Domain Wall Leaky Integrate-and-Fire Neurons With Shape-Based Configurable Activation Functions

Wesley H. Brigner, Graduate Student Member, IEEE, Naimul Hassan, Graduate Student Member, IEEE, Xuan Hu, Member, IEEE, Can Cui, Graduate Student Member, IEEE, Alvaro Velasquez, Member, IEEE, Matthew J. Marinella, Senior Member, IEEE, Jean Anne C. Incorvia, Senior Member, IEEE, and Joseph S. Friedman, Senior Member, IEEE

Abstract—CMOS devices display volatile characteristics and are not well suited for analog applications such as neuromorphic computing. Spintronic devices, on the other hand, exhibit both non-volatile and analog features, which are well suited to neuromorphic computing. Consequently, these novel devices are at the forefront of beyond-CMOS artificial intelligence applications. However, a large quantity of these artificial neuromorphic devices still require the use of CMOS to implement various neuromorphic functionalities, which decreases the efficiency of the system. To resolve this, we have previously proposed a number of artificial neurons and synapses that do not require CMOS for operation. Although these devices are a significant improvement over previous renditions, their ability to enable neural network learning and recognition is limited by their intrinsic activation functions. This work proposes modifications to these spintronic neurons that enable configuration of the activation functions through control of the shape of a magnetic domain wall track. Linear and sigmoidal activation functions are demonstrated in this work, which can be extended through a similar approach to enable a wide variety of activation functions.

Index Terms—Artificial neural network, leaky integrate-and-fire (LIF) neuron, multilayer perceptron, neuromorphic computing.

I. INTRODUCTION

According to neuroscientists, the human brain consists of neurons and synapses. Neurons receive electrical signals through their dendrites and integrate these electrical signals in their somas. When enough input pulses have been received, these cells release output pulses from their somas, through their axons, and into the dendrites of other neurons. Synapses bridge the gaps between two neurons.

Likewise, artificial neuromorphic systems consist of neuron and synapse analogs. They can be implemented using software run on standard von Neumann computers [1], [2], but such a method is highly inefficient due to the fact that conventional mathematical operations do not map efficiently to neuronal and synaptic functions. Furthermore, CMOS technology does not naturally provide the required neuronal or synaptic functionality—instead, these functions must be implemented using a large number of devices per neuron or synapse. The efficiency can be improved by designing CMOS circuitry specifically for neuromorphic applications [3], [4]; however, even though this will significantly reduce the device count, and therefore the power consumption, CMOS devices are still not ideal for these applications due to their volatile and digital nature.

The non-volatility and analog nature of spintronics are particularly attractive for neuromorphic computing, and several beyond-CMOS spintronic synapses and neurons have been proposed to improve the efficiency. Although synapses only require non-volatility and variable resistance, the popular leaky integrate-and-fire (LIF) neuron model requires three primary functionalities: leaking, integrating, and firing. Therefore, while much progress has been made on beyond-CMOS...
A. Crossbar Array

Crossbar arrays typically consist of horizontal input wires (word lines) and vertical output wires (bit lines). Input neurons are placed at the inputs to the word lines, and output neurons are placed at the outputs of the bit lines. Synapses, on the other hand, are placed at the intersections of the word and bit lines. Therefore, an \(M \times N\) crossbar array will consist of \(M + N\) neurons and \(M \times N\) synapses [15]–[17].

B. LIF Neurons

In order to accurately mimic biological neurons for neuromorphic computing, artificial LIF neurons implement three primary functionalities: leaking, integrating, and firing. When integrating, these neurons accept and store energy from input energy pulses. When no input pulse is provided, the stored energy gradually dissipates. Finally, once sufficient stored energy has been integrated, the neuron releases this energy as an output pulse of its own.

C. Domain Wall-Magnetic Tunnel Junctions

Magnetic tunnel junctions (MTJs) consist of two ferromagnetic layers—a “free” layer capable of changing states and a “fixed” or “pinned” layer whose magnetization is stable. When the two layers are magnetized parallel to each other, the device exhibits a low-resistance state (LRS); when they are magnetized anti-parallel to each other, the device exhibits a high-resistance state (HRS). Domain wall-MTJs (DW-MTJs) are similar, but the free layer is extended and contains two anti-parallel magnetic domains bounded by a domain wall [18], [19]. The DW can be moved with a spin-orbit torque (SOT) current through a heavy metal beneath the DW track or through a spin-transfer torque (STT) current passed through the DW track, and the device changes resistance states when the DW shifts underneath the MTJ.

D. DW-MTJ LIF Neurons

This DW-MTJ device can be used as an LIF as shown in Fig. 1(a), with the neuron energy represented by the position of the DW within the track [9]. Integration is accomplished by applying current through the heavy metal, and firing occurs when the DW passes underneath the MTJ, thereby switching the current across the tunnel barrier. Device resetting can be performed using various methods [20] and is akin to a refractory period.

In order to induce leaking that shifts the DW in the direction opposite the SOT, an energy landscape must be produced that causes the DW to exist in a lower energy state at one end of the device than the other. While this can be achieved by providing current through the DW track in the direction opposite the integration, this approach is undesirable due to the additional control circuitry [8]. It is preferable, therefore, for the leaking to be passive, as in [9]–[12].

The shape-based leaking of [11] is particularly attractive for enabling useful activation functions. With this method, the DW track width is varied from one end of the track to the other, as shown in Fig. 1(b). DWs typically exist in lower energy states in wider tracks than in narrower tracks. Consequently, the variation of the DW track width shown in Fig. 1(b) creates an energy landscape more favorable to the DW existing on the left side of the track than on the right side, causing the DW to shift from right to left. If desired, the leaking speed of the neurons can be increased by increasing \(w_2\) relative to \(w_1\) or by decreasing the Landau–Lifshitz damping, among other methods. Conversely, the leaking speed can be decreased by decreasing \(w_2\) relative to \(w_1\) or by increasing the Landau–Lifshitz damping.

The integrating and leaking characteristics observed in mumax3 micromagnetic simulations are illustrated in Fig. 1(c) [11]. The magnetic parameters are listed in Table I. These micromagnetic parameters are used for the entirety of this work, including the linear and squashing neurons of Section III. Throughout this work, COMSOL has been used.
Fig. 1. (a) Side view of a DW-MTJ neuron. (b) Top view of the neuron with shape-based DW drift. (c) Combined integrating and leaking characteristics of a shape-based DW drift neuron with $L = 250$ nm, $w_1 = 50$ nm, and $w_2 = 100$ nm, where the current is applied from right to left through the DW track using the left and right terminals.

Fig. 2. Generalized linear (black) and sigmoidal (blue) activation functions. The sigmoidal activation functions are shown with various switching speeds.

to create a current map for non-rectangular DW-MTJ neuron structures.

E. Activation Functions

Activation functions allow a neuron to provide the network with significantly improved learning characteristics during training and significantly improved performance during operation. In fact, it has been shown that particular activation functions, such as the ReLU or sigmoidal activation functions shown in Fig. 2, can reduce the error exhibited by a neural network by up to two orders of magnitude when the network is applied to certain datasets.

The ReLU activation function simply maps an input to the output in a linear fashion. On the other hand, the sigmoid function (also referred to as the squashing function) maps the input to a monotonically decreasing output, with the highest rate of change at the center of the function. Table II provides the equations representing these activation functions.

As an activation function describes the impact of the stimuli input to a neuron on the stimuli output by a neuron, the activation function of an LIF neuron is a complex function dependent on the history of input stimuli. Although conventional activation functions used in machine learning can be characterized by equations that directly relate the input

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_{ex}</td>
<td>Exchange Stiffness [J/m]</td>
<td>1.3×10^{12}</td>
</tr>
<tr>
<td>a</td>
<td>Landau-Lifshitz Damping Constant [dimensionless]</td>
<td>0.05</td>
</tr>
<tr>
<td>ξ</td>
<td>Non-Adiabaticity of STT [dimensionless]</td>
<td>0.05</td>
</tr>
<tr>
<td>M_{sat}</td>
<td>Saturation Magnetization [A/m]</td>
<td>7.96×10^{5}</td>
</tr>
<tr>
<td>K_u</td>
<td>First Order Uniaxial Anisotropy Constant [J/m2]</td>
<td>5×10^{5}</td>
</tr>
</tbody>
</table>

Material parameters used in the micromagnetic simulations. The parameters shown here correspond to those exhibited by CoFeB.
and output signals, the activation function of an LIF neuron has time-dependent behavior that cannot be expressed by such simple functions. However, by modifying the leaking, integrating, or firing behavior of an LIF neuron, the activation function of the LIF neuron is altered. In particular, as explained in [21], an activation function can be described by a saturation function, which, for an LIF neuron, is equivalent to integration. This work, therefore, investigates the configurability of LIF neuron activation functions through control of the neuron structures that govern the leaking and integration behavior.

Fig. 3. (a) Top view of the linear neuron, displaying the slight exponential curvature of the sides of the track. This curvature is of the form \(w \propto b^{-d} \), where \(b \) represents the curvature of the sides, \(d \) is the distance from the wide end of the track in nanometer, and \(w \) is the width of the device in nanometer at distance \(d \). \(b \) ranges from 1 to 5 at intervals of 0.5. When \(b = 1 \), the sides are straight, and the track is identical to the one shown in Fig. 1(b). (b) Leaking characteristics of the linear neuron for various values of \(b \), including \(b = 1 \). (Inset) Average DW velocity in m/s as a function of \(b \). (c) RMSE of the neuron's leaking characteristics from a linear function.

TABLE II

<table>
<thead>
<tr>
<th>Function</th>
<th>Form</th>
<th>Value a</th>
<th>Value b</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linear</td>
<td>(f(x) = ax + b)</td>
<td>-1</td>
<td>1</td>
</tr>
<tr>
<td>Sigmoid</td>
<td>(f(x) = \frac{1}{1 + e^{a(x-b)}})</td>
<td>16</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>1.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>0.75</td>
<td></td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>0.475</td>
<td></td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>0.45</td>
<td></td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>0.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>0.375</td>
<td></td>
</tr>
</tbody>
</table>

Equations representing the activation functions in Fig. 2.

III. DW-MTJ NEURONS WITH CONFIGURABLE ACTIVATION FUNCTIONS

In order to improve the biomimetic capabilities of our neurons, it is important for them to implement a variety of activation functions, including the linear and squashing activation functions [22]–[26]. To do so, modifications to the neurons are required. The neuron from [11] is particularly well suited to implementing these functions due to the simplicity of the necessary changes. Although this section only demonstrates the linear and squashing activation functions, it is clear that this approach can be extended to a wide variety of activation functions using similar modifications.

It is important to note that while the leaking behavior is dependent solely on the neuron structure, the integration behavior is also dependent on the applied input current magnitude. Therefore, in order to ensure that the desired activation functions are always significantly impacting the neuron behavior, these activation functions are implemented in terms of the leaking rather than the integration. For any given leaking activation function, a wide range of integration activation functions can be achieved by varying the current magnitude applied to the DW-MTJ neuron.
A. Neuron With Linear Activation Function

In the trapezoidal DW-MTJ device of Fig. 1(b), the DW accelerates as it nears the narrow end of the track. To realize a linear activation function without this acceleration, it is necessary to alter the shape of the DW track to decrease the leaking force in narrower regions of the track.

Linear leaking can be accomplished simply by introducing a slight exponential variation in the width of the DW track, as shown in Fig. 3. In general, as the value of b increases, the linearity of the device’s leaking increases, calculated as the inverse of the root mean squared error (RMSE) of a linear regression performed on the leaking curve. The leaking speed also increases as b increases. However, once b reaches a certain point, further increases cease to produce an increase in linearity, although they continue to increase the leaking speed. This exponential variation decreases the leaking force applied to the domain wall as it shifts to narrower regions of the track, preventing further DW acceleration and allowing for linear device operation. Additionally, the room temperature leaking characteristics of the neuron with $b = 4$ are illustrated in Fig. 4, demonstrating robustness to temperature.

It is also important to analyze the response of the DW-MTJ neurons to various input currents. When an input current of 0.1 mA is applied to the neuron, as in Fig. 5(a), the DW’s integration speed increases in proportion to b. As the DW nears the end of its range of motion, it also begins to exhibit slight oscillatory behavior due to interactions with the fixed region at the edge of the neuron. When the input current is increased to 0.5 mA, as shown in Fig. 5(b), the integration speed maintains its positive correlation with the value of b, but the higher current prevents the previously observed oscillations of the DW at the edges of its range of motion.

Fig. 5. (a) Integration of the linear neuron for an input current of 0.1 mA. As with Fig. 4(b), b ranges from 1 to 5 with an increment of 0.5. (b) Integration of the linear neuron for an input current of 0.5 mA.

Fig. 6. (a) Top view of the squashing neuron, displaying the sharp constriction of the DW track centered in the middle of the track. (b) Leaking characteristics of the squashing neuron for w_1 increasing from 100 to 400 nm, with an increment of 50 nm. (Inset) Average DW velocity in m/s as a function of w_1 in nanometer. (c) Leaking characteristics of the squashing neuron for w_1 increasing from 150 to 400 nm, into the time range 0 s–100 ns.
B. Neuron With Squashing Activation Function

In order to implement sigmoidal leaking, the leaking force must not only be minimized at the narrow end of the track, but also at the wide end of the track. Therefore, the neuron’s shape gradient can only exist within a narrow range halfway between the narrow and wide ends of the DW track, as illustrated in Fig. 6(a).

With \(w_1 = 100 \text{ nm} \) as in Fig. 6(b), the neuron exhibits a sigmoidal leaking characteristic. As the width of the wide end of the track increases, the DW leaking motion becomes faster, with an effect similar to that of \(b \) on the leaking speed of a linear neuron. By zooming in on the leaking characteristics for these larger values of \(w_1 \) in Fig. 6(c), it can be observed that the neurons still implement squashing functions. By varying the device width in this fashion, low leaking forces are applied to the DW in both the wide and narrow regions and higher leaking forces are applied to the DW in the middle region, causing the device to exhibit sigmoidal characteristics. As with the linear neurons, the room temperature leaking characteristics for a device with \(w_1 = 150 \text{ nm} \) are illustrated in Fig. 6. As with the linear neuron, the room temperature leaking characteristics of the neuron with \(w_1 = 150 \text{ nm} \) are illustrated in Fig. 7, demonstrating robustness to temperature.

As with the previously discussed linear neuron, it is important to analyze the integration characteristics of the squashing neurons for various input currents. With an input current of 0.1 mA, as illustrated in Fig. 8(a), the DW integration speed is inversely proportional to \(w_1 \), partly due to an increased leaking force and partly due to a decreased current density. Additionally, as the width increases, the integration becomes non-monotonic due to the instability of the wide DWs. When the input current is increased to 0.5 mA as in Fig. 8(b), not only does the DW integration speed increase significantly, the integration speed remains inversely related to \(w_1 \). Additionally, with increased current, the integration becomes monotonic even with large widths.

IV. CONCLUSION

Shape-based DW drift enables configurable DW-MTJ neuron leaking that enables the realization of diverse activation functions for efficient learning and recognition in spintronic neuromorphic computing systems. In this work, we have demonstrated linear and squashing activation functions through specific configurations of the shape of the DW tracks. By extension of this concept, further activation functions commonly used in the field of neuromorphic can also be realized. This represents a significant advancement over previous spintronic neurons that will enable drastically improved learning characteristics of spintronic neural networks.

ACKNOWLEDGMENT

The authors thank E. Laws, J. McConnell, N. Nazir, L. Philoon, and C. Simmons for technical support, and the Texas Advanced Computing Center at The University of Texas at Austin, Austin, TX, USA, for providing computational resources. Sandia National Laboratories, Albuquerque, NM, USA, is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC, Albuquerque, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy’s
National Nuclear Security Administration under Contract DE-NA0003525. This article describes objective technical results and analysis. Any subjective views or opinions that might be expressed in the article do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

REFERENCES

