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(FM) wire with a long MTJ in the center. Spin transfer/orbit torque is used
to switch a DW in the FM. By controlling the DW position, we control
the MTJ ratio that is parallel and use the conductance levels as gray-scale
weights. We model the FM wire as 500 nm x 64 nm x 4 nm, with notches
every 64 nm. We find there is a trade-off between notch depth and DW width
to determine the depinning current. Using the largest notch at left of 16 nm
deep and decreasing notch size by 1.6 nm per notch, we apply 10 ns current
pulses to translate the DW. Starting with the DW in the lowest-energy state
sitting at the largest notch, we find reliable depinning currents to move the
DW to specific pinning sites (Fig. 1, top-down view). Using numbers from
our MTJ measurements of TMR = 166% and RA product = 20 Q-um?, we
obtain analog MTJ resistance vs. applied current (Fig. 2). Each resistance is
a weight controlled by an input current. We see at least 50 Q between each
weight, large enough to distinguish between weights. We will show results
on integrating 3T-MTJ synapses and neurons, where firing of the neuron sets
the synapse at a given weight. We believe this is an important step forward
in building full neuromorphic computers using magnetic materials. While
notches are not favorable for scaling, the functionality shown can imple-
mented in other ways, e.g. through voltage-controlled DW traps’.
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Fig. 1. Micromagnetic images showing domain wall position vs. current.
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The core building blocks of neuromorphic computing systems are neurons
and synapses, and it is critical that these bio-inspired device components
can be fabricated with compatible material structures. As domain wall
(DW)-based three-terminal magnetic tunnel junctions (3T-MTJs) [1] also
realize synapse behavior [2], this work proposes a 3T-MTJ artificial neuron
[3] that enables the development of an integrated neuromorphic computing
system composed solely of 3T-MTIJ devices. The proposed spintronic leaky
integrate-and-fire (LIF) [4] neuron manipulates the DW position to perform
the leaking, integration, and firing functions, while also providing lateral
inhibition. Lateral inhibition [5] is critical to the capability of biological
systems to prevent neighboring neurons from firing simultaneously, but
previous artificial neuron proposals based on emerging technologies require
the assistance of external CMOS circuits to provide this lateral inhibition
capability [6]-[8]. By exploiting the stray magnetic fields, the proposed
3T-MTJ neuron [3] eliminates the need for CMOS circuitry and intrinsi-
cally provides the leaking, integrating, firing, and lateral inhibition capa-
bilities. Input currents applied to the neurons enable integration behavior
by pushing the DWs through spin-transfer or spin-orbit torque. The leaking
is performed by a hard ferromagnet under the 3T-MTJ neuron tracks that
creates a magnetic field to constantly push the neuron DWs opposite the
direction of integration. Firing occurs when the DW crosses below the MTJ
hard layer, switching the MTJ from the anti-parallel to the parallel state and
enabling a large output current. Finally, analog lateral inhibition is achieved
by dipolar fields from each neuron that attempt to orient neighboring neurons
antiparallel by repulsive coupling. An integrating neuron thus pushes slower
neighboring neurons’ DWs in the direction opposite of integration. Applying
this lateral inhibition to a ten-neuron output layer within a neuromorphic
crossbar structure enables the identification of handwritten digits with a 94%
success rate [3].
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Fig. 1. 3T-MTJ neuron structure with two neurons above a shared
ferromagnet.
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Fig. 2. Recognition of the digit “8” by ten-neuron output layer.
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Spintronic devices have been proposed as synapses in hardware Artificial
Neural Networks (ANN)!. However most reports>* only show simulation
of “off-chip” learning i.e. ANN is trained on traditional computer first to
obtain synaptic weights and then current pulses are applied to “write” those
weights on spintronic synapses of its hardware equivalent. Thus advantage
of hardware ANN is used only partially. Here we perform micromagnetic
simulation on “mumax3” and circuit simulation on Cadence Virtuso to
implement “on-chip” learning for spintronic ANN (Fig. 1a,2a). Domain Wall
(DW) and Skyrmion (Sk) based synapses as described in ref. 4 are chosen
as synapses owing to their nonvolatility. Fig.1b,c show current controlled
conductance characteristics of the DW and Sk synapses. Smaller magnitude
of current pulses with longer duration is used to move Sk compared to DW
because defects pin DW but not Sk*. Neuron and backpropagation® caclu-
lation circuitry are implemented by transistors and operational amplifiers
due to their suitability in analog computing. We train the ANN on images
of hand written digits from MNIST dataset®. Input voltages proportional
to image pixels generate “read current”-s (Fig. 2b) at output nodes corre-
sponding to digits (‘0’-‘9”), which pass through transistor based neuron
circuit that perform tan-sigmoid function (f) and operational amplifier based
back-propagation circuitry (B) (Fig. la, 2a) to generate “write current”-s
(Fig. 2¢) that in turn move DW/Sk at synaptic devices to adjust their weights.
This process repeated over 100 epochs, with 100 samples repeated over each,
trains the ANN. After that for each sample/image of digit “read current” at
output node corresponding to that digit is positive and at all other output
nodes it is negative (Fig. 2d) showing that ANN is trained.
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Fig 2. a) Neuron (f) and backpropagation (B) circuitry for each output
node. b)Read current at output node for digit ‘0’ for first epoch in DW
synapse based ANN c¢) Write current going to bias synapse connected to
same output node d) Read current at output nodes for 10 digits for the
100th epoch
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Maintaining the stability of magnetic tunnel junctions at the nanometer
scale is a challenge: junctions with low energy barrier switch stochasti-
cally between their two states driven by thermal noise. We draw inspiration
from the brain for how to compute with stochastic devices because the brain
operates at low power even though its neurons exhibit stochastic behavior.
Sensory neurons emit voltage spikes of fixed amplitude but at time inter-
vals that appear stochastic. One computing paradigm from neuroscience
is population coding, in which information is carried by the spike rates of
a population of neurons [1]. The non-linear relationship between the stim-
ulus received by a neuron and its rate is called a tuning curve. The set of
tuning curves for the population constitute a basis set of functions; simple
linear combinations of them can construct non-linear transformations. We
show that stochastic magnetic tunnel junctions can emulate spiking neurons
[2]. Their stochastic transitions are reminiscent of the stochastic spikes of
sensory neurons. Furthermore, their transition rate can be controlled by
application of a dc current through the device giving a non-linear tuning
curve. We experimentally show that linear combinations of the tuning curves
of nine stochastic magnetic tunnel junctions can construct non-linear trans-
formations. With simulations, we show how a network of two populations,
interconnected by synaptic weights, can learn non-linear transformations
with a simple learning rule. Equipping the system with continuous learning
enables it to overcome the failure of neurons as well as the loss of synaptic



