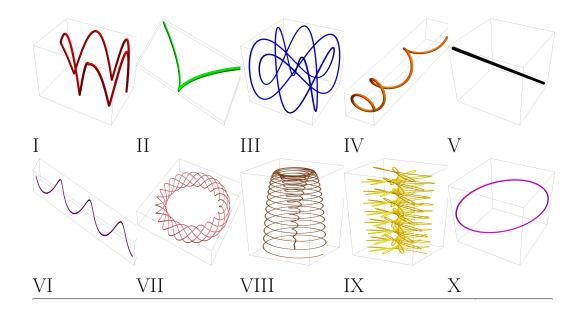
Math 2415 Homework on 13.1

- 1. Match the curves below with the parametric equations. Justify your answers. (There are more curves than equations. The origin is in the middle of each box.)
 - (a) $\mathbf{r}(t) = (t, t, t)$
 - (b) $\mathbf{r}(t) = (\cos(t), t^2, \sin(t))$
 - (c) $\mathbf{r}(t) = (t^3, t^2, 0)$
 - (d) $\mathbf{r}(t) = (\cos t, \cos t, \sin t)$



- 2. Show that the curve with parametrization $x = \sin t$, $y = \cos t$, $z = \cos 4t$ for $0 \le t \le 2\pi$ lies on the circular cylinder $x^2 + y^2 = 1$. Sketch the cylinder and the curve.
- 3. Parametrize the ellipse $x^2 + 4y^2 = 1$ in \mathbf{R}^2 .
- 4. Parametrize the curve obtained by intersecting the plane x + y = 1 with the portion of cone $z^2 = x^2 + y^2$ that lies above the plane z = 0.
- 5. Parametrize the curve obtained by intersecting the cylinders $x^2+z^2 = 1$ and $y^2+z^2 = 1$. There are 3D-printed models you can use to help visualize these Intersecting Cylinders.