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Abstract—The development of beyond-CMOS technologieswith alternative basis logic functions necessitates the introduction of novel

design automation techniques. In particular, recently proposed computing systems based onmemristors and bilayer avalanche spin-diodes

both provide asymmetric functions as basis logic gates - the implication and inverted-input AND, respectively. This article therefore

proposes amethod bywhich Karnaughmaps can be directly applied to systemswith asymmetric basis logic functions. A set of identities is

defined for thesememristor and spintronic logic functions, enabling the formal demonstration of the Karnaughmapmethod and an

explanation of the proposed technique. Thismethod thus, enables the directminimization of spintronic andmemristive logic circuits without

translation to conventional Boolean algebra, facilitating the further development of these novel computing paradigms. Preliminary analyses

demonstrate that this Karnaughmapminimization approach can provide a 28 percent reduction in step count as compared to previous

manual optimization.

Index Terms—Boolean algebra, beyond-CMOS computing, asymmetric logic, emerging technologies, memristors, spintronics
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1 INTRODUCTION

EMERGING computing technologies provide unconven-
tional basis logic sets that introduce new challenges for

computing system design and integration. In particular,
stateful logic based on memristors efficiently provides the
implication andNAND functions, while a single bilayer ava-
lanche spin-diode device can perform either an inverted-
input AND (IAND) function or an OR function (see Figs. 1, 2,
and 3). However, both the implication and IAND functions
are non-commutative and asymmetric, inhibiting the use of
conventional techniques for logic design. Many of these con-
ventional techniques are based on Maurice Karnaugh’s 1953
proposal for a map method for the minimization of Boolean
logic [1]. Karnaugh’s map method enables logic minimiza-
tion based on theANDandOR functions, while various logic
concepts based on memristors and spintronic devices pro-
vide basis logic gates for which there is no efficient technique
for translation to AND and OR gates [2], [3], [4], [5], [6], [7],
[8], [9], [10], [11], [12], preventing direct application of the
Karnaughmap.

Logic minimization for stateful memristor logic has previ-
ously been investigated, but has not resulted in a minimiza-
tion technique that fully exploits asymmetric logic functions.
In much of the previous work, logic minimization is
performed with a basis set of conventional logic functions,
with each basis logic gate mapped to an efficient memristor

implementation. For example, [13] minimizes a large func-
tion into NAND, OR, and parity gates, which are then real-
ized with memristors; [14] minimizes a function into OR and
inverter gates; [15] uses NOT, NAND, and OR gates; [16]
uses majority gates; [17] minimizes the number of memris-
tors (but not the step count); and [18] minimizes functions
with the assistance of CMOS buffer circuits. Binary decision
diagrams have also been used [19], as has an interpretation
of memristors as threshold logic elements [20]. As all of these
techniques minimize circuits with conventional symmetric
logic functions and then implement these circuits withmem-
ristors, the circuit that is realized does not fully exploit the
fundamental basis logic operations provided by memristors.
Though helpful in significantly reducing circuit complexity,
none of the previous works provide a technique for realizing
a fully minimized circuit with asymmetric logic functions
that takes into account the true physical capabilities of these
devices.

A previous work in the related field of quantum comput-
ing shows the advantage of using Karnaugh maps as the
starting point of logic manipulation for unusual logic func-
tions which lead to a gate and operation count reduction
compared to previous methods at the time. Similar to the
asymmetric logic gates addressed in this paper, quantum cir-
cuits do not support conventional logic functions, and thus
modifications of the conventional techniques are needed in
order to process them natively, in an efficientmanner.

The Karnaughmapmethod is an effective visual approach
for minimizing simple logical computations, and adapting
the Karnaugh map method is therefore a natural first step
towards enabling efficient logic minimization for unconven-
tional computing systems. For example, previous results
with Karnaugh maps adapted for quantum circuits [21] illus-
trate the potential of Karnaughmaps for minimizing unusual
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logic functions. This paper therefore proposes modifications
of Karnaugh’smapmethod that enable the reduction of com-
plex asymmetric logic functions directly into minimized
stateful memristor logic circuits and bilayer avalanche spin-
diode logic circuits. The component devices are described in
Section 2, and their asymmetric logic functionality is
explained. Section 3 formally details the algebraic underpin-
nings of the proposedKarnaughmapmethod through neces-
sary proofs of logical identities. Themodifiedmapmethod is
proposed and explained in Section 4, and examples are pro-
vided to enable its practical use. The approach is used to
algorithmically design a one-bit full adder in Section 5, dem-
onstrating the utility of this Karnaugh map approach in the
manipulation of asymmetric logic. Finally, conclusions are
presented in Section 6.

2 BACKGROUND

The asymmetric basis logic functions provided by stateful
memristor logic and bilayer avalanche spin-diode logic can be
performed compactly, but an applicable device count reduc-
tion method requires the development of techniques tailored
to these functions. In particular, the implication function can
be performed by two non-volatilememristors, while aNAND
function can be performed by three such memristors. In
bilayer avalanche spin-diode logic, a single device can per-
form the IAND and OR functions. The implication and IAND
functions are both non-commutative and asymmetric, and
their integration with NAND and OR functions, respectively,

enables the development of an algebra and Karnaugh map
method that enables logic minimization for both stateful
memristor logic and bilayer avalanche spin-diode logic.

2.1 Stateful Memristor Logic

A memristor (or, more generally, a memristive device) is a
two-terminal non-volatile device with a resistance that can
be modified through application of a voltage across the two
terminals [22], [23]. In general, the resistance is on a spectrum
determined by the history of applied voltages; in the ideal
case, applied voltages above a threshold magnitude switch a
memristor between purely resistive and conductive states.
The memristors shown in Fig. 1 switch to a conductive ‘1’
state when VP � VN > VTH , and a resistive ‘0’ state when
VN � VP > VTH , where VN is the voltage at node N, VP is the
voltage at node P, and VTH is the threshold voltage. In some
physical implementations, the resistance state is a result of
the growth and retraction of ametallic filament [24].

As shown in Table 1, the implication functionOUT ¼A !
B is performed by applying VCOND to memristor A and VSET

to memristor B, where VCOND < VTH < VSET and VSET�
VCOND < VTH [25]. When memristor A is in the resistive 000

state, the VSET voltage across memristor B is greater than
VTH , causingmemristor B to switch to the conductive ‘1’ state
or remain in that state. If memristor A is in the conductive ‘1’
state, the voltage across memristor B is VSET � VCOND; as this
is less than VTH , no switching occurs. This implication func-
tion (IMPLY) can thus be performed by two memristors in a
single step, while a NAND function can be performed simi-
larly with threememristors in two steps [7], [13].

Cascaded logic operations are performed in a unique
manner within the stateful memristor logic paradigm: rather
than each cascaded operation being performed by a distinct
set of devices, thememristors are continually reused through
a step-wise application of VSET and VCOND voltages. Table 2
shows the step sequence for implementing the NAND of p
and q using s as an outputmemristor (see Fig. 2).

Fig. 1. Schematic of memristive implication logic, where voltages applied
to the memristors modulate the resistance state.

Fig. 2. Schematic for a typical NAND implementation using stateful
memristive implication logic.

Fig. 3. Bilayer avalanche spin-diode, where the magnetic fields due to
input currents A and B modulate the output current.

TABLE 1
Truth Table for IAND and IMPLY Logic

Input A Input B IAND IMPLY

0 0 0 1
0 1 0 1
1 0 1 0
1 1 0 1
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Note that while more complex operations have been pro-
posed in a single step with ideal memristors, these opera-
tions have not been demonstrated experimentally or with
physically realistic device models. This paper is therefore
restricted to experimentally realizable operations with only
two memristors in a single step.

2.2 Bilayer Avalanche Spin Diode Logic

In bilayer avalanche spin-diode logic, the current on two con-
trol wires modulates the current through a spin-diode [5].
These two-terminal spintronic devices have negativemagne-
toresistance, enabling an applied magnetic field to modulate
the resistance. A constant voltage is applied across all spin-
diodes at all times, thus enabling the two control wire input
currents to create magnetic fields that modulate the spin-
diode output current (see Fig. 3). The magnitude and direc-
tion of the magnetic fields relative to a threshold field deter-
mine the resistance state of the spin-diode. The spin-diode
output currents can be used as the input control wire current
to create directly cascaded logic without any amplification or
control circuitry.

In this spintronic logic family, a ‘1’ is represented by a
large current while a ‘0’ is represented by a small current.
Depending upon the relative direction of current through
the control wires, this spin-diode performs either the con-
ventional OR function or the inverted-input AND (IAND)
function shown in Table 1. These distinct functions result
from the additive or counteractive magnetic fields created
by currents oriented in the same or opposite directions,
respectively. Unlike memristors, spin-diodes are not non-
volatile; they return to their zero-magnetic field state imme-
diately upon the removal of the applied input currents.

2.3 Asymmetric Basis Logic Functions

An asymmetric logic operation can be defined as one whose
logic value changes when the operands are interchanged.
Equivalently, these operations can be regarded as ‘non-
commutative’ in nature. The IAND and IMPLY gates imple-
mented using the bilayer avalanche spin-diode logic and
memristors respectively, are two such asymmetric functions
discussed in this paper.

As the IAND gate performs the function of an AND gate
with one inverted input (Table 1), a symbol ( ) is defined
for the IAND operation such that

IANDðA;BÞ ¼ A ^B ¼ A B: (1)

The symbol derives inspiration from the conventional logi-
cal operator for AND gates (^), with the added underbar on
the right arm indicating the inversion of the input to the
right of the operator.

The IMPLY function is the inverse of IAND and is
defined as

IMPLY ðA;BÞ ¼ A ! B ¼ A _B ¼ A B: (2)

For clarity, the input that lies on the left side (right side) of
the IAND (IMPLY) operation is referred to as the non-
inverted input, whereas the one of the right (left) is referred
to as the inverted input. For example, A is the non-inverted
input and B is the inverted input in (1); in (2), B and A are
the non-inverted and inverted inputs, respectively.

Both technologies described in this paper are limited to a
two-input configuration. When more than two operands are
present, only two literals should be operated upon at one
time. Moreover, because the operations are non-commuta-
tive, it is important to pay attention to the order of opera-
tions. The order of operations can be summarized as:

� Order of operations for IAND: Two at a time, from left
to right

IAND ðA;B;CÞ ¼ ðA BÞ C: (3)

� Order of operations for IMPLY: Two at a time, from
right to left

IMPLY ðA;B;CÞ ¼ ðA ! ðB ! CÞÞ: (4)

3 FUNDAMENTAL BOOLEAN ALGEBRA FOR

ASYMMETRIC LOGIC FUNCTIONS

Before proposing the Karnaughmapmethod for the minimi-
zation of asymmetric logic functions, it is important to for-
mally develop the underlying algebra. This section therefore
provides a set of identities that is sufficient to demonstrate
the correctness of the proposed logic minimization tech-
nique; additional identities that may be helpful for the gen-
eral challenge of logic minimization will be the subject of
future work. Furthermore, the identities necessary to manip-
ulate the IAND function are stated with proofs; whereas the
respective identities for IMPLY, though not proved here
explicitly, can be verified using a similarmethodology.

3.1 Core Algebraic Identities

As the IAND and IMPLY functions are asymmetric, modi-
fications to conventional Boolean identities are necessary.
The commutation, inversion, and association of asymmet-
ric operations behaves quite differently, as evidenced by
Theorems 1-5.

Theorem 1 (Commutative Law).

ðAÞ IAND : A B ¼ B A (5)

ðBÞ IMPLY : A ! B ¼ B ! A: (6)

Proof. Replacing the IAND with AND according to (1)

A B ¼ A ^B ¼ B ^A: (7)

Changing the RHS of (7) back to IAND notation

A B ¼ B A; (8)

which proves the theorem. tu

TABLE 2
Computational Steps for NAND Gate With

Stateful Memristive IMPLY Logic

Step Operation VCOND

applied to

VSET

applied to

VRESET

applied to

Output

Memristor

State

of s

0 RESET - - s - s ¼ 0

1 p ! s p s - s p

2 q ! s q s - s p ^ q
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Theorem 2 (Identity Law).

ðAÞ IAND : A 0 ¼ A (9)

ðBÞ IMPLY : 1 ! A ¼ A: (10)

Proof. Replacing IAND gates with AND gates

A 0 ¼ A ^ 0 ¼ A ^ 1 ¼ A: (11)

Thus, (11) is the same as the stated theorem. tu
Theorem 3 (Complement Law).

ðAÞ IAND : 1 A ¼ A (12)

ðBÞIMPLY : A ! 0 ¼ A: (13)

Proof. Converting to conventional AND notation

1 A ¼ 1 ^A ¼ A: (14)

Hence, the theorem is confirmed. tu
Theorem 4 (Non-Inverting Associativity).

ðAÞ IAND : ðA BÞ C ¼ ðA CÞ B (15)

ðBÞIMPLY : A ! ðB ! CÞ ¼ B ! ðA ! CÞ: (16)

Proof. Converting the expression to AND notation

ðA BÞ C ¼ A ^B ^ C ¼ A ^ C ^B: (17)

This can be rewritten using IAND notation as follows:

A ^ C ^B ¼ ðA CÞ B: (18)

The theorem is thus proven. tu
Theorem 5 (Inverting Associativity).

ðAÞ IAND : ðA BÞ C ¼ ðC AÞ B (19)

ðBÞIMPLY : A ! ðB ! CÞ ¼ B ! ðA ! CÞ: (20)

Proof. Converting to AND notation

ðA BÞ C ¼ A ^B ^ C: (21)

Rearranging the inputs on the RHS of the above expression

ðA BÞ C ¼ C ^A ^B; (22)

which can be rewritten using IAND notation as

ðA BÞ C ¼ ðC AÞ B: (23)

Hence, the theorem is verified. tu
The two associativity theorems can be applied intuitively

as follows: if the non-inverted operand trades places with
an inverted operand within the IAND/IMPLY expression,
both of these operands are complemented to maintain logi-
cal equivalence (inverting associativity). If an inverted oper-
and trades places with another inverted operand within the
IAND/IMPLY expression, the operands are not comple-
mented (non-inverting associativity).

3.2 Distributive Laws

In order to demonstrate the correctness of the proposed
Karnaugh map method, it is helpful to present the distribu-
tive laws for IAND and IMPLY operations used in concert
with OR and AND operations. As the nomenclature would
be quite challenging, Theorems 6-9 are numbered rather
than named.

Theorem 6 (Distributive Law - I).

ðAÞ IAND : A ðB ^ CÞ ¼ ðA BÞ _ ðA CÞ: (24)

ðBÞ IMPLY : A ! ðB ^ CÞ ¼ ðA ! BÞ ^ ðA ! CÞ:
(25)

Proof. Changing LHS of (24) to AND notation and expand-
ing using De Morgan’s Law

A ðB ^ CÞ ¼ A ^B ^ C ¼ A ^ ðB _ CÞ: (26)

Using the conventional OR distributive law

A ðB ^ CÞ ¼ ðA ^BÞ _ ðA ^ CÞ: (27)

Finally, replacing the AND operations with IAND

A ðB ^ CÞ ¼ ðA BÞ _ ðA CÞ; (28)

which is the same as (24). tu
Theorem 7 (Distributive Law - II).

ðAÞ IAND : ðA _BÞ C ¼ ðA CÞ _ ðB CÞ (29)

ðBÞIMPLY : ðA _BÞ ! C ¼ ðA ! CÞ ^ ðB ! CÞ:
(30)

Proof. Changing LHS of (29) to AND notation and using the
conventional OR distributive law

ðA _BÞ C ¼ ðA _BÞ ^ C ¼ ðA ^ CÞ _ ðB ^ CÞ:
(31)

Finally, replacing the AND operations with IAND

A ðB ^ CÞ ¼ ðA CÞ _ ðB CÞ; (32)

which is the same as (29). tu
Theorem 8 (Distributive Law - III).

ðAÞ IAND : A ðB _ CÞ ¼ ðA BÞ ^ ðA CÞ (33)

ðBÞIMPLY : A ! ðB _ CÞ ¼ ðA ! BÞ _ ðA ! CÞ: (34)

Proof. Changing LHS of (33) to AND notation and expand-
ing using De Morgan’s Law

A ðB _ CÞ ¼ A ^ ðB _ CÞ ¼ A ^ ðB ^ CÞ: (35)

This can be rewritten in IAND notation as

A ^ ðB ^ CÞ ¼ ðA ^BÞ ^ ðA ^ CÞ ¼ ðA BÞ ^ ðA CÞ;
(36)

which is the same as (33). tu

VYAS ET AL.: KARNAUGH MAP METHOD FOR MEMRISTIVE AND SPINTRONIC ASYMMETRIC BASIS LOGIC FUNCTIONS 131

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on December 13,2020 at 22:26:17 UTC from IEEE Xplore.  Restrictions apply. 



Theorem 9 (Distributive Law - IV).

ðAÞ IAND : A _ ðB CÞ ¼ ðA _BÞ ^ ðA _ CÞ (37)

ðBÞ IMPLY : A _ ðB ! CÞ ¼ ðA ! BÞ _ ðA ! CÞ
¼ A ! ðB ! CÞ:

(38)

Proof. Changing the LHS of (37) to AND notation and using
the conventional AND distribution law

A _ ðB CÞ ¼ A _ ðB ^ CÞ ¼ ðA _BÞ ^ ðA _ CÞ: (39)

The above equation validates the theorem. tu

3.3 Canonical Normal Forms for Asymmetric
Logic Functions

Conventional Karnaughmaps require that a function be rep-
resented as a canonical sum-of-products (SOP) or product-
of-sums (POS) in which every literal is present in each term
of the function; for the proposed map method for asymmet-
ric functions, canonical sum-of-IANDs (SOI) and NAND of
implications (NOI) representations are used for bilayer ava-
lanche spin-diode and stateful memristor logic respectively.

3.3.1 Canonical Forms for IAND-OR Logic Set

The IAND and OR functions are the basis logic functions
available with bilayer avalanche spin-diode logic. Similar to
canonical SOP and POS expressions, canonical SOI expres-
sions can be developed from non-canonical SOI expressions
by adding the literalsmissing from each term.Applying The-
orem 2, appending an IAND operation of a null-valued
(zero) expression (such as A ^A) enables the expansion
without modifying the logical value of the expression. Tak-
ing the non-canonical SOI expression

fsoi ¼ ððB CÞ DÞ _ ððA BÞ CÞ: (40)

A ^A andD ^D can be appended to the two terms, resulting in

fsoi ¼ fððB CÞ DÞ ðA ^AÞg _ fððA BÞ CÞ ðD ^DÞg:
(41)

Using Theorem 6 (A)

fsoi ¼ fððB CÞ DÞ Ag _ fððB CÞ DÞ Ag
_ fððA BÞ CÞ Dg _ fððA BÞ CÞ Dg: (42)

Rearranging the inverted and non-inverted inputs accord-
ing to Theorem 5 (A)

fsoi ¼ fððA BÞ CÞ Dg _ fððA BÞ CÞ Dg
_ fððA BÞ CÞ Dg _ fððA BÞ CÞ Dg: (43)

Finally, by conventional OR idempotency, A _A ¼ A

fsoi ¼ fððA BÞ CÞ Dg _ fððA BÞ CÞ Dg
_fððA BÞ CÞ Dg: (44)

The above expression is a canonical SOI expression. In
general, canonical IAND-of-sums (IOS) expressions can be
achieved with the same method as canonical POS: by OR-ing

a null expression of the missing literals with each of the sum-
terms, followed by ordinary Boolean algebraic simplification.

3.3.2 Canonical Forms for IMPLY-NAND Logic Set

A given Boolean expression may not be in its canonical form,
and thus similar to the methodology adopted for IANDs,
canonical NOI expressions can be developed from non-
canonical NOI expressions by inserting the literals missing
from each termwhile maintaining logical equivalence. State-
ful memristor logic provides IMPLY and NAND operations
as the basis logic set. Performing an IMPLY operation of a
unity ‘1’-valued expression (such as A _A), followed by
Boolean reduction as per the identities in the previous sec-
tion, expands the function into a canonical formwhile retain-
ing its logical value as per Theorem 2 (B). Consider the non-
canonical NOI expression in (45)

fnoi ¼ ðB ! ðC ! DÞÞ ^ ðA ! ðB ! CÞÞ: (45)

A _A andD _D can be appended to the two terms, resulting
in

fnoi ¼ fðA _AÞ ! ðB ! ðC ! DÞÞg
^ fðD _DÞ ! ðA ! ðB ! CÞÞg:

(46)

Using Theorem 7 (B)

fnoi ¼ fA ! ðB ! ðC ! DÞÞg
^fA ! ðB ! ðC ! DÞÞg ^ fD ! ðA ! ðB ! CÞÞg

^fD ! ðA ! ðB ! CÞÞg:
(47)

Rearranging the inverted and non-inverted inputs accord-
ing to Theorems 4(B) and 5(B)

fnoi ¼ fA ! ðB ! ðC ! DÞÞg
^fA ! ðB ! ðC ! DÞÞg ^ fA ! ðB ! ðC ! DÞÞg

^fA ! ðB ! ðC ! DÞÞg:
(48)

The above expression is a canonical NOI expression. In gen-
eral, canonical Implication-of-NANDs (ION) expressions
can be achieved with the same method as canonical POS: by
AND-ing a unity expression of the missing literals with each
of the sum-terms, followed by ordinary Boolean algebraic
simplification.

4 KARNAUGH MAP METHOD FOR ASYMMETRIC

LOGIC FUNCTIONS

The proposed Karnaugh map method enables a graphical
technique for the minimization of memristor and spintronic
logic with asymmetric basis functions. Following the expla-
nation of conventional Karnaugh maps below, the adapted
Karnaugh map method is described and its operation is
explained. The translation between stateful memristor logic
and bilayer avalanche spin-diode logic is shown, followed
by examples that provide instruction as to the use of the
proposed method.
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4.1 Background: Conventional Karnaugh Maps

Karnaugh Maps are tabular representations of Boolean logic
functions consisting of 2n cells, each for one among the possi-
ble combinations of n-bit binary data. The cells are arranged
such that logically adjacent terms share physical adjacency.
Graphical pairing of these adjacent terms reduces the function
to its essential prime implicants [1], [26]. Whereas Karnaugh
originally described the method only through examples [1],
this paper endeavors to formally demonstrate the validity of
the proposedmethod.

A conventional Karnaugh map is shown in Fig. 4 for the
expression

fsop ¼ ðA ^B ^ CÞ _ ðA ^B ^ CÞ _ ðA ^B ^ CÞ: (49)

This expression can be rewritten by duplicating the term
A ^B ^ C

fsop ¼ fðA ^B ^ CÞ _ ðA ^B ^ CÞg _ fðA ^B ^ CÞ _ ðA ^B ^ CÞg:
(50)

This expression can then be simplified according to conven-
tional Boolean algebra techniques, first with the OR distrib-
utive law

fsop ¼ ððA _AÞ ^B ^ CÞ _ ððB _BÞ ^A ^ CÞ: (51)

A _A and B _B are 010 by complement law, enabling the
elimination of operands A and B from the respective product
terms

fsop ¼ ð1 ^B ^ CÞ _ ð1 ^A ^ CÞ ¼ ðB ^ CÞ _ ðA ^ CÞ:
(52)

Karnaugh’s method reaches this result in a similar man-
ner, but graphically. This can be noted in the Karnaugh map
pair encircledwith green and orange (Fig. 4): The logical adja-
cency enables the combination of literals with their comple-
ments and thereforeminimize redundancies in a function.

4.2 Map Method for Asymmetric Functions

The proposed map method for asymmetric logic functions
is performed in the following step-wise manner:

1. Transform the target expression into its canonical
form (i.e., SOI/IOS or NOI/ION).

2. Mark the corresponding SOI/NOI terms in the cells
of a Karnaugh map.

3. Group theminterms/maxterms graphically according
to the standard Karnaugh map techniques described
in [1].

4. Use the standard rules of the Karnaughmap to create
the expressionwith the resultant terms.

5. Unless the left-most (right-most) operand is equal
to the left-most (right-most) operand in an IAND
(IMPLY) equation’s canonical form, it should be
complemented.

To illustrate this method, the equation displayed in the
K-map in Fig. 4 will be reused. In this four-bit function, the
order of the variables are fA;B;C;Dg, meaning that any of
the variables fB;C;Dg must be inverted if they are the left-
most operand in the simplified equation. The following sys-
tematic evaluation of the equation will highlight the neces-
sity of the fifth step

fsoi ¼ ððA BÞ CÞ _ ððA BÞ CÞ _ ððA BÞ CÞ: (53)

This expression can be simplified by applying the theorems
outlined in Section 3.1. First using Theorem 7(A) twice in
succession gives (54) and (55)

fsoi ¼ ðððA BÞ _ ðA BÞÞ CÞ _ ððA BÞ CÞ (54)

fsoi ¼ ðððA _AÞ BÞ CÞ _ ððA BÞ CÞ: (55)

A _A is unity due to the OR complement law, and 1 B ¼ B
according to Theorem 3(A). Thus

fsoi ¼ ðð1 BÞ CÞ_ððA BÞ CÞ ¼ ðB CÞ_ððA BÞ CÞ:
(56)

Due to the nature of the complement law for IAND, read-
ing the same K-map will yield different results even when
the pairings stay constant. For conventional logic, 1 ^B ¼ B,
although for the IAND, 1 B ¼ B. Due to this discrepancy,
it is necessary to complement B in the final equation, in order
to maintain logical equivalence. The expression can be fur-
ther reduced by applying Theorems 6(A) and 9(A)

fsoi ¼ ðB _ ðA BÞÞ C (57)

fsoi ¼ ððB _AÞ ^ ðB _BÞÞ C: (58)

With the conventional OR complement law, and B _B ¼ 1
using Theorem 7(A), this becomes

fsoi ¼ ðB CÞ _ ðA CÞ: (59)

The same result is obtained by applying the proposed meth-
odology to the Karnaugh map in Fig. 4.

Now consider the SOI expression in (53) represented as a
canonical NOI in (60)

fnoi ¼ ðA ! ðB ! CÞÞ ^ ðA ! ðB ! CÞÞ
^ ðA ! ðB ! CÞÞ:

(60)

Similar to SOI, the above expression can be reduced using
the proposed Boolean laws for IMPLY logic (Section 3)

fnoi ¼ ðB ! CÞ ^ ðA ! CÞ: (61)

Expression (61) shows the minimized form of (60). Now,
applying the modified Karnaugh method proposed in this
section to the expression in (60) (Karnaugh map shown in
Fig. 4), we obtain

fnoi ¼ ðB ! CÞ ^ ðA ! CÞ: (62)

Fig. 4. Karnaugh map for the example in Section 4.1 (49) and the two
examples in Section 4.2 (53) and (60).
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Note that complementation is not required in this instance,
as none of the inverted inputs appear as the left-most oper-
and in the reduced equation. Hence, (61) and (62) illustrate
that the proposed method is valid for NOI as well.

4.3 Examples

To clearly explain the mapping methodology, we demon-
strate the application of Karnaughmaps to the decomposition
of a few sample Boolean expressions involving IAND-OR
and IMPLY-NAND logic sets. The result for each example
can be validated by converting and solving them as SOP. Pos-
sible circuit implementations have also been shown for each
example.

Example 1. (Three-Variable SOI). Consider the following
SOI:

fsoi ¼ fððA BÞ CÞ _ ððA BÞ CÞ _ ððA BÞ CÞ
_ððA BÞ CÞ _ ððA BÞ CÞg:

(63)
Converting to conventional SOP

fsop ¼ fðA ^B ^ CÞ _ ðA ^B ^ CÞ _ ðA ^B ^ CÞ
_ðA ^B ^ CÞ _ ðA ^B ^ CÞg: (64)

Grouping the terms and applying the conventional OR
complement law successively

fsop ¼ C _ ðA ^B ^ CÞ: (65)

Using the AND distributive law and OR Complement
Law in succession

fsop ¼ ðC _A ^BÞ ^ ðC _ CÞ (66)

fsop ¼ C _ ðA ^BÞ; (67)

which can be rewritten as SOI

fsoiðA;B;CÞ ¼ C _ ðA BÞ: (68)

The same result is obtained by interpreting the Karnaugh
map in Fig. 5a, hence validating the proposed method.
Fig. 5b shows the device-level implementation for (68).

Example 2. (Four-Variable SOI). The following SOI expres-
sion is plotted in the Karnaugh map of Fig. 6a

fsoi ¼ ðððA BÞ CÞ DÞ _ ðððA BÞ CÞ DÞ
_ ðððA BÞ CÞ DÞ _ ðððA BÞ CÞ DÞ
_ ðððA BÞ CÞ DÞ _ ðððA BÞ CÞ DÞ

_ ðððA BÞ CÞ DÞ:

(69)

The corresponding simplified function deduced by apply-
ing the mapping method outlined in Section 4.2 is given
by (70). Note that literal B in the second and third IAND
terms has been inverted

fsoi ¼ ððA BÞ CÞ _ ððB CÞ DÞ _ ðB CÞ: (70)

Gate-level circuit implementation using IAND and OR
gates is shown in Fig. 6b.

Example 3. (Three-Variable NOI). This example illustrates
the optimization of an NOI expression and its implemen-
tation using the IMPLY-NAND logic set (Fig. 7). For anal-
ogy, consider the function in (63), now represented as an
NOI (note that (63) and (71) are not equivalent) and plot-
ted on a Karnaugh map as shown in Fig. 7a

fnoi ¼ fðA ! ðB ! CÞÞ ^ ðA ! ðB ! CÞÞ
^ðA ! ðB ! CÞÞ ^ ðA ! ðB ! CÞÞ^ðA ! ðB ! CÞÞg:

(71)

Using the proposed mapping method, non-inverted
input B is complemented and the simplified function is
written as

fnoi ¼ C ^ ðA ! BÞ: (72)

Fig. 7b shows a possible memristor circuit for the IMPLY-
NAND implementation. Here, complementary repre-
sentation [13] is used and the function can be reached

Fig. 5. (a) Karnaugh map and (b) minimized physical circuit for Exam-
ple 4.3.

Fig. 6. (a) Karnaugh map and (b) minimized schematic for Example 4.3.
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step-wise by executing the computational sequence listed
in Table 3 [13].

Example 4. (Incompletely-Specified Four-Variable NOI).
Expression (73) shows a Boolean function represented as
an NOI with a “don’t care” term. Fig. 8a shows the Kar-
naugh map and reduced groupings of

fnoi ¼ fðA ! ðB ! ðC ! DÞÞÞ ^ ðA ! ðB ! ðC ! DÞÞÞ
^ðA ! ðB ! ðC ! DÞÞÞ ^ ðA ! ðB ! ðC ! DÞÞÞ

^ ðA ! ðB ! ðC ! DÞÞÞ ^ ðA ! ðB ! ðC ! DÞÞÞdg:
(73)

The above expression is reduced to (74) by following the
proposed mapping process. In this case, the literal C is
complemented in both of the terms in accordance with the
steps of the proposed map method. Therefore, the mini-
mized function is

fnoi ¼ ðB ! CÞ ^ ðA ! ðB ! CÞÞ: (74)

Fig. 8b shows a memristive circuit with complemen-
tary representation for the implementation of (74). Table 4
shows the minimized sequence of operations that leads
to the desired result being stored in the memristor R2.

5 ALGORITHMICALLY-DESIGNED MEMRISTOR

FULL ADDER

To demonstrate its utility, this novel Karnaughmap approach
is applied to the memristor full adder composed of IMPLY
and NAND gates. The equations for the sum and carry-out of
the full adder are reduced separately, with each having their
own Karnaughmap. This Karnaughmapmethod algorithmi-
cally designs a full adder circuit that reduces the required
number of steps by 28 percent.

The Karnaugh maps for the sum and carry-out are first
determined from Table 5, with the sum equation resulting
in (75) and the carry out equation resulting in (76).

fnoi ¼ fðA ! ðB ! CÞÞ ^ ðA ! ðB ! CÞÞ
^ðA ! ðB ! CÞÞ ^ ðA ! ðB ! CÞÞg

(75)

Fig. 7. Example 4.3: (a) Karnaugh map for (71). (b) Memristor circuit for
IMPLY-NAND implementation of (72), where memristors A, B, and C
contain the input values, while R1 and R2 are output memristors.

TABLE 3
Computational Steps for Implementation of (72)

Using Stateful Memristive IMPLY Logic

Step Operation VCOND

applied to
VSET

applied to
VRESET

applied to
Output

Memristor
Result

0 RESET - - R1; R2 - R1 ¼ R2 ¼ 0
1 B ! R2 B R2 - R2 B
2 A ! R2 A R2 - R2 A ! B
3 R2 ! R1 R2 R1 - R1 ðA ! BÞ
4 C ! R2 C R2 - R2 Expression

(72)

Fig. 8. (a) Karnaugh map for (73). (b) Memristor circuit for IMPLY-NAND
implementation of (74), where memristors A, B;B, C, and C contain the
input values, while R1 and R2 are output memristors.

TABLE 4
Computational Steps for Implementation of (74)

Using Stateful Memristive IMPLY Logic

Step Operation
VCOND

applied
to

VSET

applied
to

VRESET

applied
to

Output
Memristor

Result

0 RESET - - R1; R2 - R1 ¼ R2 ¼ 0
1 C ! R2 C R2 - R2 C
2 B ! R2 B R2 - R2 B ! C
3 R2 ! R1 R2 R1 - R1 ðB ! CÞ
4 R2 ¼ 0 - - R2 - -
5 C ! R2 C R2 - R2 C
6 B ! R2 B R2 - R2 B ! C
7 A ! R2 A R2 - R2 A ! ðB ! CÞ
8 R2 ! R1 R2 R1 - R1 Expression

(74)
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fnoi ¼ fðA ! ðB ! CÞÞ ^ ðA ! ðB ! CÞÞ
^ðA ! ðB ! CÞÞ ^ ðA ! ðB ! CÞÞg:

(76)

The two equations are mapped using the method described
in [1], with the resulting K-maps shown in Fig. 9. As the Kar-
naughmap for the sum of the full adder contains only single-
tons, no further reduction is possible. The equation for the
IMPLY-NAND full adder sum can be directly derived
from the Karnaugh map, using the methods discussed in
Section 4.2. In the case of the carry-out, some coverage can be
achieved using the traditional Karnaughmap grouping tech-
niques from [1], allowing further reduction of the equation.
The reduced equation may be derived in NOI form from
the Karnaugh map, following the steps in Section 4.2. The
reduced carry-out equation is

fnoi ¼ ðA ! CÞ ^ ðB ! CÞ ^ ðA ! BÞ: (77)

Note that the second operand in each term has been inverted,
as none of those operands are equal to the right-most oper-
and in the IMPLY equation’s canonical form.

The resulting fully-reduced logical step-wise procedure is
depicted in Fig. 10. This algorithmically-designed full adder
requires seven steps for the carry-out computation and 14
steps for the sum computation, for a total of 21 total steps.
This is a 28 percent reduction from the state-of-the-art [7],
which was optimizedmanually. As manual approaches gen-
erally outperform algorithmic procedures for small-scale cir-
cuit optimization, this significant improvement is quite
remarkable. Furthermore, it should be noted that while the
algorithmically-designed full adder requires a larger device

count, the number of steps is far more important when con-
sidering the efficiency of the complete stateful memristor
logic system [27].

The 28 percent reduction in step count is specific to the one-
bit full adder, but can be scaled up to multi-bit full adders.
Therefore, for an N-bit full adder, the K-map-optimized cir-
cuit requires 14N and 7N steps to implement Sum and Cout,
respectively, retaining the 28 percent step reduction formulti-
bit adders. Furthermore, if Sum andCout are computed in par-
allel, Sum requires 7N + 7 steps while Cout requires 7N steps,
boosting the overall step reduction to 76 percent. The pro-
posed method thus has the potential to achieve step reduc-
tions greater than 28 percentwhen applied to large systems.

6 CONCLUSION

The logic minimization method proposed here enables the
direct mapping of memristive and spintronic logic functions
onto Karnaugh maps, which has been shown in the past to be
a valuable first step in creating logic manipulation techniques
for novel devices with unconventional logic functions. This
method is tailored to the asymmetric IMPLY and IAND logic
functions, and the NAND and OR functions that are also
efficiently performed by memristors and bilayer avalanche
spin-diodes, respectively. The identities defined here enable
algebraicmanipulation of these functions,which is used to for-
mally demonstrate the validity of the proposed logic minimi-
zation technique. This logic minimization technique provides
a foundation for logic reduction based on memristors
and spintronic logic, as well as a template for logic minimiza-
tion with alternative beyond-CMOS computing structures.
Furthermore, algorithmic design using this Karnaugh map

TABLE 5
Truth Table for a Full Adder

A B Cin Cout Sum

0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

Fig. 9. Karnaugh maps for the full adder equations. Values have been
mapped directly from the truth table. (a) Karnaugh map for (75). (b) Kar-
naugh map for (76).

Fig. 10. Logical abstractions for each equation. Input variables are desig-
nated with circles, IMPLY operations are designated with trapezoids, and
NAND operations are designated with rectangles. (a) Logical abstraction
for (75). (b) Logical abstraction for the reducedCout Equation (77).
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method has been shown to provide a 28 percent reduction in
step count as compared to the best manually-minimized full
adder circuits. This Karnaugh map method adapted to non-
commutative logic functions thus constitutes an important
step toward the development of logicminimization techniques
for the next generation of computing.
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