
making use of the instantaneous frequency function obtained
through Hilbert spectral analysis of the IMFs. Experimental
evaluations on the TIMIT database with added non-stationary
room channels in test demonstrate the superiority of the pro-
posed scheme compared to conventional feature normalization
schemes. Additional experiments performed on the newly re-
leased noisy robust open set speaker identification (ROSSI) and
NIST SRE corpora also confirm the effectiveness of the pro-
posed method in stationary room/channel mismatched condi-
tions.
Index Terms: Speaker verification, non-stationary room chan-
nel, empirical mode decomposition

1. Introduction
Mismatch between training and test conditions is one of the
most important problems facing speaker recognition systems
today. Most state-of-the-art speaker recognition systems per-
form well in clean and reasonably predictable environmental
mismatched conditions, but break down in adverse and unpre-
dictable conditions. Recent NIST speaker recognition (SRE)
[1] evaluations encouraged researchers to develop promising
techniques for tackling channel and microphone mismatch.
Approaches based on super-vectors [2] derived from speaker
adapted GMMs [3] have dominated the research literature in the
last decade, aided by Eigenvoice, Eigenchannel and other fac-
tor analysis based methods [4] for channel compensation. Also,
low and high vocal effort, language and accent mismatch were
some of the issues in the NIST SRE evaluation recently. How-
ever, since the main NIST focus has been on channel and mi-
crophone mismatch, many researchers have moved away from
other important factors that can degrade speaker recognition
systems in real life scenarios, such as adverse additive noise
or reverberation.
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One problematic real-life degradation of speech that is fre-
quently overlooked is non-stationarity in the environment. This
scenario is becoming quite common due to the use of cell
phones. Users can walk into an office from a busy street, or
into a corridor from a class-room while talking on their cell
phones. Both reverberation and/or noise can be introduced in
speech data in these cases. The disruption can be abrupt or
slowly varying. This situation is different from session vari-
ability since multiple room/channel and noisy condition may
exist in the same utterance. In this work, we consider the non-
stationarity in the room acoustics only. This will create a non-
stationary bias in the cepstral coefficients and may also distort
the distribution of the features. Since traditional model domain
channel compensation strategies assume that the mismatch is at
the utterances level, this kind of mismatch needs to be normal-
ized in the acoustic feature domain before modeling.

Most conventional feature compensation strategies are
based on the assumption that the channel or microphone ef-
fect is stationary over the entire utterance. Standard cepstral
mean subtraction (CMS) [5] can be used to remove stationary
convolutional distortion from the cepstral feature stream, which
can be applied accross the whole utterance or a sliding win-
dow. While utterance level CMS (CMSU ) cannot help in non-
stationary mismatched conditions, sliding window based CMS
(CMSW ) may remove speaker dependent information present
in the lower frequency range [6]. In addition to introducing a
shift in the mean, environmental mismatch can also distort the
feature distribution which necessitates the use of normalization
methods similar to cepstral variance normalization (CVN) or
feature warping [7]. Another class of techniques work on ap-
plying linear filtering on the feature coefficient stream. RASTA
filtering is the most widely used technique in this domain [8].
However, standard RASTA processing has been found to be
less effective in speaker recognition since it potentially removes
speaker related information during normalization [6, 7].

It is clear that none of the techniques discussed above
specifically address the issue of non-stationarity in the channel.
A variation of the linear channel will introduce a non-stationary
bias in the cepstral features that cannot be removed by CMSU .
Block-wise mean removal (CMSW ) or RASTA-type filtering
can help in this case, assuming that the block is small enough to
assume stationarity within itself but also large enough to com-
pute the statistics reliably. The effectiveness of feature warp-
ing will also be dependent on the sliding window duration. In
this paper, we utilize the empirical mode decomposition (EMD)
[9] algorithm to remove the non-stationary additive bias on the
cepstral feature stream, which, unlike other techniques, does not
require an a priori stationarity assumption. EMD adaptively de-
composes a signal into a set of intrinsic mode functions (IMFs)
and a residual. These IMFs contain both amplitude and fre-
quency modulation components and yield meaningful instanta-
neous frequencies using the Hilbert spectral analysis [10]. This
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approach of time-frequency analysis, referred to as the Hilbert-
Huang transform (HHT), has recently been used extensively in
a wide range of applications [9]. This study is motivated by the
intuition that EMD would partially separate the non-stationarity
channel effects in its lower order IMFs and the residual trend
signal [9], and thus filtering in this domain can be effective
in suppressing unwanted components from the cepstral feature
stream.

2. EMD and Hilbert spectral analysis
Unlike standard transformations (e.g. Fourier, Wavelet), EMD
does not require an a priori basis function. The signal is di-
rectly expressed as a summation of intrinsic mode functions
(IMF) and a residual. An IMF has the following properties: (a)
the number of extrema and the number of zero crossings of the
function are either equal or differ at most by one; and (b) at any
point, the mean value of the envelope defined by the local max-
ima and the envelope defined by the local minima is zero [9].
EMD will decompose a signal x(t) in the following manner:

x(t) =

n∑
i=1

ci(t) + r(t), (1)

where, ci(t) is the ith IMF and r(t) is the residual. In general,
c1(t) contains the highest scale (shortest period) component of
the signal, while the scale gradually reduces in ci(t) for i > 1.
Each IMF, by construction, yields a non-negative instantaneous
frequency function ω(t) through the Hilbert spectral analysis
[10], derived as follows. For an IMF c(t) if,

d(t) = H (c(t)) =
1

π
P

∫ ∞
−∞

c(t)

t− τ dτ (2)

denotes the Hilbert transform of c(t), where P indicates the
Cautchy principal value, then c(t) and d(t) form a complex
conjugate pair allowing us to form an analytic function z(t) as,

z(t) = c(t) + jd(t) = a(t)ejθ(t), where (3)

a(t) =
√
c(t)2 + d(t)2 and θ(t) = arctan

(
d(t)

c(t)

)
. (4)

Here, a(t) and θ(t) denote the instantaneous amplitude and
phase, respectively. The instantaneous frequency is given by,

ω(t) =
dθ(t)

dt
. (5)

Thus, from each IMF ci(t) we can compute ωi(t) and ai(t) and
the signal x(t) can be represented as,

x(t) = Re

[
n∑
i=1

ai(t) exp

(
j

∫
ωi(t)dt

)]
+ r(t) (6)

yielding a time-frequency-amplitude representation [9]. The fi-
nal term r(t) referred to as the residual signal, is the non-IMF
portion of the decomposition and is a monotonic trend signal.

3. Proposed Method
At first the conventional Mel-frequency cepstral coefficients
(MFCC) are extracted from the given test utterance. Let the
kth MFCC coefficient stream at frame index t be denoted by
Xk(t). Application of EMD will decompose this signal into n
IMFs and a residual signal as in (1):

Xk(t) =

n∑
i=1

ci,k(t) + rk(t). (7)
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Figure 1: (a) Clean speech signal waveform s(n), (b) the mix-
ing functionmd(n) used to mix s(n) and s′(n) to generate non-
stationary room channel and (c) the degraded signal y(n).
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Figure 2: Time trajectory of the 2nd MFCC cepstral coefficient
(C2) for: (a) the clean speech, (b) degraded speech, (c) the
block-wise mean computed using 2s and 3s sliding windows
from the degraded speech C2 (d) summation of the residual and
the last IMF generated from EMD computed from the degraded
speech C2.

Here ci,k(t) and rk(t) denote the ith IMF and the residual trend,
respectively. At first, we investigate the speaker relevant infor-
mation contained in the residual. Next, we analyze the IMFs in
non-stationary conditions.

3.1. Frequency analysis of the residual

Let there be a total N feature frames in an utterance sampled
at skip rate Ts. For the kth cepstrum trajectory Xk(t) we have
the EMD residual rk(t) as in (7). Since the monotonic resid-
ual signal is not an IMF, it can only be a signal with at most
one extrema or a DC signal. Thus the maximum frequency of
the residual signal is theoretically bounded by Fmax = 1/NTs.
This can occur only if the residual has the form of a raised co-
sine waveform given by,

r(t) = α

[
1− cos

(
2πt

NTs

)]
,where α ∈ R. (8)

For a 1 minute duration utterance and Ts = 0.01 this corre-
sponds to Fmax = 0.0167Hz. Since this is below 0.125Hz, we
can assume that there is no speaker information below this fre-
quency [6]. From a cepstrum point of view, the residual signal
is nothing but the mean trend of the data that can be compara-
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ble to a sliding window based mean envelope which is removed
during CMSW . If the channel is stationary, removing the EMD
residual is the same as performing CMSU , since in this case
EMD would ideally produce a DC residual signal. Thus we
can conclude that discarding the residual signal from each cep-
strum trajectoryXk(t) should improve speaker recognition per-
formance, and at the very least, not degrade it.

3.2. EMD domain filtering

We expect that, EMD will be able to separate the additive chan-
nel bias due to the non-stationarity in the environment into a set
of IMFs. To validate this assumption we perform an experiment
on a clean TIMIT utterance, s(n). First we simulate an office
room channel degraded signal, s′(n), using an impulse response
from the AIR database [11]. The clean signal s(n) and the de-
graded signal s′(n) was then combined using a mixing function
md(n) 1 shown in Fig. 1(b) as,

y(n) = s(n)md(n) + s′(n)(1−md(n)). (10)

The objective here is to generate a non-stationary environment
effect for a duration of d = 2 seconds by adding signals in
two different stationary conditions (clean and office room) us-
ing md(n). This is an attempt to simulate the effect of chang-
ing a room acoustic condition during the speech. Fig. 2 shows
the effect of this distortion on the second MFCC coefficient,
C2, over time. From Fig. 2(b) it is seen that the change in
the acoustic condition distorted both the mean and the vari-
ance of C2 in frames 400 − 800. Fig. 2(c) shows the mean
trend estimated using a sliding window (as done in CMSW ),
and Fig. 2(d) shows the sum of the residual and the final IMF
(cn,k(t) + rk(t)) generated by computing EMD on C2. From
these figures we observe that, while CMSW does estimate the
non-stationary trend of C2, it also shows some high frequency
ripples that may contain speaker identity information. On the
contrary, the EMD estimated mean-trend is much smoother and
thus is a better candidate for the non-stationary trend removal.
From this analysis, we conclude that besides the residual sig-
nal, the lower order IMFs may also contain components due to
the non-stationary environment. Thus we aim at suppressing
unimportant low frequency components [6] of the modulation
spectrum from the IMFs of the feature stream based on their
instantaneous frequency values. Using (6), Xk(t) is given by,

Xk(t) = Re

[
n∑
i=1

ai,k(t) exp

(
j

∫
ωi,k(t)dt

)]
+ rk(t).

Applying a transfer function H(ω) on the instantaneous ampli-
tudes ai,k(t) and removing rk(t) we obtain its filtered version,

X̂k(t) = Re

[
n∑
i=1

ai,k(t)H(ωi,k(t)) exp

(
j

∫
ωi,k(t)dt

)]

=

n∑
i=1

ci,k(t)H(ωi,k(t)). (11)

For a low-pass filter in this domain, we define H(ω) as,

H(ω) =
1

2

[
1 + erf

(
ω − ωL
σL

)]
, (12)

1For an utterance of M seconds duration the mixing function is,

md(n) = 1−
1

2

[
erf

(
n−M/3

σm

)
− erf

(
n−M/3− d

σm

)]
, (9)

where σm controls the abruptness and d controls the duration of non-
stationarity. In Fig. 1(b), md(n) changes from 1 to 0 for a duration
d = 2 seconds starting from M/3 = 2 seconds. σm is set to 0.12.
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Figure 3: Variation of the transfer function H(ω) of an EMD
domain low-pass filter with an ωL = 0.2 and various σL values.
ω = 0.5 is equivalent to 50Hz in the modulation spectrum.

where ωL denote the lower cut-off frequency and σ controls the
cutoff steepness of the filter. An example H(ω) for a low-pass
filter with an ωL = 0.2 is shown in Fig. 3. In general, com-
ponents below 0.5Hz in the modulation spectrum (ω < 0.005)
can be considered unimportant for speaker identity [6].

4. Experiments
Since there are no commercially available speech database that
contains speech utterances in a changing environment in the
same session, we generate this effect using the TIMIT database
for this evaluation. We are currently in progress of collect-
ing such data from speakers using a mobile recording frame-
work. To test the algorithm on a real speech corpus, we use the
NIST SRE database and also use the newly developed ROSSI
database. Further details are given in the following subsections.

4.1. System Description

Since this work deals with acoustic feature normalization alone,
a classical GMM-UBM system [3] is used for the evaluation.
For the front-end we extract MFCC features with 12 coefficients
(∆ + ∆∆ was used for NIST and ROSSI data only). We use
a 25 ms analysis window with 10 ms shift. A phone recog-
nizer based voice activity detector (VAD) is utilized [12]. Next,
we performed one of the following: (a) utterance level CMS
(CMSU ), (b) sliding-window based CMS (CMSW ), (c) RASTA
filtering, and (d) proposed EMD based compensation (EMDC)
Finally, feature warping (FW) [7] is applied using a 3-s sliding
window. The system with only FW is referred to as the base-
line system. For the proposed EMDC scheme, a low pass filter
is applied using (12). For UBM training, the number of mix-
tures used is 1024 for NIST SRE and 512 for other experiments.
UBM is trained using maximum likelihood (ML) criterion and
later adapted to each enrollment speaker using classical MAP
adaptation [3] with one iteration and a relevance factor of 19.

4.2. System setup for non-stationary environment

In order to evaluate the effectiveness of the proposed fea-
ture compensation strategy we generate non-stationary environ-
ments in the test data using the AIR database [11]. For the
evaluation, we select 50 male and 50 female speakers from the
TIMIT database for enrollment testing. 8 conversations (ap-
proximately 24 seconds) of data per speaker is used for training
and the remaining 2 conversation (approximately 6 seconds) is
used for test. From the remaining data, 120 male and 120 fe-
male speakers’ data is used for UBM training. Each enroll-
ment speaker is tested 1 target and 99 non-target test speak-
ers. To generate non-stationary room environment, we select
the following 7 room impulse responses from the AIR database
[11]: (a) bathroom, (b) corridor, (c) kitchen, (d) lecture hall,
(e) meeting room, (f) office and (g) stairway. We also corrupt
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Table 1: EER performance in stationary and non-stationary
room channel mismatched conditions in different datasets

System Non-stationary Stationary
d=1s d=2s d=3s TIMIT NIST ROSSI

Baseline 7.99 12.00 10.99 4.12 12.18 2.79
CMSU+FW 8.01 11.99 11.00 4.19 12.19 2.86
CMSW+FW 8.98 10.99 10.87 5.89 11.57 3.00
RASTA+FW 7.00 10.01 9.00 6.05 17.21 4.98
EMDC+FW 6.22 8.83 9.03 3.77 11.44 2.11

the waveforms using the FaNT [13] tool that contains the four
ITU defined standard telephone channels: (a) G.712, (b) IRS,
(c) MIRS and (d) P.341. If, s(n), hair(n) and htel(n) denote
the clean signal, room impulse response, and telephone chan-
nel impulse response, respectively, the degraded test utterance
y(n) with non-stationary room channel and a stationary tele-
phone channel is generated as,

y(n) = [s(n)md(n) + s(n) ∗ hair(n)(1−md(n))] ∗ htel(n).

Here the mixing function md(n) given in (9) was used. The
parameter d specifies the time duration when hair(n) is active.
With 4 types of htel(n), and seven types of hair(n), a total of 28
different channel conditions were created. Additional four test
conditions were generated as follows: three non-stationary con-
ditions with d =1, 2, 3 seconds in md(n), and one stationary
condition (d = 0) with only telephone channel mismatch. For
the enrollment and UBM utterances, only htel(n) is applied.

4.3. Stationary environment condition

The ROSSI and NIST SRE database is used to evaluate the pro-
posed scheme in standard stationary channel mismatched con-
ditions. The ROSSI database is especially designed for testing
and evaluating automatic speaker recognition systems in real
environments. Each evaluation set contains 100 in-set speakers
(data for both training and testing) and 100 out-of-set speakers.
Each utterance is about 2 minutes in duration. 600 additional
development speakers’ data is also included. These are used for
UBM training. Audio data in ROSSI is recorded under vari-
ous environmental conditions including telephone channels and
noise. We utilize the ROSSI set-1 which uses table-mic (far-
field) for train and lapel-mic (close talk) for test. Other ROSSI
train/test conditions include, cell phone in public, vehicle, office
and roadside, and land-line phone in office. For NIST SRE’08
experiments, 5min tel train-interview mic test trials are used for
evaluation and the SRE’04 and 05 data for UBM training.

5. Results
The EER performance of the system in different conditions is
summarized in Table 1. For the non-stationary room channel
cases d =1, 2 and 3s, it is clear that CMSU was not able to
compensate for the mismatch. CMSW helps in general but de-
grades the system performance for d = 1. This is expected
since a 3s sliding window is used here. RASTA filtering per-
formed reasonably well. However, the proposed EMDC method
has outperformed the other techniques for d =1 and 2. In case
of d = 3 RASTA performed slightly better. This demonstrates
the ability of the proposed method to remove non-stationarity
from cepstral trajectory even if it is of small duration.

It is interesting to note that the proposed technique also per-
forms well in stationary mismatched conditions. While, CMSU ,
CMSW and RASTA degrade system performance, the proposed
scheme was still able to achieve improvement over baseline sys-
tem performance. This, we believe, is due to the fact that EMD

was effectively able to separate some of the unimportant com-
ponents in its lower order IMFs that were successfully removed
by filtering. Other model domain channel compensation may be
used to further improve system performance.

6. Conclusion
In this study we considered the problem of speaker recognition
in non-stationary room channel mismatch during test. We have
demonstrated that the short time sliding window based feature
normalization methods are not fully able to mitigate the mis-
match introduced by this type of distortion, and subsequently a
new method based on the empirical model decomposition of the
feature stream was presented. A new cepstral filtering scheme
was presented based on the instantaneous frequencies of the fea-
ture stream computed using EMD and Hilbert spectral analy-
sis. Experimental results on synthetic and real-life data demon-
strated the effectiveness of the approach in speaker verification.
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