Math 2415 Homework on 14.5

Let $z=f(x, y)$ be a function on the plane and let $(x, y)=\mathbf{r}(t)$ be a curve in the plane. The composition $z=g(t)=f(\mathbf{r}(t))$ is a scalar-valued function of one variable. The function g is called the restriction of f to the curve \mathbf{r}, since it just gives us the values of f along the curve r. In this context, the Chain Rule for Functions on Curves states that $g^{\prime}(t)=\nabla f(\mathbf{r}(t)) \cdot \mathbf{r}^{\prime}(t)$.

1. Let $(x, y)=\mathbf{r}(t)=(t, \sqrt{t})$ be a curve in the plane and let $z=f(x, y)=\exp \left(-x^{2}-y^{2}\right)$ a function on the plane. Let $g(t)=f(\mathbf{r}(t))$ be the restriction of f to the curve \mathbf{r}. Use the Chain Rule for Functions on Curves to calculate $g^{\prime}(4)$.
2. Let $z=f(x, y)=x^{2} \cos y$ where $x=x(t)=\sin t$ and $y=y(t)=t^{3}$.
(a) Form the composition $g(t)=f(x(t), y(t))$ and then use the single variable chain rule to calculate $g^{\prime}(t)$.
(b) Use the Chain Rule for Functions on Curves to calculate $g^{\prime}(t)$.
3. Problem 4 from http://mathquest.carroll.edu/libraries/MVC.student.14.06.pdf
4. Suppose that $z=f(x, y)=\sin (2 x+3 y)$ where $x=x(t)$ and $y=y(t)$. If $x(0)=\pi / 4$, $y(0)=\pi / 3, x^{\prime}(0)=-2$, and $y^{\prime}(0)=4$, find $\frac{d z}{d t}$ at $t=0$.
5. Draw a tree diagram and write a Chain Rule formula for each derivative.
(a) $\frac{d z}{d t}$ for $z=f(u, v, w)$ with $u=g(t), v=h(t)$, and $w=k(t)$.
(b) $\frac{\partial w}{\partial u}$ and $\frac{\partial w}{\partial v}$ for $w=h(x, y, z)$ with $x=f(u, v), y=g(u, v)$ and $z=k(u, v)$.
6. Problem 5 from http://mathquest.carroll.edu/libraries/MVC.student.14.06.pdf
