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Abstract— CMOS devices display volatile characteristics
and are not well suited for analog applications such as
neuromorphic computing. Spintronic devices, on the other
hand, exhibit both non-volatile and analog features, which
are well suited to neuromorphic computing. Consequently,
these novel devices are at the forefront of beyond-CMOS
artificial intelligence applications. However, a large quantity
of these artificial neuromorphic devices still require the
use of CMOS to implement various neuromorphic func-
tionalities, which decreases the efficiency of the system.
To resolve this, we have previously proposed a number of
artificial neurons and synapses that do not require CMOS
for operation. Although these devices are a significant
improvementover previous renditions, their ability to enable
neural network learning and recognition is limited by their
intrinsic activation functions. This work proposes modifica-
tions to these spintronic neurons that enable configuration
of the activation functions through control of the shape of a
magnetic domain wall track. Linear and sigmoidal activation
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functions are demonstrated in this work, which can be
extendedthrough a similar approach to enable a wide variety
of activation functions.

Index Terms— Artificial neural network, leaky integrate-
and-fire (LIF) neuron, multilayer perceptron, neuromorphic
computing.

I. INTRODUCTION

ACCORDING to neuroscientists, the human brain consists
of neurons and synapses. Neurons receive electrical

signals through their dendrites and integrate these electrical
signals in their somas. When enough input pulses have been
received, these cells release output pulses from their somas,
through their axons, and into the dendrites of other neurons.
Synapses bridge the gaps between two neurons.

Likewise, artificial neuromorphic systems consist of neuron
and synapse analogs. They can be implemented using software
run on standard von Neumann computers [1], [2], but such
a method is highly inefficient due to the fact that conven-
tional mathematical operations do not map efficiently to neu-
ronal and synaptic functions. Furthermore, CMOS technology
does not naturally provide the required neuronal or synaptic
functionality—instead, these functions must be implemented
using a large number of devices per neuron or synapse. The
efficiency can be improved by designing CMOS circuitry
specifically for neuromorphic applications [3], [4]; however,
even though this will significantly reduce the device count,
and therefore the power consumption, CMOS devices are still
not ideal for these applications due to their volatile and digital
nature.

The non-volatility and analog nature of spintronics are
particularly attractive for neuromorphic computing, and sev-
eral beyond-CMOS spintronic synapses and neurons have
been proposed to improve the efficiency. Although synapses
only require non-volatility and variable resistance, the popular
leaky integrate-and-fire (LIF) neuron model requires three
primary functionalities: leaking, integrating, and firing. There-
fore, while much progress has been made on beyond-CMOS
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synapses [5]–[8], significant challenges remain to emulate the
complex behavior of neurons. Advancing on previous work
that required CMOS within the network [8], we have previ-
ously proposed spintronic LIF neurons capable of intrinsically
providing the three necessary functionalities within a purely
spintronic system [9]–[13].

However, these neurons have limited capability to mimic
the various activation functions commonly used in neural
networks. Activation functions are commonly used in neural
networks to improve the decision-making process and,
by extension, the learning characteristics of the networks.
A variety of activation functions are utilized for neural
networks, including the rectified linear unit (ReLU) and
squashing/sigmoidal activation functions. Similar activation
functions have already been implemented in recent works,
but they only implement quantized, not analog, activation
functions [14].

In this article, we propose spintronic neurons that provide
these activation functions by modifying the shape of one
of our previously proposed shape-based magnetic domain
wall neurons [11]. By appropriately configuring the shape
of this device, it is possible to implement a wide range
of distinct activation functions. This permits the design of
neural networks that leverage nearly any arbitrary activation
function, thereby increasing the efficiency of the spintronic
neuromorphic networks.

Section II provides a brief background into the field of
neuromorphic computing, including the shape-based neuron.
Section III discusses the realization of two particular activation
functions, while conclusions are provided in Section IV.

II. BACKGROUND

Neuromorphic computing is generally realized with neu-
ron layers connected through crossbar synapse arrays.
In order to realize the LIF neuron functionality, we have
previously proposed the use of artificial spintronic neu-
rons as described in this section. This section also
overviews the activation functions of interest for neuromorphic
computing.

A. Crossbar Array

Crossbar arrays typically consist of horizontal input wires
(word lines) and vertical output wires (bit lines). Input neurons
are placed at the inputs to the word lines, and output neurons
are placed at the outputs of the bit lines. Synapses, on the
other hand, are placed at the intersections of the word and
bit lines. Therefore, an M × N crossbar array will consist of
M + N neurons and M ∗N synapses [15]–[17].

B. LIF Neurons

In order to accurately mimic biological neurons for neu-
romorphic computing, artificial LIF neurons implement three
primary functionalities: leaking, integrating, and firing. When
integrating, these neurons accept and store energy from input
energy pulses. When no input pulse is provided, the stored
energy gradually dissipates. Finally, once sufficient stored

energy has been integrated, the neuron releases this energy
as an output pulse of its own.

C. Domain Wall-Magnetic Tunnel Junctions

Magnetic tunnel junctions (MTJs) consist of two ferromag-
netic layers—a “free” layer capable of changing states and
a “fixed” or “pinned” layer whose magnetization is stable.
When the two layers are magnetized parallel to each other,
the device exhibits a low-resistance state (LRS); when they
are magnetized anti-parallel to each other, the device exhibits
a high-resistance state (HRS). Domain wall-MTJs (DW-MTJs)
are similar, but the free layer is extended and contains
two anti-parallel magnetic domains bounded by a domain
wall [18], [19]. The DW can be moved with a spin-orbit torque
(SOT) current through a heavy metal beneath the DW track or
through a spin-transfer torque (STT) current passed through
the DW track, and the device changes resistance states when
the DW shifts underneath the MTJ.

D. DW-MTJ LIF Neurons

This DW-MTJ device can be used as an LIF as shown in
Fig. 1(a), with the neuron energy represented by the position
of the DW within the track [9]. Integration is accomplished
by applying current through the heavy metal, and firing occurs
when the DW passes underneath the MTJ, thereby switching
the current across the tunnel barrier. Device resetting can
be performed using various methods [20] and is akin to a
refractory period.

In order to induce leaking that shifts the DW in the direction
opposite the SOT, an energy landscape must be produced that
causes the DW to exist in a lower energy state at one end of the
device than the other. While this can be achieved by providing
current through the DW track in the direction opposite the
integration, this approach is undesirable due to the additional
control circuitry [8]. It is preferable, therefore, for the leaking
to be passive, as in [9]–[12].

The shape-based leaking of [11] is particularly attractive
for enabling useful activation functions. With this method,
the DW track width is varied from one end of the track
to the other, as shown in Fig. 1(b). DWs typically exist in
lower energy states in wider tracks than in narrower tracks.
Consequently, the variation of the DW track width shown in
Fig. 1(b) creates an energy landscape more favorable to the
DW existing on the left side of the track than on the right
side, causing the DW to shift from right to left. If desired, the
leaking speed of the neurons can be increased by increasing w2

relative to w1 or by decreasing the Landau–Lifshitz damping,
among other methods. Conversely, the leaking speed can be
decreased by decreasing w2 relative to w1 or by increasing the
Landau–Lifshitz damping.

The integrating and leaking characteristics observed
in mumax3 micromagnetic simulations are illustrated in
Fig. 1(c) [11]. The magnetic parameters are listed in Table I.
These micromagnetic parameters are used for the entirety
of this work, including the linear and squashing neurons of
Section III. Throughout this work, COMSOL has been used
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Fig. 1. (a) Side view of a DW-MTJ neuron. (b) Top view of the neuron with shape-based DW drift. (c) Combined integrating and leaking characteristics
of a shape-based DW drift neuron with L = 250 nm, w1 = 50 nm, and w2 = 100 nm, where the current is applied from right to left through the DW
track using the left and right terminals.

Fig. 2. Generalized linear (black) and sigmoidal (blue) activation
functions. The sigmoidal activation functions are shown with various
switching speeds.

to create a current map for non-rectangular DW-MTJ neuron
structures.

E. Activation Functions

Activation functions allow a neuron to provide the network
with significantly improved learning characteristics during
training and significantly improved performance during oper-
ation. In fact, it has been shown that particular activation
functions, such as the ReLU or sigmoidal activation functions

TABLE I
MATERIAL PARAMETERS

shown in Fig. 2, can reduce the error exhibited by a neural
network by up to two orders of magnitude when the network
is applied to certain datasets.

The ReLU activation function simply maps an input to the
output in a linear fashion. On the other hand, the sigmoid
function (also referred to as the squashing function) maps the
input to a monotonically decreasing output, with the highest
rate of change at the center of the function. Table II provides
the equations representing these activation functions.

As an activation function describes the impact of the stimuli
input to a neuron on the stimuli output by a neuron, the
activation function of an LIF neuron is a complex function
dependent on the history of input stimuli. Although con-
ventional activation functions used in machine learning can
be characterized by equations that directly relate the input
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Fig. 3. (a) Top view of the linear neuron, displaying the slight exponential
curvature of the sides of the track. This curvature is of the form w ∝ b−d,
where b represents the curvature of the sides, d is the distance from the
wide end of the track in nanometer, and w is the width of the device in
nanometer at distance d. b ranges from 1 to 5 at intervals of 0.5. When
b = 1, the sides are straight, and the track is identical to the one shown
in Fig. 1(b). (b) Leaking characteristics of the linear neuron for various
values of b, including b = 1. (Inset) Average DW velocity in m/s as a
function of b. (c) RMSE of the neuron’s leaking characteristics from a
linear function.

and output signals, the activation function of an LIF neuron
has time-dependent behavior that cannot be expressed by
such simple functions. However, by modifying the leaking,
integrating, or firing behavior of an LIF neuron, the activation
function of the LIF neuron is altered. In particular, as explained
in [21], an activation function can be described by a saturation
function, which, for an LIF neuron, is equivalent to integration.
This work, therefore, investigates the configurability of LIF
neuron activation functions through control of the neuron
structures that govern the leaking and integration behavior.

TABLE II
ACTIVATION FUNCTION EQUATIONS

Fig. 4. Simulation of a linear neuron with b = 4 at 300 K with five
randomly generated seeds.

III. DW-MTJ NEURONS WITH CONFIGURABLE

ACTIVATION FUNCTIONS

In order to improve the biomimetic capabilities of our
neurons, it is important for them to implement a variety
of activation functions, including the linear and squashing
activation functions [22]–[26]. To do so, modifications to
the neurons are required. The neuron from [11] is par-
ticularly well suited to implementing these functions due
to the simplicity of the necessary changes. Although this
section only demonstrates the linear and squashing activation
functions, it is clear that this approach can be extended
to a wide variety of activation functions using similar
modifications.

It is important to note that while the leaking behavior
is dependent solely on the neuron structure, the integration
behavior is also dependent on the applied input current
magnitude. Therefore, in order to ensure that the desired
activation functions are always significantly impacting the
neuron behavior, these activation functions are implemented
in terms of the leaking rather than the integration. For any
given leaking activation function, a wide range of integration
activation functions can be achieved by varying the current
magnitude applied to the DW-MTJ neuron.

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on May 02,2022 at 18:15:20 UTC from IEEE Xplore.  Restrictions apply. 



BRIGNER et al.: DOMAIN WALL LIF NEURONS WITH SHAPE-BASED CONFIGURABLE ACTIVATION FUNCTIONS 2357

Fig. 5. (a) Integration of the linear neuron for an input current of
0.1 mA. As with Fig. 4(b), b ranges from 1 to 5 with an increment of 0.5.
(b) Integration of the linear neuron for an input current of 0.5 mA.

A. Neuron With Linear Activation Function

In the trapezoidal DW-MTJ device of Fig. 1(b), the DW
accelerates as it nears the narrow end of the track. To realize
a linear activation function without this acceleration, it is
necessary to alter the shape of the DW track to decrease the
leaking force in narrower regions of the track.

Linear leaking can be accomplished simply by introducing
a slight exponential variation in the width of the DW track,
as shown in Fig. 3. In general, as the value of b increases,
the linearity of the device’s leaking increases, calculated as
the inverse of the root mean squared error (RMSE) of a
linear regression performed on the leaking curve. The leak-
ing speed also increases as b increases. However, once b
reaches a certain point, further increases cease to produce
an increase in linearity, although they continue to increase
the leaking speed. This exponential variation decreases the
leaking force applied to the domain wall as it shifts to nar-
rower regions of the track, preventing further DW acceleration
and allowing for linear device operation. Additionally, the
room temperature leaking characteristics of the neuron with
b = 4 are illustrated in Fig. 4, demonstrating robustness to
temperature.

Fig. 6. (a) Top view of the squashing neuron, displaying the sharp con-
striction of the DW track centered in the middle of the track. (b) Leaking
characteristics of the squashing neuron for w1 increasing from 100 to
400 nm, with an increment of 50 nm. (Inset) Average DW velocity in
m/s as a function of w1 in nanometer. (c) Leaking characteristics of the
squashing neuron for w1 increasing from 150 to 400 nm, into the time
range 0 s–100 ns.

It is also important to analyze the response of the DW-MTJ
neurons to various input currents. When an input current of
0.1 mA is applied to the neuron, as in Fig. 5(a), the DW’s
integration speed increases in proportion to b. As the DW nears
the end of its range of motion, it also begins to exhibit slight
oscillatory behavior due to interactions with the fixed region
at the edge of the neuron. When the input current is increased
to 0.5 mA, as shown in Fig. 5(b), the integration speed also
increases, as would be expected. Additionally, the integration
speed maintains its positive correlation with the value of b, but
the higher current prevents the previously observed oscillations
of the DW at the edges of its range of motion.
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Fig. 7. Simulation of a linear neuron with w = 150 at 300 K with five
randomly generated seeds.

B. Neuron With Squashing Activation Function

In order to implement sigmoidal leaking, the leaking force
must not only be minimized at the narrow end of the track, but
also at the wide end of the track. Therefore, the neuron’s shape
gradient can only exist within a narrow range halfway between
the narrow and wide ends of the DW track, as illustrated in
Fig. 6(a).

With w1 = 100 nm as in Fig. 6(b), the neuron exhibits
a sigmoidal leaking characteristic. As the width of the wide
end of the track increases, the DW leaking motion becomes
faster, with an effect similar to that of b on the leaking speed
of a linear neuron. By zooming in on the leaking charac-
teristics for these larger values of w1 in Fig. 6(c), it can be
observed that the neurons still implement squashing functions.
By varying the device width in this fashion, low leaking
forces are applied to the DW in both the wide and narrow
regions and higher leaking forces are applied to the DW in
the middle region, causing the device to exhibit sigmoidal
characteristics. As with the linear neurons, the room temper-
ature leaking characteristics for a device with w1 = 150 nm
are illustrated in Fig. 6. As with the linear neuron, the room
temperature leaking characteristics of the neuron with w1 =
150 nm are illustrated in Fig. 7, demonstrating robustness to
temperature.

As with the previously discussed linear neuron, it is impor-
tant to analyze the integration characteristics of the squashing
neurons for various input currents. With an input current of
0.1 mA, as illustrated in Fig. 8(a), the DW integration speed
is inversely proportional to w1, partly due to an increased
leaking force and partly due to a decreased current density.
Additionally, as the width increases, the integration becomes
non-monotonic due to the instability of the wide DWs. When
the input current is increased to 0.5 mA as in Fig. 8(b), not
only does the DW integration speed increase significantly, the
integration speed remains inversely related to w1. Additionally,
with increased current, the integration becomes monotonic
even with large widths.

Fig. 8. (a) Integration of the squashing neuron with an input current of
0.1 mA. (b) Integration of the squashing neuron with an input of 0.5 mA.
As w1 increases, the steady-state fully leaked initial position approaches
the end of the track.

IV. CONCLUSION

Shape-based DW drift enables configurable DW-MTJ neu-
ron leaking that enables the realization of diverse acti-
vation functions for efficient learning and recognition in
spintronic neuromorphic computing systems. In this work,
we have demonstrated linear and squashing activation func-
tions through specific configurations of the shape of the
DW tracks. By extension of this concept, further activation
functions commonly used in the field of neuromorphic can
also be realized. This represents a significant advancement
over previous spintronic neurons that will enable drasti-
cally improved learning characteristics of spintronic neural
networks.
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