Math 2415

Friday Problem Session on 14.3-14.5, 16.6

1. 14.3.5
2. 14.3.11
3. 14.3 .73
4. 14.3 .76 (f)
5. 14.4.1.
6. 14.4.17
7. 14.5 .1
8. 14.5.7
9. 14.5.13

10. [Warm up for Paper Hwk 16.6 \#1(c)]:

(a) Write down the equation of the form $F(x, y, z)=0$ for the sphere of radius 2 , center $(1,2,3)$.
(b) Show that

$$
(x, y, z)=\mathbf{r}(\theta, \phi)=(1+2 \sin \phi \cos \theta, 2+2 \sin \phi \sin \theta, 3+2 \cos \phi)
$$

is a parametrization of this sphere. Hint: Substitute the formulae for x, y, and z in terms of θ and ϕ into the function F you obtained in (a) and simplify as much as you can. What does this calculation tell you about where each of the points $(x, y, z)=\mathbf{r}(\theta, \phi)$ lie?
11. [Parts of Paper Hwk 16.6 \#3]: Let S be the surface with parametrization

$$
(x, y, z)=\mathbf{r}(u, v)=u \cos v \mathbf{i}+u \sin v \mathbf{j}+u \mathbf{k} \quad u \geq 0, \quad 0 \leq v \leq 2 \pi .
$$

(a) Show that S is a cone. Hint: Find an equation of the form $F(x, y, z)=0$ for this surface by eliminating u and v from the equations for x, y, and z above.
(b) Find a parametrization of the tangent plane to the cone at the point where $(u, v)=$ ($2, \pi / 4$).
12. [Paper Hwk 16.6 \#4a]: Find a parametrization of that portion of the paraboloid $z=x^{2}+y^{2}$ where $z \leq 4$. Hint: See blue paraboloid model.
13. 16.6.22 Hint: You could use a parametrization of the form $x=u, z=v$, and $y=f(u, v)$. In this case the parameters (u, v) must lie inside an ellipse. Describe this ellipse using inequalities.
14. 16.6.26. Hint: Choose the parameters to be polar coordinates (r, θ) so that $x=r \cos \theta$ and $y=r \sin \theta$. What range of values should you choose for r and θ ?
15. 14.3.57
16. 14.3.74 (b, c) [(d) is a Challenge problem]
17. 14.5.15

