Math 2415 Homework on 14.4

1. Find an equation for the tangent plane to the surface $z=\sqrt{y-x}$ at the point $(x, y, z)=$ $(1,2,1)$.
2. Let $f(x, y)=x^{2} y^{2}-x$.
(a) Find the equation for the tangent plane to the graph of f at $(2,1,2)$.
(b) Use a linear approximation to find the approximate value of $f(1.9,1.1)$.
3. Calculate the linearization of the function f at the point P and use it to estimate $f(Q)$ for
(a) $z=f(x, y)=(x-y) \cos (2 \pi x y)$ where $P=\left(1, \frac{1}{2}\right)$ and $Q=(1.1,0.4)$
4. Problem 2 from http://mathquest.carroll.edu/libraries/MVC.student.14.03.pdf
5. Problem 10 from http://mathquest.carroll.edu/libraries/MVC.student.14.03.pdf
6. The period of oscillation of a pendulum of length L is given by the formula $T=$ $2 \pi \sqrt{L / g}$, where g is the acceleration due to gravity. Estimate the change in the period of the pendulum if its length is increased from $L=30 \mathrm{~cm}$ to $L=31 \mathrm{~cm}$ and it is simultaneously moved from a location where $g=9.8 \mathrm{~m} / \mathrm{s}^{2}$ to one where $g=9.85 \mathrm{~m} / \mathrm{s}^{2}$.
