
 

 
Abstract—Neuromorphic computing promises revolutionary 

improvements over conventional systems for applications that 
process unstructured information. To fully realize this potential, 
neuromorphic systems should exploit the biomimetic behavior of 
emerging nanodevices. In particular, exceptional opportunities 
are provided by the non-volatility and analog capabilities of 
spintronic devices. While spintronic devices that emulate neurons 
have been previously proposed, they require complementary 
metal-oxide semiconductor (CMOS) technology to function. In 
turn, this significantly increases the power consumption, 
fabrication complexity, and device area of a single neuron. This 
work reviews three previously proposed CMOS-free spintronic 
neurons designed to resolve this issue. 
 

Index Terms—Artificial neural network, Neuromorphic 
computing, Leaky integrate-and-fire neuron 
 

I. INTRODUCTION 

n the human brain, a neuron integrates a series of electrical 
spikes through its axons and, when enough of these current 

pulses have been integrated, it releases a spike of its own from 
the soma (cell body) and through its dendrites to the axons of 
other neurons. Synapses, on the other hand, provide electrical 
connectivity between the axons of one neuron and the dendrites 
of other neurons. 

To mimic the brain, neuromorphic systems typically contain 
artificial neuron and synapse analogs. Such systems can be 
emulated using software on von Neumann computers [1],[2]; 
however, due to the fact that complementary metal oxide 
semiconductor (CMOS) technology, which is the primary 
technology used in standard von Neumann computers, was not 
specifically designed to implement the required behavior, these 
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systems consume considerably more energy than an actual 
human brain [3]. Novel CMOS-based systems can also be used 
to implement neuromorphic systems [4],[5], but again, CMOS 
was not specifically designed to match the needs for 
neuromorphic computing and such chips are highly inefficient. 

To resolve the issues of inefficiency and high power 
consumption, neuromorphic-inspired beyond-CMOS devices 
have garnered a considerable amount of attention in the 
scientific community. Since synapses only require non-
volatility and a variable resistance, several beyond-CMOS 
synapses have already been proposed [6]-[9]. On the other 
hand, fewer beyond-CMOS neurons have been proposed due to 
the unique challenges in emulating the leaky integrate-and-fire 
(LIF) neuron model [8]-[11]. While these previously proposed 
spintronic neurons efficiently provide leaking, integrating, 
firing, and lateral inhibition, electrical connectivity between the 
input and output ports results in a need for CMOS circuitry 
between perceptron layers. 

This paper reviews three recently proposed neurons designed to 
eliminate the need for CMOS circuitry, thereby enabling a 
monolithic, purely spintronic neuromorphic architecture. A 
brief background to the field of neuromorphic computing is 
provided in section 2, while background on spintronic synapses 
and a review of the aforementioned neurons is presented in 
section 3. A discussion of a purely spintronic neural network is 
provided in section 4, and finally, conclusions are provided in 
section 5. 

II. BACKGROUND 

Due to the fact that novel technologies and architectures are still 
required to be compatible with currently existing fabrication 
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techniques, many beyond-CMOS technologies, including the 
previously proposed neuromorphic structures discussed in this 
work, are designed using a crossbar array structure. 

A. Crossbar Array 

An NxM crossbar array consists of N horizontal wires (word 
lines) and M vertical wires (bit lines). For a layer in a 
neuromorphic system, a single input neuron will be attached to 
each word line and a single output neuron will be attached to 
each bit line, resulting in N+M total neurons. Likewise, a single 
synapse exists at each word and bit line intersection to provide 
connectivity between the input and output neurons for a total of 
N*M synapses. The resistance states of these synapses, which 
are capable of being finely tuned during training, determine the 
weighting between the input and output neurons, and, 
ultimately, the overall functionality of the neuromorphic layer 
[7]. This structure is illustrated in Figure 1. 

B. Leaky Integrate-and-Fire Neuron 

A biologically-accurate neuron model is the leaky integrate-
and-fire (LIF) neuron model, which is a considerable 
improvement over the previous integrate-and-fire (IF) neurons 
[1]. LIF neurons should implement three primary 
functionalities. As implied by the name, these functionalities 
are integrating, leaking, and firing. When an energy spike is fed 
into the input of an LIF neuron, the neuron should store the 
energy from the spike. However, when no energy is applied to 
the input of the neuron, it should gradually dissipate the stored 
energy. Finally, once the stored energy has reached a certain 
threshold, the neuron should suddenly release an output energy 
spike and reset its state to the initial state.  

III. DOMAIN WALL MAGNETIC TUNNEL JUNCTION 

A domain wall magnetic tunnel junction (DW-MTJ) consists 
of a “free” ferromagnetic layer containing two magnetic 
domains separated by a domain wall (DW) such that the 
position of the DW determines the MTJ resistance. When the 
DW, which can be moved using a current, passes underneath, 
the MTJ switches between the parallel (conductive) and anti-
parallel (resistive) states. 

 

Fig. 3. (a) Side view of the neuron with dipolar coupling field. (b) Side view of 
the neuron with graded anisotropy illustrating the anisotropy gradient instead of 
magnetization. (c) Structure of the neuron with shape-based DW drift. 

Fig. 2. DW-MTJ synapse with wide tunnel barrier for analog resistance states. 

 

Fig. 1. NxM crossbar array consisting of N+M neurons and N*M synapses. 
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A. DW-MTJ Synapse and Neuron Integration 

This synapse, which is shown in Figure 2, consists of a long 
tunnel barrier that covers a large portion of the DW track [8], 
[9], allowing the device to exhibit analog resistance states. 
When a current flows through the DW track, the DW shifts from 
one end of the track to the other. When used in a DW-MTJ 
neuron, this DW motion represents integration through an  

increase in stored energy. 

B. Leaking with a DW-MTJ Neuron 

Leaking can be achieved using one of three methods. With 
the first method, a ferromagnet is placed underneath the DW 
track and provides a dipolar coupling field, as illustrated in 
Figure 3a. When a dipolar coupling field is applied parallel to a 
magnetic domain’s magnetization state, the field causes the 
domain to expand. Conversely, if the same field is applied 
antiparallel to a magnetic domain’s magnetization state, the 
field will cause the domain to shrink. Therefore, a magnetic 
field applied to a DW track along the same axis as the two 
antiparallel magnetic domains will cause the DW to shift from 
one side of the track to the other. The dipolar coupling field 
provided by the aforementioned ferromagnet allows the DW to 
shift from one end of the track to the other in the absence of any 
current. As illustrated in the micromagnetic simulation results 
of Figure 4a, when a current is applied from right to left through 
the DW track, the DW shifts from left to right. However, when 
no current is applied, the DW gradually shifts from right to left 
[12]. 

In the second method, illustrated in Figure 3b, the DW track 
contains a magnetocrystalline anisotropy gradient, which can 
be implemented using a thickness and/or composition gradient 
[15]-[17]. When the DW is in a region of the track with a higher 
anisotropy value, it exists in a higher energy state, and when the 
DW is in a region of the track with a lower anisotropy value, it 
exists in a lower energy state. Therefore, the anisotropy gradient 
generates an energy landscape that is more favorable to the DW 
existing on one side of the track than the other. Figure 4b 
demonstrates micromagnetic simulation results of the 
combined leaking and integrating characteristics of a graded 
anisotropy neuron. As with the neuron with a dipolar coupling 
field, a current passed from right to left in the device causes a 
rapid shift in the DW position from left to right. When no 
current is applied, the DW slowly leaks from right to left [13]. 

With the third method, the sides of the DW track are angled 
to form a trapezoidal track instead of a rectangular track, as 
demonstrated in Figure 3c. Similar to the anisotropy gradient 
neuron, the DW exists in a higher energy state when it is in the 
wider region than when it is in the narrower region. Therefore, 
the DW will shift from the wide portion of the DW track to the 
narrow portion without any externally-applied stimuli. When 
applying a current from right to left through the device, as in 
Figure 4c, the DW shifts from left to right. When no current is 
passed through the device, the energy landscape present in the 
DW track forces the DW to shift from right to left [14]. 

Finally, the fabrication approaches for these three methods 
are evaluated in Table I. The neuron with the dipolar coupling 
field has the simplest fabrication process for each layer; 
however, it requires two additional layers – one being the 

 

 
Fig. 4. (a) Combined integrating and leaking characteristics of a neuron 
implemented using a dipolar coupling field. (b) Combined integrating and 
leaking characteristics of a neuron with anisotropy gradient. (c) Combined 
integrating and leaking characteristics of a neuron with shape-based DW drift.  
 

TABLE I.  COMPARISON OF FABRICATION APPROACHES 

Leaking Mechanism Dipolar Coupling Field Anisotropy Gradient Shape Gradient 
Fabrication Approach Additional ferromagnet provides dipolar 

coupling field 
Ga+ ion irradiation gradient of DW 
track 

Lithography of non-rectangular shape 

Advantages Simple fabrication of each layer No extra material layers No extra material layers 
Disadvantages Requires additional material layers Requires additional fabrication steps 

to irradiate DW track 
Requires gradient of DW track width.  
Increased area overhead 
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additional ferromagnet itself, and one being an electrically 
insulating layer between this ferromagnet and the neurons. The 
anisotropy gradient neuron, on the other hand, can be 
implemented through Ga+ ion irradiation of the DW track. This 
has the advantage of minimizing the number of material layers, 
but it does require additional fabrication steps in order to 
irradiate the track. Finally, the shape gradient neuron also does 
not require any additional material layers, but it requires 
lithography for a non-rectangular shape, and will have a larger 
area overhead. Although it is currently unclear which of these 
approaches is most effective, further advances in material 
science and the fabrication of beyond-CMOS devices will shed 
light on this matter. 

C. Firing with a DW-MTJ Neuron 

When a sufficient amount of current has been integrated, the 
DWs in the artificial neurons reviewed in this work will have 
shifted underneath the MTJs. This will alter the resistance states 
of the devices, causing output spikes similar to those of standard 
LIF neurons. 

IV. CMOS-FREE MULTILAYER SPINTRONIC PERCEPTRON 

The development of these spintronic neurons and synapses 
enables the construction of CMOS-free spintronic neural 
network layers, as shown in Figure 5. While spintronic neural 

networks have previously been considered [8], significant 
CMOS circuitry was required in addition to the spintronic 
synapses and neurons in order to implement leaking.  

V. CONCLUSIONS 

This work reviews three novel DW-MTJ neurons that, in 
conjunction with DW-MTJ-based synapses, enable a purely 
spintronic neural network. These LIF neurons intrinsically 
provide the leaking, integrating, and firing capabilities, thereby 
eschewing the need for additional CMOS circuitry. By 
exploiting biomimetic synapses and neurons in a simplified 
fabrication, these devices promise significant advances for 
efficient machine learning and artificial intelligence 
applications. 
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Fig. 5. Spintronic neural network layer using the DW-MTJ neuron of Fig. 2 and 
the DW-MTJ synapse of Fig. 1. The synapses at the intersections of word and 
bit lines provide weights between two individual neurons, and the neurons of 
one layer provide the inputs to another layer. 
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