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Abstract
We present a single computational model for both quartz-enhanced photoacoustic spectroscopy and resonant optothermoa-
coustic detection trace gas sensors. These sensors employ a quartz tuning fork to detect the acoustic pressure and thermal 
waves generated when a laser excites a trace gas. The model is based on a coupled system of equations developed by Morse 
and Ingard for pressure and temperature in a fluid. The pressure and temperature solutions drive the resonant vibration of 
the tuning fork, which is modeled using the equations of linear elasticity. At high ambient pressure, excellent agreement 
is obtained with laboratory experiments. This result provides the first quantitative match between a fully computational 
simulation and experiments for a QEPAS sensor. Such a model could ultimately facilitate sensor design optimization. At 
low ambient pressure (less than 60 Torr), quantitative agreement is obtained after reweighting the contributions from the 
pressure and thermal components of the signal. While this result is a substantial improvement over previous results in which 
a scaling factor was required to obtain agreement at any ambient pressure, at low pressures, it appears that a more accurate 
physical model may be required to match experimental data.

1  Introduction

Photoacoustic spectroscopy (PAS) is a well-established 
technique for trace gas detection. Applications of this 
method include environmental monitoring, disease diagno-
sis, and the detection of toxic gases [1]. A quartz tuning 
fork (QTF) can be deployed as a transducer to detect the 

acoustic pressure wave generated by the excitation of the 
trace gas by a laser heat source, in a technique known as 
quartz-enhanced photoacoustic spectroscopy (QEPAS) [2]. 
In addition to being compact and portable, QEPAS sensors 
are wavelength independent, nearly immune to background 
noise, and have a large linear dynamic range with the capa-
bility of detecting concentrations from a few percent to the 
parts-per-trillion range [3–6].

QEPAS sensors achieve optimal performance when the 
laser is focused near the top of the gap between the tines 
of the QTF. At low ambient pressure experiments show a 
significant contribution from a thermal wave that becomes 
dominant when the laser is focused near the bottom of 
the gap between the tines [7, 8]. This method of detec-
tion is known as resonant optothermoacoustic detection 
(ROTADE). Because ROTADE sensors operate at low ambi-
ent pressure, viscous damping of the QTF is significantly 
reduced and the sensor offers greater wavelength selectivity 
due to the narrower absorption lines of the trace gas. Experi-
ments have also been performed in which the acoustic and 
thermal contributions are both significant [7].

Current research into trace gas sensors seeks to improve 
their sensitivity and selectivity through novel experimen-
tal setups and sensor modifications [6, 9, 10]. For example, 
the use of microresonator tubes [4, 11, 12], custom QTF 
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geometries [1, 10], and dual QTF configurations [5, 13] has 
enabled significant improvements in sensor performance. 
The performance of these sensors could be further improved 
using computational modeling to facilitate optimization of 
the geometry of the QTF.

Petra et al. [14] used analytic solutions of the acoustic 
wave equation and the Euler–Bernoulli equation for a vibrat-
ing beam to predict the optimal position of the laser beam for 
a QEPAS system with a bare QTF. They obtained agreement 
to within a factor of about two with experimental results. 
Firebaugh et al. [15] used a finite-element model to predict 
the optimal radial dimensions of two microresonator tubes 
used in a QEPAS sensor. Auost et al. [16] used a hybrid ana-
lytical–computational model for QEPAS sensors with micro-
resonator tubes to compute the influence that the length of 
the microresonator tubes has on the resonance frequency and 
Q-factor of the system. However, they adjusted parameters 
in their model to obtain agreement with experimental data.

Modeling QTF-based sensors at lower ambient pressure 
is considerably more difficult. Due to the small scale of the 
QTF and the proximity of the laser to the material, the inter-
action between the acoustic and the thermal components 
of the process can significantly affect the signal generated 
by the sensor [17]. These interactions can be modeled by a 
coupled system of partial differential equations for the tem-
perature, pressure, and velocity in a fluid due to Morse and 
Ingard [18], which generalize the classical acoustic pres-
sure and heat equations. Kaderli et al. [19] derived an ana-
lytical solution of the pressure–temperature subsystem in a 
special case with cylindrical symmetry, and showed that at 
length scales on the order of 0.1 mm, the temperature near 
the fluid–solid interface can be an order of magnitude larger 
than that computed using the heat equation alone. In our lat-
est work [20], we developed a computational model to solve 
the same pressure-temperature equations in a fluid surround-
ing a QTF. We showed that in a parameter regime studied 
experimentally by Doty et al. [7], the pressure obtained by 
solving the Morse–Ingard equations predicts a smaller net 
force on the QTF than that obtained by solving the acoustic 
wave equation alone.

To model the detection of trace gases using QEPAS and 
ROTADE sensors, the Morse–Ingard equations need to 
be coupled to the equations of linear elasticity for the dis-
placement of the QTF. In this paper, we propose a one-way 
coupled model in which the pressure and temperature of 
the fluid drive the deformation of the QTF. To add viscous 
damping to the model, we use experimentally measured val-
ues of the Q-factor of the QTF as an input parameter. We 
solve the equations in the model using the finite-element 
method with the aid of a custom-designed preconditioner 
that facilitates the numerical solution of the resulting large 
linear system [20–22]. With this model, we are able to han-
dle both the QEPAS and ROTADE sensing modalities.

We compare the results of our numerical simulations to 
experimental results of Kosterev and Doty [7, 23] who meas-
ured how the piezoelectric signal varies with respect to the 
position of the laser beam. These results were obtained with 
a bare QTF at both high and low ambient pressures. At high 
ambient pressure, we observe excellent agreement between 
the numerical and experimental results, with at most a 10% 
discrepancy in regions with strong signal. This result is 
the first published quantitative agreement between finite-
element simulations and experiments for a QEPAS sensor 
that does not require fitting any parameters (except for the 
Q-factor) or using normalization constants. At low ambient 
pressure, we obtained quantitative agreement with experi-
ments by separately normalizing the contributions due to the 
acoustic and thermal components of the signal. This result 
suggests that there is a physical process that was omitted 
from our model but which is only important at low ambient 
pressures.

In Sect.  2, we describe our computational model. In 
Sect. 3, we compare the results from our numerical model 
to experimental data for both QEPAS and ROTADE sensors, 
and in Sect. 4, we discuss several physical mechanisms that 
could account for the discrepancy between the simulation 
and experimental results at low ambient pressure. Finally, 
in Sect. 5, we provide a summary of our results.

2 � Numerical model

In this section, we describe the one-way coupled model that 
we developed for the pressure and temperature in the fluid 
and the induced elastic deformation of the QTF. This model, 
which is similar to the one developed by Petra et al. [24] in 
their modeling of ROTADE sensors, consists of the follow-
ing three stages: 

1.	 Determine the numerical eigenfrequency, �0 , of the QTF 
for the particular finite-element mesh;

2.	 the pressure–temperature subsystem of the Morse–
Ingard equations in the gas coupled to the heat equation 
in the QTF (with �0 as an input parameter);

3.	 Compute the resulting deformation of the QTF using 
both �0 and the pressure–temperature solution from 
stage 2.

For brevity, we refer the reader to references [20, 25] for the 
details of the finite-element formulation of the model.

2.1 � Model for numerical eigenfrequency

The tuning fork, which is cut from an anisotropic trigonal 
quartz crystal, resonates at f0 ≈ 215 Hz ≈ 32 kHz in a vac-
uum [4, 26]. Since QTFs have narrow resonance bandwidths 
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[3], in laboratory experiments, the precise value of the res-
onance frequency, f0 , must be measured when the sensor 
is calibrated. Likewise, with a computational model, it is 
essential to precisely determine the resonance frequency of 
the computational QTF, which exhibits a slight dependence 
on the particular finite-element mesh that is employed to 
approximate the QTF geometry.

According to the theory of linear elasticity [27], the vibra-
tion of the QTF is governed by the equation of motion:

where � is the displacement of the QTF from its rest posi-
tion, � is the fourth-order elasticity (stiffness) tensor that 
relates the strain, �(�) = 1

2

[
∇� + ∇�T

]
 , of the QTF to the 

stress applied to it, �Q is the density of quartz, and � models 
a body force. Since the motion of the tuning fork is time-
harmonic, we assume that �(�, t) = ℜe

[
�(�)e−i�t

]
 . In this 

situation, (1) becomes:

Since the QTF is secured at the base, we partition the bound-
ary of the QTF into a subdomain, �fixed , that is fixed and a 
subdomain, �free , that is free to vibrate (see Fig. 1). Letting 
� denote the outward unit normal to the QTF, the resulting 
eigenproblem is:

where we have imposed a zero traction condition on 
�free [27]. Here, �0 = 2�f0 is the eigenfrequency to be 
determined.

We discretize the system using the finite-element 
method with piecewise quadratic polynomials. For the 

(1)∇ ⋅ �[�(�)] − �Q
�2�

�t2
= �,

(2)∇ ⋅ �[�(�)] + �2�Q� = �.

(3)

⎧⎪⎨⎪⎩

∇ ⋅ �[�(�)] + �Q�
2
0
� = � � ∈ �Q,

� = � � ∈ �fixed,

�[�(�)]� = � � ∈ �free,

solver, we use a Krylov–Schur eigensolver [28] with a 
shift-and-invert strategy available in the SLEPc pack-
age [29] and a direct solver to perform matrix inversion 
whenever necessary [30, 31]. We then choose the eigenpair 
that corresponds to the mode in which the tines vibrate 
symmetrically in the xz-plane shown in Fig. 2. We use 
the corresponding eigenfrequency, �0 , and the QTF mesh 
employed in the numerical simulation as inputs for the 
next two stages of the method.

2.2 � Model for the thermoacoustic wave

The periodic heating of a trace gas by a laser generates 
a thermoacoustic wave in the fluid (gas) surrounding the 
QTF. Here, we model this process using a system of equa-
tions originally derived by Morse and Ingard [18] for per-
turbations in the acoustic pressure, P, and fluid tempera-
ture, TF , given by: 

 Here, � is the isentropic expansion factor of the gas, c is 
the speed of sound, � is the rate of change of pressure with 
respect to temperature at constant volume, �F is the den-
sity of the gas, and Cp is the specific heat. The quantities �v 
and �h are the characteristic lengths of viscosity and heat 
conductivity, respectively [18]. The forcing term, S, repre-
sents the heat power density deposited into the gas [32], 
which we model as a time-harmonic function of the form 
S(�, t) = ℜe

[
S(�)e−i�0t

]
 , where the spatial dependence of the 

source is given by:

(4a)�P −
�

c2

(
�2

�t2
− �vc

�

�t
�

)(
P − �TF

)
= 0,

(4b)�hc�TF −
�

�t

(
TF −

� − 1

��
P

)
= −

1

�FCp

�S

�t
.

Γfixed

Γfree

ΩQ

Fig. 1   The QTF, �Q , and its boundary. The fixed boundary, �fixed , is 
the bottom surface of the QTF. The remaining faces, �free , are free to 
vibrate
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Fig. 2   Domain for the trace gas sensor model. The tuning fork is 
shaded purple and the surrounding gas is colored pink. The absorbing 
boundary layer is shaded tan and is only implemented in the x- and 
z-directions
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The constant �eff is the effective absorption coefficient of 
the gas and WL is the total laser power. The laser beam is 
aligned with the y-axis, and is focused at a point, (xs, ys, zs) , 
that is halfway between the front and back faces of the QTF. 
The function w(y) models the width of the laser beam. 
For QEPAS sensors [14], the beam width is modeled by 
w(y) = � , and for ROTADE sensors, it is given as in Petra 
[24] by:

where � is the beam width at the focal point, and yR = ��2∕� 
is the Rayleigh length. Here, � is the wavelength of the laser 
radiation [33].

As the source function is time-harmonic, the thermoa-
coustic equations (4) reduce to the Helmholtz system: 

 We now describe the computational model we used to 
solve (7). We solve the system in a domain � = �Q ∪�F , 
where �Q is the QTF domain and �F is the surrounding 
fluid (see Fig. 2). The laser is directed along the y-axis, 
and passes through the front and back faces, �FB , of the 
computational domain, which are parallel to the xz-plane. 
We let �side denote the side faces, which are perpendicu-
lar to the xz-plane, and �I the interface between the tuning 
fork and the fluid. We denote the entire boundary of �F by 
� = �I ∪ �side ∪ �FB.

Provided that the front and back faces of the computa-
tional domain are sufficiently far from the QTF, it is reason-
able to impose zero Neumann boundary conditions for the 
pressure and temperature on �FB , since the thermoacoustic 
waves are largely independent of y there. On the remaining 
exterior faces, �side , of the domain (the tan region in Fig. 2), 
we implemented the perfectly matched layer (PML) method 
[20, 34, 35] to attenuate the outgoing waves, so that any 
portion that is reflected back into the computational domain 
is negligible.

For our one-way coupled model, we impose a zero Neu-
mann boundary condition for the pressure on the QTF inter-
face, �I , which models reflections of the pressure wave. For 
the temperature, we model the thermal dissipation into the 
tuning fork, TQ , by solving the Helmholtz form of the heat 
equation:

(5)S(�) =
�effWL

�w2(y)
exp

[
−
2[(x − xs)

2 + (z − zs)
2]

w2(y)

]
.

(6)w(y) = �

√
1 +

(
y − ys

yR

)2

,

(7a)�P +
�

c2
(�2

0
− i�vc�0�)(P − �TF) = 0,

(7b)�hc�TF + i�0

(
TF −

� − 1

��
P

)
= −

1

�FCp

S.

where �Q is the thermal conductivity tensor, and �Q and 
Cp,Q are the density and the specific heat of quartz, respec-
tively. We couple the temperature variables in the fluid and 
QTF domains using the continuity of heat and heat flux 
conditions:

where �F is the thermal conductivity of the fluid.
As in our previous work [20], we discretize the pressure 

variable using piecewise linear polynomials. However, since 
the temperature decays rapidly near the fluid–structure inter-
face, we use piecewise quadratic polynomials to discretize 
temperature, which provides for a much more accurate solu-
tion. Once we solve the resulting linear system, we save the 
pressure solution on the free faces of the QTF, �free , and the 
temperature solution in the interior of the QTF to drive the 
vibration of the tuning fork.

2.3 � Model for the vibration of the tuning fork

In the final stage of the model, we apply the solution of the 
thermoacoustic equations from the previous stage to determine 
the motion of the QTF. The heat that dissipates into the interior 
of the QTF induces a thermal stress in the structure which 
causes the tuning fork to vibrate. The pressure wave also drives 
the deformation of the QTF through the force it exerts on its 
boundary. The resulting motion of the tuning fork is governed 
by the differential equation (2). To incorporate damping into 
the model, we heuristically add an additional term, −i�s�0� , 
as in Petra et al. [24]. The parameter, �s , is given in terms of 
the Q-factor of the tuning fork by �s = �Q�0∕Q . The Q-factor 
quantifies how effectively the resonator resists energy losses 
due to damping. In this paper, we restrict attention to tuning 
forks for which the Q-factor has been measured in laboratory 
experiments. Recently, analytical methods have also been 
developed for determining the Q-factor of a QTF [36].

The stress tensor in a thermoelastic material is given by 
� = �[�(�)] − �[�TQ] , where � = diag (�1, �2, �3) is the 
thermal expansion tensor [37]. Incorporating the damping 
term, the deformation of the QTF driven by the thermoacous-
tic wave is, therefore, modeled using the equation:

with the boundary conditions:

(8)∇ ⋅ (�Q∇TQ) + i�0�QCp,QTQ = 0 in �Q,

(9)
{

TF(�) = TQ(�) (cont. of heat),

�(∇TF ⋅ �) = (�Q∇TQ) ⋅ � (cont. of flux),

(10)∇ ⋅ �[�(�)] + (�Q�
2
0
− i�0�s)� = ∇ ⋅ �[�sTQ],

(11)
{

� = � � ∈ �fixed,

∇ ⋅ �[�(�)]� = P� + �[�sTQ]� � ∈ �free,
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where P and TQ are the solutions obtained in Sect. 2.2. 
The second equation in (11) is a stress continuity condi-
tion across the interface, �free . To ensure that the numerical 
eigenfrequency, �0 , still corresponds to the numerical reso-
nant mode of vibration, we use the same mesh and finite-
element discretization as in Sect. 2.1. We use a direct solver 
to determine the solution to the resulting finite-element for-
mulation of the system given by (10) and (11).

Finally, as in Petra et al. [24], we use an equivalence 
between the electrical and mechanical parameters of the 
QTF to convert the displacement into an electric signal:

where �top is the displacement of the tip of the tine and the 
constant � = 7 × 10−6 C/m is the effective piezoelectric 
coupling.

3 � Numerical results

We now compare the results that we obtained using the 
computational model to those obtained from laboratory 
experiments. The computations were performed in parallel 
on the Stampede 2 cluster at the Texas Advanced Comput-
ing Center at The University of Texas at Austin. The finite-
element matrices were assembled using the deal.II pack-
age [38] and stored as distributed matrices and vectors in 
PETSc [39, 40]. The mesh was generated using the Gmsh 
package [41] and partitioned for the parallel computation 
with p4est [42]. For post-processing, we used the Tri-
linos package [43]. For the sparse parallel LU solver, we 
use MUMPS [30, 44], and for the generalized eigenproblem 
in stage 1, we use SLEPc [29].

(12)S = 2��0�top,

The constants necessary to solve the eigenfrequency and 
the elastic deformation equations (2) and (10) are listed in 
Table 1, except for the values of the Q-factor which are given 
in the text below. We refer the reader to Safin et al. [20] for 
values of the geometric parameters of the QTF, the source 
parameters in (5), and the thermoacoustic parameters in (7) 
and (9). The only constants in the model that we know of 
that depend on the ambient pressure, P0 , are the fluid den-
sity, �F , which is proportional to P0 , the Q-factor which is 
inversely proportional to the square root of P0 , and the effec-
tive absorption constant, �eff , whose dependence on P0 is 
discussed below.

3.1 � Results at high ambient pressure

For sufficiently large ambient pressure, P0 > 50 Torr, the 
detected signal is primarily due to the acoustic wave, corre-
sponding to the QEPAS mode of detection. In this situation, 
Kosterev and Tittel [23] showed that the signal is largest 
when the laser is placed near the top of the QTF.

We compare the results obtained using the computational 
model to experimental data from Petra et al. [14], which was 
measured at an ambient pressure of P0 = 450 Torr using a 
gas mixture of 1000 ppmv NH3 in N2 . The Q-factor of the 
tuning fork was measured to be Q = 16, 064 . The position 
of the laser beam was varied along a vertical line halfway 
between the tines of the QTF, and was measured from the 
base of the semicircular portion of the QTF. In Fig. 3, we 
show the amplitude (top) and phase (bottom) of the electric 
signal as a function of the height of the laser beam. The 
numerically computed signal is shown with a thick blue line, 
and the experimental data are shown with a thin red line. 
For reference, we also show the location of the top of the 
QTF using a dashed black line. The computed amplitude 
plot is largely in agreement with the experimental data, with 
at most a 10% discrepancy in the region where the signal is 
large. This result is an improvement over the analytic model 
of Petra et al. [14] and the finite-element model of Fire-
baugh et al. [46] for methane gas at 375 Torr, with both of 
these results being off by multiplicative factors greater than 
2.1. The computed phase also agrees with experimental data 
where the signal is large. However, as in Petra et al. [14], 
near the base of the tuning fork and above the tuning fork, 
the numerical results do not predict the sharp variations in 
the phase of the signal.

There are two mechanisms by which the QTF influences 
the acoustic pressure wave: reflections of the pressure wave 
off of the walls of the QTF, which we model using a Neu-
mann boundary condition, and reradiation of acoustic waves 
due to the QTF vibration, which we did not include in our one-
way coupled model. In general, two-way coupling is required 
to model the forcing of the acoustic pressure by the QTF. 

Table 1   QTF parameters for 
the elasticity tensor, � , density 
of quartz, �Q , and the thermal 
expansion tensor, �s . The values 
are taken from Gautschi et al. 
[45]

Const. Value [ N/m2]

C
11 86.80 × 109

C
12 7.04 × 109

C
13 11.91 × 109

C
14 −18.04 × 109

C
33 105.75 × 109

C
44 58.20 × 109

C
66 39.88 × 109

 Const. Value [ kg/m3]

�Q 2650.0

 Const. Value [1/K]

�
1 13.7 × 10−6

�
2 13.7 × 10−6

�
3 7.4 × 10−6
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Since two-way coupled models are computationally intensive 
and do not easily admit analytical solutions, in their work, 
Firebaugh et al. [15, 46] and Aoust et al. [16] approximated 
the reradiation from the QTF using an acoustic quadrupole 
source. However, they did not demonstrate the necessity of 
this enhancement to the model. The good agreement that we 
obtained with experiments suggests that acoustic reradiation 
is not a significant effect for QEPAS sensors operating at high 
ambient pressure.

3.2 � Results at low ambient pressure

Next, we describe the results that we obtained at low ambient 
pressure. In this regime, whether the thermal or the acoustic 
wave contributes more to the vibration of the QTF depends 
primarily on the position of the laser beam. If the laser is 
focused near the top between the tines of the QTF, then the 
acoustic wave is still the primary component of the electric 
signal [7]. However, when the laser is focused near the bot-
tom of the gap, the vibration is primarily driven by the ther-
mal wave. We will compare the results which we obtained 
from the computational model to an experimental data set 
measured by Kosterev and Doty [7] using a mixture of 0.5% 
acetylene in nitrogen ( C2H2 ∶ N2 ) at ambient pressures in the 

range P0 = 5 − 60 Torr. At 5 Torr, the measured Q-factor was 
Q = 79, 794 , and at an arbitrary ambient pressure, P0 , we used 
the approximation Q ≈ 178, 425∕

√
P0 [4, 24].

The pressure and the temperature waves drive the motion 
of the QTF in a manner that is effectively independent of 
each other. Therefore, it is appropriate to treat the vibration 
of the QTF due to pressure as being entirely separate from 
the one due to temperature. As a result, by selectively apply-
ing which forcing terms are used in Eqs. (10) and (11), we 
can determine an acoustic component, SP , and a thermal 
component, ST , such that the overall signal, S, is just their 
direct sum, S = SP + ST . Our initial computational results 
(shown in Fig. 4) verify that the thermal component, ST , 
dominates over the acoustic component, SP , when the laser 
beam is located close to the base of the QTF.

To achieve quantitative agreement with the experimental 
results at low ambient pressure, we reweighted the contri-
butions due to the acoustic and thermal components. We 
suppose that there are complex constants, �g and �T , so that 
the electric signal is of the form:

where z is the vertical position of the laser beam and Snor is 
the normalized signal. We emphasize that the parameters, 
�g and �T , only depend on the ambient pressure, P0 . At each 
ambient pressure, we estimate �g and �T using a least-squares 
fit to the experimental data, Sexp:

where I = [0, ztop] is the set of laser beam positions in the 
experiment. The need for this post-facto modification sug-
gests that the acoustic and the thermal components contrib-
ute in different proportions than predicted by the model and 
that there is an additional phase shift between the pressure 
and temperature signals that needs to be accounted for.

A major reason we need to introduce the constant, �g , 
is that we do not have a reliable method for determining 
how the effective absorption coefficient, �eff , in the laser 
source (5) depends on the ambient pressure, P0 . In par-
ticular, �eff , depends on the modulation amplitude and the 
absorption spectrum of the gas [14], and it is not simple 
to determine how these quantities depend on P0 . For this 
reason, our primary focus is on the parameter �T , which we 
allow to be complex-valued to account for a phase lag.

In Fig. 4, we compare the normalized signal, Snor , (thick 
blue line) that we obtain using the model to the experimental 
data (red line) at an ambient pressure of 5 Torr. We show 
the amplitude in the top panel and the phase in the bottom 
panel. In the top panel, we also show the amplitude of the 
acoustic component (solid black line with circles) and the 
thermal component (dashed green line with squares) of Snor . 

(13)Snor(z) = �g
[
SP(z) + �TST(z)

]
,

�g, �T = argmin
�g,�T

||||∫I

�g
[
SP(z) + �TST(z)

]
− Sexp(z) dz
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Fig. 3   Top: amplitude of the piezoelectric signal as a function of laser 
beam height for 1000 ppmv NH3 ∶ N2 at 450 Torr. Bottom: phase of 
the signal. The dotted black line corresponds to the top of the QTF



A one‑way coupled model for the vibration of tuning fork‑based trace gas sensors driven by a…

1 3

Page 7 of 10     29 

We obtained good agreement between the experiment and 
the normalized signal across the entire range of beam posi-
tions, both in amplitude and phase. In Fig. 5, we compare the 
results from our simulations to the experimental data when 
the ambient pressure is 10 Torr. Once again, we obtain close 
agreement between the normalized signal from the simula-
tions and the experimental data, which strongly suggest that 
the parameter, �T , reflects a missing component in the model. 
In Sect. 4, we discuss the modifications to the model that we 
have investigated to ameliorate this discrepancy between our 
computational simulations and laboratory experiments at low 
pressures. In Table 2, we show the computed values of |�g| 
and �T at several values of P0 . Since interactions between 
the trace gas and the laser increase as the ambient pressure 
increases, we expect the effective absorption coefficient, �eff , 
to increase with P0 . However, since we used a fixed value of 
�eff for all our low ambient pressure simulations, this increase 
is instead reflected in |�g| . On the other hand, the magnitude 
of the parameter, �T , which represents the relative weighting 
of the thermal and acoustic components of the signal con-
verges to a value of about 4.

Finally, in the last column of the table, we show the esti-
mated phase lag, �T , which accounts for the difference in 

time (on the order of microseconds) between the acoustic 
and the thermal components of the signal. The presence 
of this phase lag can be partially attributed to the fact that 
vibrational-to-translational (V-T) relaxation processes do not 
occur instantaneously, resulting in a small temporal delay 
in the generation of the pressure wave. In the case of a two-
level molecular system, the phase lag due to V-T relaxation 
satisfies [47]:

In Fig. 6, we test this proportionality relationship for the 
data in Table 2. Clearly, there is no linear relationship in the 
plot. However, the two leftmost values which correspond 

(14)tan(�T ) ∝
1

P0
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Table 2   Parameters �g and �T obtained using the least-squares fitting 
formula for different values of the ambient pressure P0

P0 (Torr) |�g| |�T | �T = arg(�T )

5 1.7417 17.6888 0.6360
10 10.5503 9.0820 0.1311
20 70.9690 4.3672 −0.5461
40 233.4987 4.0476 −1.3266
60 399.6060 4.4384 −1.8445
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to pressures of 40 and 60 Torr may be unreliable, since in 
these cases, the thermal component of the signal is relatively 
small except near the bottom of the gap between the tines of 
the QTF. If we discard those two values, then the remaining 
points appear to be nearly linear.

Finally, we study how the strength of the normalized sig-
nal depends on the (x, z)-position of the laser beam for an 
experiment at 20 Torr. For each laser position in our simu-
lation, we obtain the thermal and acoustic components of 
the piezoelectric current, ST and SP , and use the estimated 
parameters in Table  2 to obtain the normalized signal 
Snor . We show the results in Fig. 7, where the domain of 
study is [−0.12, 0.12] mm × [0.15, 3.9] mm . Darker colors 

correspond to a stronger signal, and the thick black curve 
shows the outline of the QTF. We observe two regions with 
strong signal: near the bottom ( z < 0.5 mm ) which corre-
sponds to ROTADE sensing, and near the top ( z > 2.5 mm ) 
where the QEPAS signal dominates. In the vicinity of 
the points with (x, z)-coordinates given by (0, 0.75) and 
(±0.1, 1.75) , we observe extremely weak signals due to the 
interference between the QEPAS and ROTADE sensing 
modalities. We note that our results are similar to the ones 
presented experimentally in Kosterev et al. [7], who also 
studied variations in the signal strength due to the (x, z)-
position of the laser beam. Their experiment was also con-
ducted at 20 Torr but for CO2 rather than the acetylene in 
nitrogen mixture that we used.

4 � Discussion

In this section, we discuss several physical mechanisms that 
could account for the need to reweight the pressure and tem-
perature components of the signal at low ambient pressures.

First, as we stated above, we do not have a reliable 
method to predict how the effective absorption coefficient, 
�eff , depends on the ambient pressure. However, by itself this 
omission does not account for the phase difference between 
the pressure and temperature components. Motivated by the 
linear trend of the rightmost three values in the plot shown in 
Fig. 6, we developed a model that accounts for the relaxation 
time required for vibrationally excited molecules to return to 
the ground state and release their excess energy in the form 
of heat [25]. We added a third equation to the pressure–tem-
perature system to model the energy density of thermally 
excited molecules in a two-level system, and their decay to 
the ground state due to collisions with other molecules and 
the walls of the QTF. However, for parameters correspond-
ing to the acetylene-in-nitrogen experiment, this modifica-
tion did not make a substantial improvement to the results.

Although we modeled the effect that the temperature 
has on the QTF displacement, it may also be necessary to 
account for how the stress induced in the QTF affects the 
temperature, as is described in the theory of linear thermoe-
lasticity [37]. The phase discrepancy between the tempera-
ture and pressure signals at low ambient pressure might be 
rectified with a different fluid–structure interface condition 
on the boundary of the QTF. One option would be to employ 
a two-way coupled model in which the QTF vibration forces 
the fluid velocity. In such a model, the full Morse–Ingard 
equations should also be used to relate the fluid velocity to 
the acoustic pressure and temperature. However, significant 
further model development is required to determine whether 
any of these models can explain the discrepancies that we 
observed at low ambient pressure.
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5 � Conclusions

In this paper, we developed a three-stage computational 
model to determine the electric signal generated by a 
QEPAS or a ROTADE sensor. We implemented a one-way 
coupling algorithm in which the motion of the tuning fork 
is driven by the excitation of the trace gas by the laser. We 
modeled the generation of thermoacoustic waves using the 
Helmholtz form of a coupled system of partial differential 
equations derived by Morse and Ingard for a visco-thermo-
acoustic fluid. We then used the equations of linear elasticity 
to compute the resulting vibration of the tuning fork, where 
we used the pressure on the walls of the QTF and the heating 
of the quartz material as forcing terms. We added an extra 
term to the equation of motion to account for damping that 
depends on experimentally measured values of the Q-factor.

When the sensor was operated at high ambient pressure, 
we obtained excellent agreement between the computa-
tional model and experimental data. On the other hand, at 
low ambient pressure, the results of the simulations do not 
match the data. However, using a complex-valued reweight-
ing of the thermal and acoustic components of the signal, we 
obtained good agreement with the experimental data, both 
in amplitude and phase. Using this normalized signal, we 
studied how the signal strength depends on the laser beam 
position, and obtained good qualitative agreement with the 
data shown in Kosterev and Doty [7].

Taken together, our results suggest that there is a pres-
sure-dependent physical mechanism that was omitted from 
our model and which only plays a role at low ambient pres-
sure. Nonetheless, this paper presents an advance in the 
modeling both QEPAS and ROTADE trace gas sensors 
which is fundamental to optimizing their design.
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