Math 2415
 Homework on 13.2

1. Find a parametrization of the tangent line to the helix $\mathbf{r}(t)=2 t \mathbf{i}+\sin t \mathbf{j}+\cos t \mathbf{k}$ at the point where $t=\pi$. In which point does this line intersect the $x y$-plane?
2. Find the velocity and acceleration vectors and a parametrization for the tangent line for the curve $\mathbf{r}(t)=t \sin t \mathbf{i}+t \cos t \mathbf{j}+\sqrt{3} \mathbf{k}$ at $t=0$.
3. Below are two parameterizations describing the motion of a particle around the circle $x^{2}+y^{2}=1$. For each parameterization answer the following questions.
(i) Does the particle have constant speed? If so, what is this constant speed?
(ii) Is the particle's acceleration vector always orthogonal to the velocity vector?
(iii) Is the particle travelling clockwise or counter-clockwise?
(iv) Where is the particle at time $t=0$?
(a) $\mathbf{r}(t)=(\cos (t-\pi / 2), \sin (t-\pi / 2))$
(b) $\mathbf{r}(t)=\left(\cos \left(t^{2}\right), \sin \left(t^{2}\right)\right)$
4. Let $(x, y, z)=\mathbf{r}(t)$ be a parametrized curve that lies on the sphere of radius one centered at the origin. Let $\mathbf{v}(t)=\mathbf{r}^{\prime}(t)$ be the velocity of the parametrized curve. Show that $\mathbf{r}(t)$ and $\mathbf{v}(t)$ are perpendicular for all t.
