Math 2415 Homework on 14.3

1. Compute the partial derivatives $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial^{2} f}{\partial x^{2}}, \frac{\partial^{2} f}{\partial y^{2}}$, and $\frac{\partial^{2} f}{\partial x \partial y}$ of the following functions.
(a) $f(x, y)=x \cos x \sin y$
(b) $f(x, y)=e^{-\left(x^{2}+y^{2}\right) /\left(2 \sigma^{2}\right)}$
2. Let $f(\rho, \theta, \phi)=\rho \sin \phi \cos \theta$. Calculate $\frac{\partial f}{\partial \phi}$ and $\frac{\partial f}{\partial \theta}$.
3. The plane $y=2$ intersects the graph of $z=x y^{3}+5 x^{2}$ in a curve. Find a parametrization of the tangent line to this curve at the point where $x=3$.
4. Problem 3 from http://mathquest.carroll.edu/libraries/MVC.student.14.07.pdf
5. Problem 6 from http://mathquest.carroll.edu/libraries/MVC.student.14.07.pdf
6. Problem 10 from http://mathquest.carroll.edu/libraries/MVC.student.14.07.pdf
7. Verify that the function $u(x, y, z)=\log \left(x^{2}+y^{2}\right)$ is a solution of the two dimensional Laplace equation $u_{x x}+u_{y y}=0$ everywhere, except of course at the origin where f is not defined.
8. Verify that the following functions solve the wave equation, $u_{t t}=u_{x x}$
(a) $u(x, t)=\cos (4 x) \cos (4 t)$
(b) $u(x, t)=f(x-t)+f(x+t)$, where f is any differentiable function of one variable.
